Текст книги "Происхождение растений"
Автор книги: Владимир Комаров
Жанр:
Биология
сообщить о нарушении
Текущая страница: 3 (всего у книги 14 страниц) [доступный отрывок для чтения: 6 страниц]
С точным термометром в руках начинаем мы наблюдения. В глубине ключевой воронки термометр показывает 99°, вода в ней совершенно чистая, синеватая. В канавке стока уже в полутора шагах от ее начала при температуре 85° на камнях дна появляются тонкие белые или сероватые пленки. Это колонии бактерий. Несколько ниже, при 82°, к ним присоединяются еще и темные сине-зеленые пленки так называемых циановых водорослей, считаемых справедливо за один из примитивных представителей класса водорослей и являющихся в то же время близкими родственниками класса бактерий.
Следовательно, после крупных вулканических катастроф жизнь легко заносится на склоны вулканов в виде бактерий, и первым ее осуществлением являются бактерии горячих ключей, перерабатывающие минеральные растворы ключевых вод.
В эпоху возникновения жизни на Земле горячие ключи, образовывавшиеся среди непрочной еще литосферы, легко могли стать первым пристанищем жизни. Ключи эти содержат в своих водах весьма разнообразные минеральные соединения, растворяемые перегретым паром и горячей водой на пути ее по трещинам литосферы. Взаимодействие встречающихся при этом растворов и способность их образовывать сложные соединения пока совершенно не изучены. Особенно неясна здесь роль первичных углеродистых соединений неорганического происхождения. Все это необходимо выяснить.
Морская вода представляет собою гораздо большую однородность и, вероятно, никогда не достигала точки кипения, разве в горячих же ключах, выбивающихся иногда в вулканических странах из-под берега.
Кроме того, глубины океана мало благоприятны для простейших организмов, обычно концентрирующихся у его поверхности, там, где в воду проникают и воздух и свет, при небольших давлениях воды.
Предполагая, таким образом, что жизнь зародилась первоначально в горячих ключах, богатых растворами солей, в том числе также и солей угольной и азотной кислот, мы охотнее допускаем зарождение ее простейших форм из неорганических осадков на дне ключей, чем занос из других звездных миров. Этого нельзя доказать, но, может быть, со временем химикам и удастся произвести синтез белков, и тогда вопрос станет гораздо доступнее нашему пониманию, чем это имеет место теперь.
В последнее время открыт ряд организмов (бактериофаг и другие), которые невидимы и о присутствии которых мы узнаем только по результатам их работы. Здесь имеют место характерные явления жизни в виде обмена и размножения, но нет определенной структуры, если не считать молекулярной. Такие организмы ближе к понятию о живом веществе, чем об организмах, так как именно организации-то в них и нельзя открыть [18]18
Понятие об организме тесно связано с представлением об органах, посредством которых осуществляется работа жизни. Изучение основных процессов жизни – питания, дыхания и роста – приводит нас, однако, к представлению об определенных химических реакциях, происходящих в живом веществе, протоплазме. Отсюда логическая возможность мыслить о живом веществе, не имеющем никаких органов, о протоплазме, живущей самостоятельно. Такое живое вещество, без другой организации, кроме молекулярной, способное питаться и дышать, но подобное по внешности белку сырого куриного яйца, должно было развиваться раньше, чем могли зародиться на Земле организмы с определенными внешними формами и какими-либо органами.
[Закрыть].
Итак, жизнь некогда зародилась на Земле в виде простейших растительных организмов, не требовавших для своего существования ни света, ни кислорода воздуха, ни органического вещества. Зародилась в виде мельчайших бесструктурных существ, из которых впоследствии образовались остальные.
Отсюда тот живой интерес, с которым К. Маркс и Ф. Энгельс отметили в своей переписке извещение Гексли о якобы открытом им глубоководном организме батибии, состоявшем из белковой слизи. Хотя впоследствии химический анализ не подтвердил этого, самая идея не потеряла значения.
Глава IV
КРУГОВОРОТ ЖИЗНИ И КРУГОВОРОТ ВЕЩЕСТВА В ПРИРОДЕ
Известно, что если сжечь массу различных растении, предварительно высушив их до постоянного веса, то получится, с одной стороны, водяной пар и углекислый газ, а с другой стороны – зола. Если теперь разложить полученные вещества на элементы, то мы получим в процентах следующие соотношения:
Углерод….. 45
Кислород… 42
Водород…. 6,5
Азот………. 1,5
Остальные: сера, фосфор, калий, кальций, магний, железо, хлор, кремний, иод, бром, натрий
В то время как первые 4 элемента составляют 95 % общего веса сухого вещества растений, все остальные встречающиеся в их золе простые вещества дают в сумме всего 5 %. Тем не менее, без серы, фосфора, калия, кальция, магния и железа, как показывают точные опыты с культурами на минеральных растворах, растения существовать не могут.
Жизнь растений тесно связана с поглощением элементов, составляющих их тело. Обмен веществ – главная и наиболее важная для нас работа растений. Посмотрим, откуда они заимствуют эти элементы и куда отдают их по использовании. Надо иметь в виду, что растения не поглощают твердой пищи, не имеют пищеварительной полости, а питаются водными растворами необходимых для их дыхания и роста веществ, которые поглощают путем всасывания корнями и внутренними частями мякоти листьев. Для того, чтобы выяснить значение и перемещения каждого из существенных для жизни растений элементов, прибегнем к методу выяснения того круговорота веществ, который постоянно происходит на Земле, то переводя интересующий нас элемент в свободное состояние, то снова связывая его в составе сложных соединений, входящих в состав тела растений или участвующих в их обмене с внешней средой.
1. УГЛЕРОД
Согласно сводке В. И. Вернадского (Геохимия, 1927), среднее содержание углерода в земной коре соответствует 0,4–0,5 % от общего ее веса. В странах, богатых известняками (углекислый кальций), количество углерода выше и достигает 10–12 %. Но во всех подобных случаях значительная часть этого запаса углерода образовалась за счет остатков живых существ и, особенно, растений, погребенных под слоями наносов.
Первичными соединениями углерода, возникшими помимо участия организмов в его накоплении, как показывают химические исследования продуктов вулканизма, являются углекислота, окись углерода, углеводороды, наконец, некоторые производные муравьиной кислоты, которая может образовываться при высоких температурах путем восстановления углекислоты в присутствии воды.
Угольная кислота, как уже упоминалось, выделяется вулканами в огромных количествах и затем более или менее равномерно распределяется в атмосфере. Как известно, она составляет 0,03 % общего веса нижних слоев атмосферы. И хотя углерод составляет только 3/11 веса углекислоты, а остальные 8/11 приходятся на кислород, тем не менее общий запас углерода в атмосфере исчислен в 800 биллионов кг.
Углекислота [20]20
Безводная углекислота, или угольная кислота (вернее ангидрид угольной кислоты), содержит 72,71 % кислорода и 27,28 % углерода и представляет собою конечный окисел углерода; такого соединения углерода, которое содержало бы больше кислорода, чем его имеется в углекислоте, не существует.
[Закрыть]воздуха, как и все газы, способна диффундировать, т. е. равномерно распределяться во всем доступном ей пространстве. Сквозь невидимые глазу отверстия в кожице листьев, называемые устьицами, она проникает во внутренние полости листа, воздушные ходы, и здесь растворяется в жидкости, смачивающей оболочки живых клеток мякоти листа. Водный раствор углекислоты встречает внутри клеток зеленые хлорофильные зерна и при их содействии разлагается действием солнечных лучей, распадаясь на углерод и кислород. Кислород выделяется наружу, а углерод вступает в соединение с элементами воды, кислородом и водородом и образует тройные соединения, называемые углеводами, причем основным соединением этого рода приходится считать виноградный сахар, или иначе глюкозу. Далее идут крахмал, тростниковый сахар, клетчатка и многие другие менее распространенные тела той же химической группы углеводов.
В процессе дыхания растение, поглощая из воздуха свободный кислород, снова образует углекислоту за счет углеводов и отдает ее назад атмосфере. Процесс этот называется также диссимиляцией и сопровождается потерей в весе, тогда как усвоение углерода углекислоты – ассимиляция дает увеличение веса.
В тех случаях, когда кислорода недостаточно для полного окисления сахара на углекислоту и воду, возникают обычно процессы брожения, дающие при распаде сахара выход спирта и углекислоты. Значительная часть поглощенного растением углерода утилизируется им на постройку его тканей и отдается обратно только после его гибели, когда процессы гниения и брожения разложат и древесину и другие части растения с конечным образованием тюх же углекислоты и воды, метана и пр.
В самом растении углевод претерпевает весьма сложные превращения, входя в состав живого вещества, а также в образуемые растением запасы.
С превращениями углерода тесно связаны превращения солнечной энергии, поглощаемой зелеными растениями одновременно с углекислотой. При усвоении углерода и образования углеводов поглощается масса энергии и вся она переходит в потенциальную химическую энергию углеводов. Если вместо углеводов образуются жирные масла, или за счет углеводов и жирных масел путем присоединения к ним азотистых соединений образуются белки или протеины, то и в них вводится потенциальная химическая энергия, заимствованная от Солнца.
При дыхании, брожении, гниении потенциальная химическая энергия углеводов, жиров и белков, составляющих тело растения, освобождается, превращается в динамическую и так или иначе расходуется. Мы лучше всего это видим, когда сжигаем в наших печах дрова или уголь и пользуемся освобождающимся при этом теплом.
Сжигаемое ежегодно количество каменного угля, не считая других видов топлива, выбрасывает в атмосферу около 1400 000 млн. кг углекислоты, которая снова утилизируется растениями. Таким образом, общий круговорот углекислоты в природе таков:
1. Углерод углекислоты воздуха.
2. Углерод углеводов, жиров и белков в растениях.
3. Углерод тела животных, полученный ими вместе с растительной пищей.
4. Углекислота, полученная благодаря дыханию.
5. Остатки животных и растений, постепенно отдающие свой углерод углекислоте, благодаря процессам брожения, или обугливающиеся, или иным путем переходящие в запасы минерального топлива.
6. Углекислота, как продукт горения различных видов топлива.
Часть углекислоты выходит из круга при образовании известняков и других углекислых минералов или солей, но пополняется той углекислотой, которую выбрасывают вулканы.
Уже из этого краткого очерка можно видеть, что общий запас углекислоты в атмосфере мог в различные эпохи, пережитые нашей Землей, изменяться значительно, а вместе с этим изменились и прозрачность атмосферы, а также и условия дыхания живых существ.
2. КИСЛОРОД
Кислород – один из наиболее деятельных элементов земной поверхности и один из наиболее распространенных. Свободный кислород – одна из важнейших составных частей атмосферы. Много его растворено в воде, соленой и пресной, в снегах и льдах северных стран. Кроме того, мы имеем большой запас связанного кислорода в воде и в других окислах. Процессы окисления – одни из важнейших на земной поверхности.
Откуда взялся свободный кислород? Он существует только на поверхности Земли. Его нет ни в воде источников, берущих свое начало в глубоких слоях Земли, ни в выделениях вулканов. Газы, выделяемые вулканами, многократно уже подвергались анализу, особенно американцами на Сандвичевых островах, где для этого особенно удобные условия, благодаря постоянству действующих вулканов Мауна-Лоа и Мауна-Кеа. В Японии, в южной Европе, на Камчатке, всюду газы вулканов – это углекислота, хлористый водород, сернистый водород и другие, но никогда не кислород.
Рассматривая другие мыслимые источники выделения свободного кислорода на поверхности Земли, мы понемногу убеждаемся, что минеральный мир не дает нам ни одного процесса, связанного с выделением свободного кислорода. При высоких температурах первых периодов существования Земли он был
всецело захвачен окислительными реакциями и выделялся в атмосфере связанным, в виде углекислоты и воды, не считая менее распространенных окислов. Даже в воде глубоких источников, как это доказал уже в конце XVII в. Пирсон в Англии, его в растворе нет, тогда как поверхностные воды Земли обычно содержат в растворе свободный кислород, заимствуемый ими из атмосферы.
Свободный кислород – один из наиболее деятельных, наиболее активных элементов. Процессы соединения с кислородом, процессы окисления дают громадное количество химических соединений, исчисляемых тысячами. Сюда входят окислы углерода и серы, железа и марганца, как особенно обильные. Благодаря этому громадное количество кислорода постоянно связывается, и процентное его содержание в атмосфере должно было бы постоянно уменьшаться, если бы не единственная в своем роде реакция освобождения кислорода в хлорофильных зернах зеленых растений.
Биохимическая реакция освобождения кислорода – единственная реакция, дающая атмосфере значительные количества этого важнейшего газа. Не надо забывать той роли, которую играют в данном процессе солнечные лучи, как источник энергии.
Дерево, содержащее в своей древесине 2500 м 3углерода, для того, чтобы ее построить, должно было освободить от углекислоты 12 млн. м 3воздуха. Урожай зерна, который мы снимаем с наших полей, дает до 14 400 млн. кг углерода, причем наши пшеничные поля, для того, чтобы сконцентрировать в своем зерне всю эту массу углерода, должны ежегодно освобождать от углекислоты не менее 24 000 000 000 000 м 3воздуха, заменяя всю имеющуюся в них углекислоту равным объемом свободного кислорода.
Исходя из этого, мы можем легко установить общий круговорот кислорода:
1. Свободный кислород воздуха.
2. Процессы дыхания, горения, коррозии металлов (ржавление) и прочие реакции окисления связывают свободный кислород воздуха, уменьшают запас его в атмосфере, обогащая последнюю углекислотой.
3. Кислород углекислоты освобождается при усвоении растениями углерода угольной кислоты и возвращается атмосфере.
4. Кислород участвует в образовании растениями углеводов, жиров и белков, а также и многих других соединений, вовлекаясь при этом в круговорот жизненных явлений.
5. При дыхании кислород органических соединений превращается в кислород углекислоты и воды или же остается связанным, входя в состав продуктов, вырабатываемых растениями.
6. Связанный кислород органических соединений или углекислоты становится материалом для питания растений, животных и человека.
Если мы признаем, что весь свободный кислород атмосферы выделен зелеными растениями, то ясно, что до появления этих растений его не было. Следовательно, в атмосфере было больше углекислоты, чем теперь, и общий состав ее не мог поддерживать дыхания животных, которых в то время и не могло быть на Земле.
Задача растений – не только в том, чтобы использовать в явлениях жизни энергию солнечных лучей, чтобы непрестанно вводить в ее круговорот частицы углерода, обогащенного этой энергией, но и в том, чтобы создать атмосферу, которая поддерживала бы нормальную жизнь.
3. ВОДОРОД
Водород в свободном виде редок на Земле и не принимает участия в процессах жизни. Его главное значение – это его участие в образовании того окисла, который мы называем водой. Без воды нет жизни, она одно из главнейших условий осуществления жизни. В процессах обмена, свойственных живым существам, вода то диссоциируется, то снова образуется. Запас воды на Земле пока настолько велик, что мы не придаем значения участию живых организмов в ее круговороте. Недостаток воды в пустынях создает сейчас же соответствующее изреживание растительного покрова, уменьшение массы растительного вещества и общее обеднение жизни.
Так как при реакции фотосинтеза, т. е. при усвоении растением световой энергии и углерода, весь кислород углекислоты возвращается атмосфере, тогда как весь кислород воды втягивается в образование углеводов, то в сумме элементы воды превалируют в составе организма даже над углеродом (48,5 % против 45 % сухого веса). Вода, как показали работы акад. В. И. Палладина, играет выдающуюся роль в реакциях диссимиляции при дыхании, она является растворителем при всех перемещениях вещества в организме, а также двигателем при подаче зольных составных частей, всосанных корнями из почвы, из корней в листья, а также при подаче пластических веществ, выработанных листьями, к растущим частям стебля и корня.
Общий круговорот воды, захватываемой в круговорот растительной жизни, таков:
1. Вода океанов, морей, озер, рек и пр., а также вода поверхностного слоя почвы и часть воды, циркулирующей в растениях, как материал для непрестанного испарения.
2. Результат испарения: вода в атмосфере, вода облаков и туманов. Вода разражающихся дождей, снегов и пр.
3. Вода в растениях как химическое сырье, входящее в реакции синтеза при образовании белков, жиров, углеводов и пр. В процессе дыхания и посмертно при разложении растительного вещества процессами гниения, брожения, тления и пр. большая часть этой воды, если не вся она, возвращается в атмосферу.
4. Вода, связанная в соединения кремния в земной коре, а также вода других соединений, образующихся в глубинных областях земной поры. Кроме того, следует учитывать и водород сернистых и хлористоводородных соединений, а также свободный водород, выделяемый вулканами.
Еще Кант в своей космогонии [21]21
I. Kant. Sammtliche Schriften. 1754.
[Закрыть]указывал на возможность того, что в результате постоянно идущих процессов связывания воды вся она со временем израсходуется и свободной воды на Земле не останется, почему и жизнь должна исчезнуть. Современная наука выяснила, что процессы освобождения воды из гидратов достаточно мощны, чтобы поддерживать равновесие между водой, вновь образующейся, и водой, входящей в различные сложные соединения, на долгое время.
4. АЗОТ
Азот – необходимая составная часть живого вещества. Вопрос об усвоении его растениями является вопросом первостепенной важности. В сухом веществе растения содержится всего лишь около 1,5 % азота, однако он необходим для образования протеиновых соединений, без него нет белка, нет протоплазмы. Растения, выращенные в почве, лишенной соединений азота, остаются карликами, несмотря на благоприятные общие условия роста.
Основной запас азота – это океан атмосферы, нас окружающей. Зеленые растения лишены способности связывать свободный азот атмосферы, и долгое время агрономы и физиологи растений полагали, что свободный азот атмосферы и связанный азот органических соединений друг в друга не переходят. При гниении белков образуются аммиачные соединения, которые затем окисляются особыми селитряными бактериями в соединения азотной кислоты, а последние, входя в почвенный раствор, обеспечивают в дальнейшем рост растений. Таким образом, круговорот связанного азота захватывал только азот белков и азот азотнокислых солей почвы, если не считать промежуточных реакций. Позднее был открыт целый мир почвенных бактерий, которые обладают способностью окислять свободный азот атмосферы, проникающий в поры почвы вместе с воздухом. Их иногда называют азотособирателями. Способность их связывать азот, точнее, заключается в том, что их протоплазма вырабатывает катализаторы или энзимы, вызывающие соединение азота с кислородом воздуха, водой или так называемым водным остатком (ОН). Благодаря этому в почве постоянно образуются запасы азотнокислых солей, за счет которых растения могут строить свои белки и снабжать азотистой пищей животных и человека.
Кроме того, раз вошедший в состав живого вещества азот надолго входит в круговорот жизни. Дело в том, что и отбросы животных и белковые вещества мертвых животных и растений быстро разлагаются бактериями, вызывающими сложные процессы брожения и гниения.
При этом, благодаря опять-таки бактериям, азот белков переходит в азот соединений аммиака, азот аммиака – в азот азотноватой и азотистой кислот, а азот последних – в азот азотной кислоты. Последний легко образует в почве селитру или азотнокислый кальций и поглощается корнями растений, которые снова используют его на постройку белков.
Круговорот азота таков:
1. Газообразный азот атмосферы.
2. Окисление его почвенными бактериями в азот азотной кислоты. Образование солей последней.
3. Использование солей азотной кислоты растениями. Образование растительных белков (протеинов).
4. Питание животных растительными протеинами.
5. Образование животными отбросов, богатых азотом. Умершие животные и растения с их белками.
6. Процессы гниения, переводящие азот белков в азот соединений аммиака, кратко называемых амидами.
7. Окисление азота амидов нитритными бактериями в азот азотистой кислоты.
8. Окисление азота солей азотистой кислоты нитробактериями в азотную кислоту. Образование ее солей.
9. Использование растениями этих солей.
Содержание свободного азота в атмосфере и его связывание работою почвенных бактерий, по-видимому, шли равномерно в течение всей истории жизни на Земле. Кроме того, в круговорот жизни входит в незначительном количестве еще и азот неорганического происхождения. Хотя в породах литосферы его и не содержится, но зато в воздухе свободный азот, как показал уже Кавендиш в XVII в., соединяется с кислородом при действии электрических искр во время гроз. Так как при этом обычно нет недостатка и в воде, то получается соединение, содержащее в себе азот, водород и кислород, именно азотная кислота (HNO 3). В других случаях, если в соединение вступает не вода, а свободный водород, то электрические разряды вызывают образование аммиака (NH 3). Вот почему дождевая вода может содержать в себе небольшую примесь азотной кислоты или аммиака.
В результате всего этого запас азота сравнительно с потребностью очень велик и не внушает никаких опасений со стороны его возможного истощения.