Текст книги "Журнал «Вокруг Света» №01 за 2009 год"
Автор книги: Вокруг Света Журнал
сообщить о нарушении
Текущая страница: 5 (всего у книги 10 страниц)
– Как проходили съемки фильма? Не было ли чего-то неожиданного, нарушившего планы создателей?
– В общем-то, все проходило ожидаемо – ожидаемо трудно. По причине длины фильма его съемочный период занял целых 222 дня. Съемки шли в Крыму почти весь 2007 год, с февраля по декабрь. Довольно быстро наступила жара, а к лету, когда снимались остальные эпизоды, она стала просто тропической – 45 градусов и больше. На площадке все работали в минимальном количестве одежды, кроме актеров – на них-то были тяжелые инопланетные костюмы. Время от времени они подбегали к крану и обливались водой, иначе было не выдержать. В разных местах Крыма построили 63 масштабные декорации, ставшие на время чем-то вроде туристических достопримечательностей. Когда ночами под Судаком снимали атаку на излучательную башню, собирались целые толпы зрителей. Кое-кто, похоже, даже решил, что началась реальная война.
– И последний вопрос. Фильм, как и роман, имеет открытый финал. Нет ли у его создателей соблазна экранизировать остальные части трилогии Стругацких – «Жук в муравейнике» и «Волны гасят ветер»?
– Что до соблазна, то он во многом будет определяться успехом картины. Но уже сейчас можно сказать, что другие части трилогии куда менее зрелищны, чем «Обитаемый остров» – они написаны поздними Стругацкими, там гораздо меньше действия, больше размышлений героев и авторского текста. Конечно, все это тоже можно воплотить на экране, но это уже другой жанр для другого зрителя. Много сложней. Меня больше привлекает идея экранизации произведения, сравнимого по динамизму и внутренней энергетике с «Островом». Но поживем – увидим.
Беседовал
Вадим Эрлихман
Долой лишний вес!
Месяц назад в рамках этой рубрики мы говорили о моде на миниатюризацию, охватившую мировой автопром. Но ведь есть еще и другая мода – когда автомобили сбрасывают вес, не меняя при этом своих линейных размеров. Цель все та же – сэкономить на топливе, а вот методы совсем другие.
Борьбу с лишними килограммами (но не сантиметрами!) разработчики автомобилей ведут давно и с переменным успехом. Трудно сказать, что здесь первично, а что вторично. Обычно как только с помощью новых, весьма недешевых технологий удается уменьшить массу кузова и (или) двигателя, так в смежных КБ находятся очень-очень нужные устройства, без которых современный автомобиль, оказывается, просто немыслим. И все вновь возвращается на круги своя. К примеру, если взять отечественную «копейку» – ВАЗ-2101 – и снабдить ее полным комплектом современных опций (кондиционер, усилитель руля, эйрбеги, системы ABS и ESP, электростеклоподъемники, мощная аудио система с сабвуфером и т. д.), то динамика и экономичность машины заметно ухудшатся. Причина – «лишняя» масса.
Насколько вообще можно снижать массу, скажем, легкового автомобиля среднего класса? Специалисты считают: рациональный предел лежит в районе 500 килограммов. Более легкий 5-местный полноразмерный седан будет уже неустойчивым, сильный порыв бокового ветра просто сдует его с дороги. К тому же полная масса такого автомобиля будет меняться (в относительном выражении) от количества седоков: одного водителя массой около 80 килограммов или того же водителя и еще четырех таких же пассажиров плюс багаж. Не менять же каждый раз пружины подвески, сажая пассажиров!
Итак, кто кого? Кузовщики или прибористы? В последнее время все же появилась надежда на реальное уменьшение снаряженной массы. Европарламент постановил, что к 2012 году средний выброс СО2 на километр пробега не должен превышать 120 граммов. А за каждый лишний грамм с 2015 года автопроизводители будут платить по 95 евро с каждой машины. Более того, на 2020 год норматив планируют и вовсе ужесточить до 95 г/км! При чем тут масса авто? А все просто: граммы углекислого газа пропорциональны сожженному ископаемому топливу, а оно, в свою очередь, – весу автомобиля.
Но поскольку и через 10 лет многие, как нам кажется, не захотят ездить в тесных коробчонках на колесах, придется облегчать существующие полноразмерные кузова и мощные двигатели.
Робот вынимает готовую пластиковую деталь из литьевой машины (слева), чтобы отправить ее дальше, на склейку корпуса
Битва металлов
Производители алюминия, магния и стали борются нынче за автопром как за крупнейший рынок сбыта своей продукции. И небезуспешно. Так, 30 известных металлургических фирм объединились в консорциум и разрабатывают проект ULSAC (Ultra Light Steel Auto). Например, применение высокопрочных стальных сплавов и технологии гидроформования полых профилей позволило снизить вес дверей и капотов 18 моделей образца 1997 года на 27—32%, при этом стоимость изготовления сохранилась на прежнем уровне. А совсем недавно была продемонстрирована сверхлегкая дверь, весящая (без стекла и внутренних механизмов) всего… 10,47 килограмма, что на целых 42% легче традиционной конструкции! При той же прочности.
А колеса? Что же здесь можно противопоставить красивым, легким и прочным легкосплавным дискам? Оказывается, новые марки стали DP600 и DR600 позволяют уменьшить вес штампованного диска на 20%, так что теперь обод размера 6SJ x 15 весит всего 6,75 килограмма при сохранившейся стоимости, что лишь на 1250 граммов тяжелее более дорогого алюминиевого конкурента. Испытывают и биметаллический стальной диск, сваренный лазером из полос двух различных сортов стали по технологии Tailored Strip, который весит всего 5,3 килограмма, то есть легче алюминиевого.
Более того, современные автомобилестроители того и гляди вернутся к стальным бензобакам! Оказывается, пластиковые пропускают сквозь стенки около 18 граммов паров бензина в сутки, тогда как калифорнийские законодатели требуют не более 0,5 грамма! Тут и вспомнили о старом добром стальном баке, не пропускающем вообще ничего. Только вместо вредного свинца с коррозией теперь будет использоваться покрытие из цинка и никеля с тончайшей пластиковой оболочкой. Есть варианты и горячего алюминирования (к ним склоняются в Германии и Японии), и даже использования нержавейки.
А что же сам алюминий? Этот крылатый металл применяли в автомобиле (правда, спортивном) еще в 1899 году. Потом, в 1923 году, Лоуренс Померой построил машину, прошедшую 200 000 миль, прежде чем попасть в музей Ford. Но настоящую популярность алюминий получил вскоре после Второй мировой войны, благодаря Land Rover Defender. Правда, тогда еще не умели сваривать алюминиевые детали сложной формы, поэтому и обошлись плоскими панелями на заклепках.
Сегодня цельноалюминиевые кузова хотя и не стали массовым явлением, но доля этого металла в среднестатистическом автомобиле постоянно растет и достигла уже 160 килограммов. В автомобилях малого класса, где алюминий мог бы обеспечить расход топлива около 3 литров на 100 километров (это не фантастика, была уже такая версия Audi A2), широкому использованию металла с плотностью 2,68 г/см3 (против 7,87 у стали) мешает дороговизна технологий. А вот за вес Jaguar, Audi A8, Rolls-Royce Phantom стоит побороться всерьез, отдав часть освободившихся килограммов сервосистемам и электронике.
Суть этого каркаса в использовании профилей из прочных и особо прочных марок стали. При этом их стенки гораздо тоньше и легче, чем обычно
А можно попробовать совместить доселе несовместимое: в BMW 5-й серии, например, алюминиевый перед соединили со стальным кузовом, для чего пришлось решать проблему разности электрохимических потенциалов, приводящую к быстрой коррозии места стыка этих металлов. Кстати, такой симбиоз сегодня встречается часто. Машины подешевле ограничиваются алюминиевыми капотами и крышками багажников. Алюминиевые панели нередко скрываются под слоем металлика и на других авто, становясь неприятным сюрпризом для владельца в случае ДТП – ремонт влетает в копеечку.
Сколько же массы может сэкономить переход на алюминий в автомобиле среднего класса? По оценкам, вместо усредненных 1229 килограммов можно выйти на 785, то есть выигрыш составит около 36%. В пересчете на топливо это пара-тройка литров на сотню километров пробега. А нельзя ли пойти дальше и заменить алюминий магнием с плотностью всего 1,81 г/см3? В свое время в Volkswagen Lupo 3L уже была магниевая крышка багажника и титановые пружины подвески. Проблема тут не столько в стоимости металла, а в его «жадности» до кислорода. Например, магниевые колесные диски тщательно покрывают лаком, иначе они быстро превратятся в порошок окиси. (Похожие проблемы были и с алюминием, пока российские металлурги не придумали специальные коррозионностойкие сплавы, которыми успешно пользуется мировой автопром.) Поэтому магний пока применяют для деталей, где опасность окисления минимальна. Например, для каркаса торпедо Mini и Rolls-Royce. Последняя весит всего 7,6 килограмма и отливается единым «куском». А вот на BMW применили магний в блоке цилиндров. Новая рядная «шестерка» на четверть легче благодаря схеме «два в одном»: алюминиевая внутренняя часть с гильзами и постелями коренных подшипников окружена магниевым корпусом с водяной рубашкой и каналами для смазки. Здесь алюминий сопротивляется высоким термическим и механическим нагрузкам, а магний облегчает самую объемную часть мотора. Навесные агрегаты крепятся к магниевому корпусу алюминиевыми болтами. Правда, не граммов ради, а лишь из-за коррозионной проблемы на стыке магния и стали.
На первый взгляд ничего сложного: в форму закладывают алюминиевую сердцевину и заливают сплавом магния. А вот нюансы технологии производят впечатление: в форму массой около 60 тонн в течение 0,06 секунды впрыскивается магний под давлением 1000 бар! Алюминиевая сердцевина сжимается при этом магниевой оболочкой с усилием около 4000 тонн. Металл затвердевает всего за 10 секунд, еще 20 секунд идет охлаждение по специальной программе, исключающей растрескивание и, наконец, рука робота извлекает готовый блок цилиндров из половинок формы. Этот проект обошелся инвесторам в 100 миллионов евро, так что BMW вряд ли подешевеют. Впрочем, подобные же двигатели разработаны и на Audi, и знаете, сколько килограммов удалось сэкономить по сравнению с чугунным блоком? Двадцать три. С одной стороны, это вес полной канистры, с другой – так ли уж много на фоне тонны веса всего автомобиля?
1. Капот этого Rolls-Royce частично просто покрыт бесцветным лаком. Но и то, что скрыто под голубым металликом, – тоже алюминиевое!
2. Такой Plymouth должны были выпускать из бутылочного пластика. Но кризис спутал все карты…
Из пластиковых бутылок
А вы в курсе, что кузов современного авто можно сделать из пластиковых бутылок? Нет, это не сюжет для передачи «Умелые руки», речь идет об использовании полиэтилентерефталата в автостроении. До сих пор пластиковые кузова были доступны лишь суперкарам, где цена не имела значения. Дело в том, что необходимую прочность обеспечивали стекло– или углепластик. А из этого материала можно было изготавливать детали сложной формы лишь по принципу папье-маше: на болванку накладывали слой за слоем, промазывая весь «сэндвич» специальным клеем. Какая уж тут массовость – чисто ручная работа. Впрочем, прогресс не остановишь, и специалисты Daimler придумали, как сделать достаточно прочным удобный для литья полиэтилентерефталат. Для этого в форму закладывают туго натянутую паутину прочных нитей. Каркас из них оказывается внутри панели, а точнее, целой половинки кузова. Остается лишь склеить 4—12 составных частей, поставить внутрь мотор и сиденья, привернуть колеса... На изготовление уже окрашенного в массе кузова уходит 6,5 часа, тогда как норма для металлического аналога – 19 часов и 80—120 сборочных единиц.
Новая технология получила название LIMBT (Large Injection-Molded Body Technology). Однако если суть технологии и кажется простой, то лишь на бумаге, а на деле пришлось построить литьевую машину, развивающую усилие в 8000 тонн и весом более 900 тонн. Расплавленная масса впрыскивается в форму под давлением в 482 атмосферы, обтекая многочисленные подогреваемые «перемычки», препятствующие преждевременному остыванию. Проходит две минуты, и половинки формы по 200 тонн каждая освобождают готовую деталь для дальнейшего остывания уже на воздухе. И только тогда детали принимают окончательные форму и размер. Представляете, как сложно было рассчитать размеры формы, обеспечивающие конечную точность детали в ±0,5 миллиметра!
Далее специальный клей намертво соединяет половинки кузова за те же 2—3 минуты (длительность каждого процесса должна быть примерно одинаковой, иначе либо детали будут накапливаться, либо оборудование простаивать). Результаты краш-теста обнадеживают: даже при –20 °С клей и детали выдержали. Кстати, оказалось, что и с точки зрения безопасности армированный пластик гораздо лучше стали, поскольку поглощает кинетическую энергию не просто за счет деформации, но и расслоения материала, растяжения и обрыва волокон.
Интересно, что, несмотря на огромные размеры литьевых машин и форм, общая стоимость организации производства самых сложных (из 12 деталей) кузовов по технологии LIMBT оценивается в 23 миллиона долларов, тогда как подготовка к серии стального кузова стоит несколько сотен миллионов! К тому же площадь, занимаемая заводом, сокращается в четыре раза, а его цена – в три. Не нужно ни штампового, ни сварочного, ни окрасочного, ни гальванического производств. Экономисты подсчитали: такая технология делает рентабельным выпуск автомобилей от 10 000 штук в год. И если бы не общий кризис автопрома, то пластмассовые автомобили уже, возможно, бегали бы по улицам…
Chrysler (будучи еще в связке с Daimler) собирался производить таким способом полноразмерные автомобили на основе концептов Plymouth Pronto Spider и Dodge Intrepid ESX II. По предварительным расчетам себестоимость машин могла снизиться на 80%! Кроме того, полиэтилентерефталат гораздо экономичнее металла в утилизации: переплавка требует меньше энергии. Но теперь неясна судьба самого концерна, так что легких «авто из бутылок» придется подождать. Возможно, первыми ласточками станут модели на топливных элементах: для них вывели почти линейную зависимость. Снизили массу вдвое – вдвое уменьшилась необходимая мощность силового агрегата, вдвое упала и общая стоимость авто. Но это уже тема для другой статьи.
Алексей Воробьев-Обухов
Эхо древних катастроф
ВОСТОЧНАЯ СИБИРЬ, 251 МИЛЛИОН ЛЕТ НАЗАД
Гигантский поток мантийного вещества поднялся из недр в северо-восточной части Пангеи – там, где располагалась Сибирь, и расплавил каменную оболочку. Извержения базальтовой лавы и пепла продолжались несколько тысяч лет и совпали с самым массовым вымиранием животных за всю историю планеты. Именно застывшие пласты базальтов образуют характерный ступенчатый ландшафт многих возвышенностей Восточной Сибири, таких как плато Путорана. Рис. ОЛЬГА ОРЕХОВА-СОКОЛОВА
Долгое время глобальные катастрофы, которые могли влиять на эволюцию земной жизни, мало интересовали ученых. Геологам и палеонтологам важнее было понять поступательное и непрерывное изменение видов. Лишь относительно недавно, в середине прошлого столетия, когда установили, что массовые вымирания совпадают по времени с катастрофическими событиями, такими как вспышки вулканизма и падение метеоритов, их стали изучать целенаправленно.
Впервые о катастрофах, которые случались на Земле в прошлом, заговорил в начале XIX века французский естествоиспытатель Жорж Кювье. Талантливый палеонтолог понимал, что животные прошлых эпох совершенно не были похожи на нынешних, что, к примеру, кости ихтиозавров и плезиозавров находятся в определенных слоях Альп и искать их в более поздних отложениях бесполезно. А кости ламантинов и тюленей, наоборот, не стоит искать рядом с остатками ихтиозавров. Как опытный сравнительный анатом, изучивший обширные коллекции мумий животных и их каменных барельефов, вывезенных солдатами Наполеона из Египта, он видел, что за 2000—3000 лет виды животных не меняются. Чтобы в истории Земли длительностью, как тогда считали, не более 100 000 лет происходили частые смены видов животного мира, нужны какие-то губительные кратковременные события. И Кювье предложил идею периодических катастроф, жертвами которых становились бесчисленные живые существа: «Одни, обитатели суши, были поглощаемы потопами, другие, населявшие недра вод, оказывались на суше вместе с внезапно приподнятым дном моря...»
СЕВЕРНАЯ АМЕРИКА, 65,5 МИЛЛИОНА ЛЕТ НАЗАД
Кратер и особые горные породы, найденные в районе полуострова Юкатан, на территории современной Мексики, свидетельствуют о том, что там упал астероид. Его падение вызвало катастрофические последствия: взрывная волна выжгла почти все живое в округе, а чудовищное цунами опустошило берега. Волна вынесла на побережье морских обитателей, таких как спрятанные в спиральную раковину моллюски-аммониты и морские ящеры – мозазавры. Их останки оказались за километры от воды и послужили пищей для редких выживших обитателей суши. При ударе о землю астероид испарился и выбил из кратера смесь пыли, пепла, едкого пара, которая, поднявшись в атмосферу, отравила ее и затмила Солнце. Резкое похолодание и кислотные дожди длились, вероятно, несколько лет. Это событие сопровождалось вымиранием 35% видов морских обитателей, а также всех крупных рептилий: морских ящеров, динозавров и птерозавров. Рис. ОЛЬГА ОРЕХОВА-СОКОЛОВА
К идее геологических катастроф ученые вернулись спустя 100 лет, когда обратили внимание на то, что поступательный рост разнообразия организмов, населявших Землю, прерывался по крайней мере двумя грандиозными падениями их численности. Эти перерывы совпадают с рубежами геологических эр: палеозойской, мезозойской и кайнозойской.
Самое массовое за всю историю Земли вымирание живых существ произошло 251 миллион лет назад, в конце палеозойской эры. Свыше 90% морских и 70% наземных видов навсегда исчезли с лица Земли – остались лишь самые мелкие и просто устроенные. В Мировом океане прекратилось образование рифов, до того распространенных по всем морям, а на суше – накопление угля, так как исчезли покрывавшие ее пышные леса из древовидных плаунов, папоротников и разно образных древних голосеменных. Ученые ищут причины этого вымирания как в состоянии самой биосферы, так и вне ее. Среди внешних причин вымирания сегодня чаще всего называют катастрофу, вызванную мощными вулканическими излияниями на территории Восточной и отчасти Западной Сибири. Это было кратковременное по геологическому масштабу событие, сильно повлиявшее на биосферу. Его следы запечатлены в виде обширнейшей толщи базальтов, мощностью несколько километров, называемых Сибирскими траппами.
В обрыве плато Путорана четко видна толща базальтов, излившихся 251 миллион лет назад за кратчайший срок – тысячи лет. Покров древней лавы в этих местах достигает толщины 1,8 километра. Фото: СЕРГЕЙ ФОМИН/RUSSIAN LOOK
Они образовались за кратчайший по геологическим меркам промежуток времени – примерно 160 000 лет, а может быть, не более 8000 лет. Базальтовые лавы покрыли максимум 7 миллионов квадратных километров суши. Из недр исторглось от 2 до 3 миллионов кубических километров вулканических материалов, в том числе миллионы гигатонн двуокиси углерода. Содержание последней в атмосфере того времени повысилось в 7—10 раз. (К примеру, если человечество в течение текущего столетия сожжет все ископаемое топливо, концентрация углекислого газа в атмосфере поднимется в 2—3 раза.) Более того, разогрев атмосферы за счет парниковых газов и своеобразных солнечных батарей в виде туч, состоявших из крупных частиц вулканического пепла и паривших над всей планетой, привел к прогреву верхних слоев океана и высвобождению миллиардов тонн метана, до той поры скованного ледяными кристаллами на шельфе. Этот газ – один из действенных парниковых факторов, к тому же он быстро окисляется, забирая кислород из атмосферы. Общий эффект от атмосферных изменений был усилен своеобразной палеогеографией планеты. В те времена все материки соединились в единый суперконтинент – Пангею, простиравшуюся от полюса до полюса. (Сибирская платформа находилась в его северо-восточной части.) Над центральной, удаленной от побережья, обширной областью суперконтинета почти не проливались дожди, она была сухой и практически безжизненной. Наземные животные сосредоточились по окраинам Пангеи, окаймленным горными грядами, и постепенно перемещались на ее южное, антарктическое побережье, где было не слишком жарко. Падение содержания в атмосфере кислорода сделало жизнь в горах невозможной, и обитаемыми остались лишь небольшие низменные участки.
В такой обстановке в самых невыгодных условиях оказались большинство рептилий и рыб, а также известковые водоросли, кораллы, губки. Первые пострадали из-за недостатка кислорода и отравления углекислым газом, вторых сгубило подкисление морских вод, вызванное растворением в них избытка углекислого газа. Уцелели некоторые наземные амфибии, а также рептилии, например, протерозухии – предки динозавров, цинодонты – зверообразные ящеры, предки млекопитающих, и листрозавры – их отдаленные родственники. Это были животные небольшого размера, которым на поддержание активности требовалось меньше энергетических затрат, а значит, они потребляли меньше кислорода. У листрозавров были приспособления, позволявшие, наоборот, поглощать больше воздуха, а следовательно, и кислорода, – увеличенные грудная клетка и отделы черепа, связанные с дыханием. Среди морских животных катастрофу пережили также самые мелкие фораминиферы, брахиоподы, двустворки, так как им требовалось меньше пищи и кислорода. Их крупные сородичи исчезли. Наземная флора пострадала не меньше, чем фауна, – содержащие хлор выделения вулканов разрушали озоновый слой, жесткое ультрафиолетовое излучение калечило еще не проросшие споры, сернокислые дожди выжигали листву, а последние соки из отмирающих деревьев высасывали расплодившиеся грибы. Былой уровень биоразнообразия на Земле восстановился только 60 миллионов лет спустя, к середине юрского периода.
Космический фактор
Во многих местах Земли, где древнее морское дно выходит на поверхность, можно увидеть тонкий глинистый слой, сформированный 65 миллионов лет назад. Именно по нему геологи проводят границу мезозойской и кайнозойской эр. Примечательный пример такой границы обнаружили недавно в юго-восточной Испании, вблизи местечка Каравака-де-ла-Крус – тонкий, в несколько миллиметров слой рыжеватой глины среди многометровых толщ белых мергелей. Ниже этого слоя встречаются остатки разно образных животных, населявших моря мезозойской эры: кости морских ящеров, раковины аммонитов и мельчайших планктонных существ – фораминифер и кокколитофорид, из которых образовались известковые илы, со временем превратившиеся в известковые породы – мергели. Здесь же встречаются окаменевшие панцири крошечных рачков, которые проглатывали глинистые частицы, спрессовывали их в комки – пеллеты – и в таком более «весомом» виде отправляли на дно, создавая массу осадочного материала. И «вдруг» все эти животные исчезли, и потому полностью прекратилось образование известковых осадков, темпы же накопления глинистых частиц упали в сотни раз – об этом свидетельствует малая мощность пограничного слоя. Несколько тысяч лет море оставалось почти необитаемым, потом жизнь взяла свое, и геологическая летопись запечатлела ее восстановление, начавшееся с безудержного размножения немногочисленных и мелких уцелевших видов фораминифер. Раковинки их потомков и образовали новые слои белого мергеля.
ЗАПАДНАЯ ЕВРОПА, 5,33 МИЛЛИОНА ЛЕТ НАЗАД
В то время как в Восточной Африке предки австралопитеков осваивали саванну, Средиземное море испытало сильнейший экологический кризис. Растущие горные цепи перекрыли ему сообщение с Индийским и Атлантическим океанами, из-за недостатка воды море постепенно пересохло. Огромная котловина глубиной местами до 5 километров сотни тысяч лет оставалась почти безводной. Кризис закончился внезапно прорывом атлантических вод через Гибралтарский пролив. При этом ключевую роль могли сыграть одновременно три фактора: подъем уровня Мирового океана, тектонические процессы и эрозия стенок котловины. Морская вода низверглась во впадину, образовав самый большой из известных сегодня водопадов. Пересыхание и катастрофическое наполнение Средиземного моря запечатлено в многокилометровых толщах соли и гипса, многочисленных пещерах, погребенных речных каньонах и ступенчатом рельефе дна Гибралтарского пролива. Рис. ОЛЬГА ОРЕХОВА-СОКОЛОВА
О том, что происходило на суше в эти тысячелетия, можно только догадываться, потому как границы, четко прослеживаемой в морских толщах, в наземных отложениях нет. Точно установлено, что хозяева суши – разнообразные и многочисленные динозавры и птерозавры – этот рубеж не пережили.
Какие же события произошли 65 миллионов лет назад, что разделили геологические эпохи и стали причиной столь глобальных изменений? В поисках ответа на этот вопрос ученые обратились к космическим факторам. В середине XX века астрофизики открыли явление рождения сверхновых звезд, связанное с огромными выбросами энергии, и у палеонтологов возникло предположение, что эта внезапно высвобожденная энергия, достигая Земли, могла срывать ее магнитосферу, защищавшую планету от жесткого излучения, и тем самым обрекать ее обитателей на гибель. Однако обосновать эту гипотезу, изучая геологическую летопись, не удалось.
К тому же вскоре родилась другая идея о космической катастрофе, которая быстро завоевала популярность. Американский геофизик Уолтер Алварес обнаружил вблизи итальянского городка Губбио в тоненьком слое глины, обозначающем границу мезозойской и кайнозойской эр, необычно большое содержание иридия, в сотни раз превышающее среднюю концентрацию его в обычных горных породах. Отец Уолтера, физик-атомщик Луис Алварес, помог найти объяснение этому явлению. Оказалось, что осколки метеоритов, упавших на Землю, также содержат много иридия и других металлов платиновой группы. Значит, эти элементы могли попасть в глинистый слой в результате удара космического тела. Алваресы заинтересовались совпадением времени предполагаемого падения метеорита и гибели динозавров и связали эти два события в единую гипотезу «астероидной зимы» по аналогии с «ядерной зимой»: если в Землю на скорости 20 километров в секунду врезался астероид свыше 10 километров в поперечнике, то произошел чудовищный выброс энергии, в 10 000 раз превышающий все нынешние ядерные запасы землян. Часть мезозойских обитателей сразу погибла от ударной и тепловой волн, остальные вымерли от последствий падения – взлетевшая в атмосферу пыль отражала солнечные лучи. Началось похолодание, и растительность, оставленная без света и тепла, стала гибнуть. Затем последовало массовое вымирание лишенных пищи животных.
После появления небольшой заметки Алваресов в 1980 году в журнале Science количество научных статей, посвященных глобальным катастрофам, выросло в сотни раз. В первую очередь искали доказательства правоты физиков, затронувших интересы палеонтологии. И нашли немало: практически во всех разрезах, где граничный слой возрастом 65 миллионов лет достаточно хорошо выражен, отмечена иридиевая аномалия, а также кристаллы кварца с шоковой структурой – мелкими параллельными трещинками, возникающими при очень большом давлении, тектиты (охлажденные капли расплава, образовавшегося при ударе крупного метеорита о горные породы), прослои сажи. Обнаружили и кратер Чиксулуб в Мексике, время появления которого примерно совпадает с данным рубежом.
Средиземноморское наводнение
Жорж Кювье первопричиной глобальных вымираний считал морские потопы, но эта гипотеза современными геологами не подтвердилась. Чтобы затопить всю сушу, кроме высоких гор, и уничтожить большую часть наземных обитателей, необходимы по крайней мере два условия: повышение уровня Мирового океана на сотни метров и быстротечность события. В наше время, когда средняя высота континентов над уровнем моря составляет 670 метров, надо чтобы объем Мирового океана увеличился почти в два раза. Такое событие никогда в земной истории не случалось и ввиду отсутствия подобных запасов свободной воды вряд ли возможно в будущем. Два основных явления регулируют уровень Мирового океана – изменение площади материковых ледников и срединноокеанических хребтов (высоких горных цепей, расположенных в центральных частях всех океанов). Разрастание ледников, вбирающих в себя огромные массы воды, и сжимание срединно-океанических хребтов приводят к тому, что океаны и моря отступают, осушая громадные территории шельфа. Обратные процессы – таяние ледников и разрастание сети подводных гор, выталкивающих водные массы из чаши океана, способствуют повышению уровня Мирового океана. Совпадение этих двух факторов может вызвать очень существенный подъем моря, как это случилось в середине мелового периода, примерно 90 миллионов лет назад. По последним оценкам, тогда уровень Мирового океана поднялся на 250 метров, затопив обширные участки суши. Однако считать это повышение катастрофическим потопом мешает большая длительность события – миллионы лет, именно столько идет рост подводных горных цепей. Океан наступает не спеша, отвоевывая у суши по миллиметру в год. К такому темпу животный мир успевает приспособиться, и быстрого массового вымирания не происходит.
Морское дно мелового периода до того, как оно опустело 65 миллионов лет назад. Слева – раковины моллюсковрудистов, «динозавров морей», названных так за крупные размеры и одновременное вымирание. Диорама создана из подлинных палеонтологических объектов, ее автор – Сантьяго Лафарга. Фото: АНДРЕЙ ЖУРАВЛЕВ
Локальные наводнения, то есть быстрые затопления суши, происходили в прошлом неоднократно, но на очень ограниченном пространстве – всю планету они никогда не охватывали и большого урона обитателям суши не наносили. Самое крупное достоверно подтвержденное наводнение случилось всего 6 миллионов лет назад на территории Средиземноморья. К тому времени из-за изоляции от Индийского и Атлантического океанов Средиземное море пересохло, превратившись в обширную котловину, глубиной местами почти 5 километров относительно уровня Мирового океана. Дно ее постепенно заполнилось трехкилометровым слоем гипса и соли, образованным в процессе испарения морской воды, а в теплых рассолах неглубоких озер, сохранившихся в некоторых местах, могли выжить только особые бактерии – галоархеи. Этот этап в истории региона называют Мессинским кризисом – по названию провинции на Сицилии, где издревле добывали соль. Геологи очень точно установили время, когда Мессинский кризис подошел к концу – это произошло 5,33 миллиона лет назад, когда воды Атлантического океана начали проникать по тектоническим трещинам через западный борт котловины. В какой-то момент вода проточила в породах довольно широкое русло – нынешний Гибралтарский пролив – и хлынула водопадом в сухую, засоленную низменность. Наполнение Средиземного моря происходило очень быстро – всего 15 000—20 000 лет, в течение которых в нем поселились обычные морские сообщества. Гипотезу о катастрофически быстром наводнении в котловине Средиземного моря одним из первых высказал советский геолог Иван Чумаков, работавший на строительстве Асуанской плотины в Египте в 1970-х годах и обнаруживший по данным бурения древнее русло Нила, заполненное морскими осадками. Мессинское наводнение значительно повлияло на климат в своем регионе, но к существенным перестройкам в биосфере не привело.