Текст книги "Менеджмент. Учебник"
Автор книги: Владимир Абчук
Жанр:
Учебники
сообщить о нарушении
Текущая страница: 19 (всего у книги 45 страниц)
Говоря о составлении наилучших расписаний, нельзя обойти еще один важный для практики тип задач. Речь пойдет о так называемой задаче о назначениях.
Задача о назначениях
На предприятии подготовлен резерв для замещения однородных должностей начальников производства (скажем, начальников производственных участков). Руководители предприятия, кадровая служба составили список резерва (в алфавитном порядке) и путем экспертного опроса установили, приблизительно конечно, степень соответствия каждого кандидата каждой из возможных вакансий. Например, установлено, что кандидат А для замещения должности IV подходит примерно в два раза лучше, чем для должности II, для замещения должности I кандидат Б в два раза хуже, чем В, и т. д. Придавая таким характеристикам численную форму, можно составить таблицу соответствия кандидатов различным должностям (табл. 7.9).
Таблица 7.9
Кандидат
Должность
I
II
III
IV
V
А
10
20
50
40
60*
Б
40*
20
30
10
80
В
80
50*
30
30
70
Г
60
70
20*
10
40
Д
50
70
60
10*
40
Как будет проходить подбор кандидатов на должность? Решим эту задачу сначала глазомерно.
Первый по алфавиту кандидат А лучше всего отвечает должности V. Закрепим за ним эту должность, поставив в правом верхнем углу соответствующей клетки звездочку.
Следующего кандидата – Б лучше всего было бы назначить на должность V, но она уже занята. Поэтому направим его на наиболее подходящую из оставшихся – должность I. И так далее.
Оценку полученного штатного расписания произведем так, как мы это делали в задачах математического программирования – суммируя оценки соответствующих назначений:
60 + 40 + 50 + 20 + 10 = 180.
Хорошее ли это расписание? Ответить на такой вопрос можно, лишь зная оптимальный вариант. Получить его путем сплошного перебора всех возможных расписаний, как мы уже знаем, практически нельзя: при распределении всего 10 кандидатов по 10 должностям число возможных вариантов измеряется миллионами.
Существуют, к счастью, приемы направленного перебора вариантов, построенные на основе методов исследования операций. Применение этих приемов выводит на следующее оптимальное штатное расписание (табл. 7.10).
Таблица 7.10
Кандидат
Должность
I
II
III
IV
V
А
*
Б
*
В
*
Г
*
Д
*
Оценка качества данного расписания:
40 + 80 + 80 + 70 + 60 = 330.
Оценка показывает, что оптимальное расписание почти в два раза лучше, чем глазомерное.
Еще один полезный метод выработки управленческих решений – сетевое планирование.
Управление временем
Сетевое планированиеслужит для составления рационального плана решения производственной задачи, предусматривающего осуществление его в кратчайший срок и с минимальными затратами.
Методы сетевого планирования дают возможность оценивать «узкие» места выполняемой задачи и вносить необходимые коррективы в организацию решения.
Сетевое планирование рассмотрим на следующем примере. Производственная задача решается в три этапа (I, II и III). Исходным моментом является получение директором предприятия задания (заказа). Далее на основании этого задания под руководством заместителя директора по производству разрабатываются задания подразделениям № 1 и № 2. После этого подразделения одновременно приступают к I этапу работы. Для того чтобы начать II этап работы, подразделение № 2 должно получить комплект изделий, изготовленных подразделением № 1 в ходе I этапа. Поэтому подразделение № 1 начинает II этап работы сразу же после окончания I этапа, а подразделение № 2– лишь после получения комплектующих из подразделения № 1. Далее роли подразделений меняются: для того чтобы начать III этап, теперь уже подразделение № 1 должно ожидать комплектующих от подразделения № 2. С окончанием III этапа работы обоими подразделениями изделие считается готовым. Транспортная служба доставляет его потребителю.
Все мероприятия решаемой задачи в их взаимосвязи представляются в виде наглядной схемы – сетевого графика (рис. 7.6), состоящего из двух типов элементов – работ и событий.
Рис. 7.6. Схема сетевого графика
Работа представляет собой выполнение некоторого мероприятия, например выполнение определенной технологической, транспортной или складской операции. Работа связана с затратой времени и расходом ресурсов, она должна иметь начало и конец. Работа обозначается на графике стрелкой, над которой проставлен номер работы (большая буква с индексом), а под ней – продолжительность работы (в скобках).
Событиями называются начальные и конечные точки работы, например начало или окончание производственной операции. Событие не является процессом и поэтому не сопровождается затратами времени или ресурсов. Событие обозначается кружком с буквенным обозначением внутри (маленькая буква с индексом).
Относительно данной работы события могут быть предшествующими (непосредственно перед ней) и последующими (непосредственно за ней). Относительно данной работы другие работы могут быть предшествующими и последующими. Каждая входящая в данное событие работа является предшествующей каждой выходящей работе; каждая выходящая работа является последующей для каждой входящей.
Основные свойства сетевого графика:
ни одно событие не может произойти до тех пор, пока не будут закончены все входящие в него работы;
ни одна работа, выходящая из данного события, не может начаться до тех пор, пока не произойдет данное событие;
ни одна последующая работа не может начаться раньше, чем будут закончены все предшествующие ей работы.
Приступая к построению сетевого графика, разрабатывают перечень событий, определяющих планируемый процесс – производственную задачу, без которых она не может состояться (табл. 7.11). Затем предусматриваются работы, в результате которых все необходимые события должны произойти (табл. 7.12).
Таблица 7.11
Обозначение события
Наименование события
Ответственное лицо
0
Получено задание предприятием
Директор
1
Разработаны задания подразделениям № 1 и № 2
Заместитель директора по производству
2
Выполнена работа I этапа в подразделении № 1
Начальник подразделения № 1
3
Выполнена работа I этапа в подразделении № 2. Подразделением № 2 получены комплектующие из подразделения № 1
Начальник подразделения № 2
4
Выполнена работа II этапа в подразделении № 2
Начальник подразделения № 2
5
Выполнена работа II этапа в подразделении № 1. Подразделением № 1 получены комплектующие из подразделения № 2
Начальник подразделения № 1
6
Выполнены работы III этапа в подразделениях № 1 и № 2. Заказ готов.
Начальники подразделений № 1и № 2
7
Изделие доставлено потребителю
Начальник транспортной службы
Таблица 7.12
Обозначение работы
Наименование работы
Продолжительность выполнения работы, ч
А01
Разработка заданий подразделениям № 1 и № 2
4
А12
Выполнение работ I этапа в подразделении № 1
8
А13
Выполнение работ I этапа в подразделении № 2
4
А23
Передача комплектующих из подразделения № 1 в подразделение № 2
12
А25
Выполнение работ II этапа в подразделении № 1
4
А34
Выполнение работ II этапа в подразделении № 2
8
А45
Передача комплектующих из подразделения № 2 в подразделение № 1
4
А46
Выполнение работ III этапа в подразделении № 1
4
А56
Выполнение работ III этана в подразделении № 2
8
А67
Доставка заказа потребителю
4
Исходя из перечня событий и работ составляется сетевой график (см. рис. 7.6). Вначале это можно сделать схематично, без учета масштаба времени. Сетевой график строится от исходного события к завершающему, слева направо. Исходному событию присваивается нулевой номер, завершающему событию – последний номер. Остальные события нумеруются так, чтобы номер предыдущего события был меньше номера последующего события.
Работа кодируется индексом, содержащим номера событий, между которыми она заключена. Совершение события зависит от окончания самой длительной из всех входящих в него работ. Последовательные работы и события формируют пути (цепочки), которые ведут от исходного к завершающему событию.
Далее сетевой график строится в масштабе времени (рис. 7.7).
Рис. 7.7. Сетевой график в масштабе времени
Сетевой график дает возможность оценить количество и качество мероприятий планируемой производственной задачи. Он позволяет установить, от каких из них и в какой степени зависит достижение конечной цели действий. Так, ранг события показывает, какое количество работ необходимо выполнить, чтобы данное событие состоялось. Сетевой график также показывает, какое мероприятие следует выполнять в первую очередь, какие можно выполнять параллельно. Так, в нашем примере видно, что ни одна последующая работа не может выполняться раньше, чем закончатся все предшествующие. Видно также, что работы А25 и A23 могут выполняться параллельно.
После построения сетевого графика производится его анализ. Для этого строится так называемый критический путь. Это полный путь, на котором суммарная продолжительность работ является максимальной. Иными словами, это самый длинный по времени путь в сетевом графике от исходного до завершающего события. Критический путь лимитирует выполнение задачи в целом, поэтому любая задержка на работах критического пути увеличивает время всего процесса. На рис. 7.6 и 7.7 критический путь обозначен двойной линией.
Сущность анализа сетевого графика заключается в том, что выявляются резервы времени работ, лежащих вне критического пути, и направляются на работы, лежащие на критическом пути, который лимитирует срок завершения работы в целом. В нашем примере продолжительность работ, лежащих на критическом пути, равна 4 + 8 + 12 + 8 + 4 + 8 + 4 = 48 часов.
Это и есть общее время решения всей производственной задачи.
На рис. 7.7 видно, что в подразделениях № 1 и № 2 появляются отрезки времени, на которых эти подразделения остаются без работы (волнистые линии). В этих случаях целесообразно снять отсюда часть трудовых и технических ресурсов и передать их тому подразделению, работа которого лежит в это время на критическом пути и лимитирует тем самым конечный результат. Так, например, после того как подразделение № 2 в момент, соответствующий 8-му часу работы, выполнит этап I, ему целесообразно передать часть своих ресурсов подразделению № 1 с расчетом, чтобы к событию 3 подразделения № 1 и № 2 подошли одновременно. Для этого нужно передать из подразделения № 2 в подразделение № 1 ровно столько ресурсов, чтобы сократить сумму работ А12и А23, в подразделении № 1 на 8 часов, то есть до 12 часов. При этом подразделение № 2, лишенное части ресурсов, увеличит время своей работы на эти же 8 часов (работа А13, станет равна 12 часам) и критический путь между событиями 3 и 2 будет равен 12 часам. Это сокращение общего времени критического пути означает и сокращение на то же время – на 8 часов – продолжительности решения всей производственной задачи.
КОНТРОЛЬНЫЕ ВОПРОСЫ
1. Что такое решение?
2. Что такое управленческое решение?
3. Как классифицируются управленческие решения?
4. Что понимается под исследованием операций?
5. Что такое моделирование ситуации?
6. Что такое модель?
7. Как классифицируются модели?
8. Какие бывают модели производственно-экономической системы?
9. Какие бывают модели управления производством?
10. Что такое игровое моделирование?
11. Что включает процесс подготовки и принятия решения?
12. Опишите этапы процесса принятия решения.
13. Опишите выбор наилучшего (оптимального) варианта решения задачи.
14. Опишите модель производственно-экономической ситуации.
15. Какие моменты психологического характера влияют на принятие решения?
16. Опишите станковую задачу.
17. Опишите задачу раскроя материала.
18. Опишите задачу управления очередями.
19. Опишите задачу о назначениях.
20. Опишите задачу сетевого планирования.
ГЛАВА 8. ПРЕДВИДЕНИЕ И ПРОГНОЗИРОВАНИЕ
8.1. Основные понятия.
8.2. Предвидение случайных событий.
8.3. Примеры расчетов на будущее.
8.4. Методы прогнозирования.
8.1. Основные понятия
Выбор решения во многом определяется теми условиями, той предполагаемой обстановкой, в которой решение будет проводиться в жизнь. Поэтому менеджер не может сделать буквально ни шагу, не заглядывая в завтра. Он должен получить представление о том, как пойдут дела у предприятия, какой результат даст бизнес, как поведет себя рынок. Можно ли, однако, сделать достоверные предсказания?
Около 80 лет назад одна газета распространила любопытную анкету. Читателям было предложено назвать семь чудес света того времени. Для облегчения работы газета привела список из наиболее значительных достижений науки и техники. Вот некоторые из них в алфавитном порядке:
автомобиль, анестезия (обезболивание), антидифтеритная сыворотка, антисептика, аэроплан, Эйфелева башня, велосипед, динамо-машина, дирижабль, кинематограф, микроскоп, мелинит (взрывчатое вещество), открытие полюсов, паровоз, пересадка органов, пишущая машинка, подводная лодка, радий, ротационная печатная машина, Симплонский туннель (в Альпах), скафандр, Суэцкий канал, счетная машина (арифмометр), телеграф без проводов, телескоп, телефон, фонограф, фотография, химический анализ, -лучи (лучи Рентгена), холодильник, хронометр, электрическая печь и т. д.
Большинством голосов были установлены следующие семь чудес света: аэроплан, антидифтеритная сыворотка, динамо-машина, радий, паровоз, пересадка органов, телеграф без проводов.
Попробуй мы сегодня составить подобный список чудес, он выглядел бы совершенно по-иному. В нем были бы космические ракеты и атомные электростанции, суда на воздушной подушке и цветное телевидение, квантовые генераторы-лазеры, искусственное сердце и искусственный разум. И многое другое, о чем в начале века никто даже и не подозревал.
Сменились всего одно-два поколения, живы еще те, кто с удивлением и восторгом взирал на все эти чудеса. И как переменился мир! Никто уже не считает чудом аэроплан или радий. Что касается паровоза, то он просто устарел. Теперь это кажется смешным, но какие-нибудь 150 лет назад противники создания паровоза всерьез утверждали, что всякого, кто решится подвергнуть себя воздействию невиданной ужасающей скорости нового вида транспорта – 40 километров в час, ждет неминуемая смерть от удушья.
Новое качество движения казалось непреодолимым.
Всего 100 лет тому назад некоторые выдающиеся английские специалисты заявляли, что электрическая лампочка Эдисона не заслуживает «внимания людей науки и практики» и что «распределение электрической энергии для освещения – это глупейшая выдумка».
Опять новое качество, и снова – тяжелый барьер.
Кстати, и сам Эдисон тоже вначале не мог оторваться от привычных представлений. Его первая неудачная нить накаливания была не металлической, как теперь, а сделанной из угля. Переход от свечи к электрической лампочке требовал своего барьера.
Известный английский писатель и ученый Артур Кларк составил любопытный список осуществленных достижений и идей человечества. Вот он в несколько измененном, осовремененном виде:
Соль этого списка в том, что все помещенное в левой колонке было заранее предсказано, а то, что в правой, появилось совершенно неожиданно и не предвиделось.
Автор списка утверждает: « Все, что теоретически возможно, обязательно будет осуществлено на практике, как бы ни были велики теоретические трудности,– нужно только очень сильно захотеть». Поэтому в левой колонке нашего списка должны появиться: термоядерный реактор, добывающий энергию прямо из воды морей и океанов; электрический автомобиль, работающий на небольших по весу, но очень емких источниках тока, и многое-многое другое.
А вот правую колонку дополнять сегодня нельзя. Ведь все то, что в ней указано, получается неожиданно и точно предсказано быть не может.
Итак, заглянуть и будущее совсем не легко. Но тем не менее ежедневно передают прогнозы погоды, планируется будущий урожай пшеницы, мы знаем, в каком году закончится строительство завода. Наряду со всевозможными лже-предсказаниями, гаданиями и пророчествами существуют верные, основанные на научных методах пророческие высказывания.
Высказывания о будущем могут существовать в форме предвидения, предсказания, прогнозирования.
Предвидение –это широкое, обоснованное, носящее достоверный характер суждение о будущем. Можно предвидеть, например, полеты человека к планетам Солнечной системы, победу медицины над различными заболеваниями, овладение термоядерной энергией.
Предсказаниеочень похоже на предвидение, оно тоже достоверно. Но это уже не общее вполне конкретное суждение о будущем с более точным указанием, что и когда состоится. На пример, предсказывали, что мы научимся добывать энергию из воды в 80-х годах нашего столетия или что в это же время состоится высадка человека на Марсе.
В последнее время все чаще говорят еще одной форме суждения о будущем – о прогнозировании. Что это такое?
Прогнозирование –не просто высказывание о завтрашнем дне. Это исследование, пристальное изучение будущего какого-либо вполне определенного, интересующего нас дела. Например, существует прогнозирование развития промышленности, сельского хозяйства, транспорта, связи.
Прогнозирование, и это самое важное, не ограничиваясь изучением будущего, способствует воздействию на него в нужном направлении. Мы стремимся не только узнать, каким может стать, скажем, транспорт через пять лет, но главное – выяснить, что нужно сделать, чтобы он стал как можно лучше, эффективнее. Именно прогнозирование помогает правильно разрабатывать планы, составлять бюджет, определять перспективу бизнеса.
Прогнозирование может быть финансово-экономическим, научно-техническим, медико-биологическим – в зависимости от того, какие задачи оно решает, будущее каких явлений оно просматривает. Но независимо от решаемых с помощью прогнозирования задач самое главное и интересное качество, которое будет нас интересовать способность заглядывать в завтрашний день, проникать в будущее. Каким же образом, с помощью какого «механизма» это можно сделать?
8.2. Предвидение случайных событий
Подбросим обычную монету и попробуем угадать, какой стороной кверху она сейчас упадет. Монета нам хорошо знакома, мы не раз держали ее в руках, можно точно определить ее размеры и вес, вычертить траекторию полета при подбрасывании. Но вот предсказать, что окажется сверху – «орел» или «решка», – нам не удастся. Огорчаться, впрочем, не стоит. Не «потянет» эту нехитрую задачу и целый коллектив сильных математиков мира, вооруженных наисовременнейшей техникой. Дело в том, что наша монета находится во власти случая.
Случаеммы называем то, что в сходных условиях происходит неодинаково, причем заранее нельзя предугадать, что будет в этот раз. Спланировать каждый данный случай невозможно – мы видим это на примере монеты. А что уж говорить о более сложных явлениях! С утра до вечера, изо дня в день мы сталкиваемся с проявлениями случая: в значительной мере случайна погода и спрос на товар, длина очереди в автобус, выход из строя оборудования, простуда, курс акций и длина юбки в предстоящем сезоне. От случая во многом зависит удача предпринимателя и процветание фирмы.
Главный источник случайностей – неисчерпаемость мира,его бесконечная сложность и разнообразие. Возьмем, к примеру, ту монету, которую мы подбрасывали. Ее «летные» качества зависят от степени однородности металла, наличия и распределения в нем инородных примесей и т. п. Монету подбрасывает человек или механизм, изготовленный человеком. Значит, сила и характер броска зависят от качества этого человека, в свою очередь определяемых его анатомией, физиологией, историей развития и т. п. И здесь случаю явно остается много места. Об огромном числе возможных сочетаний событий окружающего нас мира говорит следующий простой, но впечатляющий пример. Как вы думаете, сколько может быть способов расположения 10 шаров по 10 ящикам? Тысяча? Сто тысяч? Не угадали – это число с десятью нулями. И если бы нам захотелось перечислить все возможные комбинации, понадобилось бы написать несколько сотен тысяч больших томов!
Еще одна, пожалуй, наиболее глубокая причина, порождающая случайности, – так называемый принцип(или соотношение) неопределенностей,открытый в 1927 году немецким физиком Вернером Гейзенбергом. Суть этого принципа заключается в том, что, зная положение в пространстве мельчайшей частицы материи – электрона, мы никакими способами не можем точно определить направление его дальнейшего движения. Видно, здесь, в недрах материи, и находятся глубинные истоки случая. Истребить случай, избавиться от него невозможно. Но, может быть, есть другие пути?
В 1829 году бельгийский ученый А. Кетле составил поразительную таблицу (табл. 8.1). Полученная в результате обобщения огромного статистического материала, таблица эта потрясла самого автора: цифры повторялись из года в год с удивительным постоянством. Кетле писал: «Печальное свойство рода человеческого... Мы можем заранее исчислить, сколько людей запятнают руки кровью себе подобных, сколько будет подделывателей, сколько отравителей...»
Таблица 8.1
События, обстоятельства, факты
Год
1826
1827
1828
1829
1830
1831
Убийств вообще
241
234
227
231
205
266
Ружье и пистолет
55
64
60
61
57
88
Сабля, шпага, стилет, кинжал и т. п.
15
7
8
7
12
30
Нож
39
40
34
46
44
34
Палка, трость и т. п.
23
28
31
24
12
21
Камень
20
20
21
21
И
9
Орудия режущие, колющие и ушибающие
35
40
42
45
46
49
Удушения
2
5
2
2
2
4
Сбрасывание и утопление
6
16
6
1
4
3
Удар ногой и кулаком
28
12
21
23
17
26
Огонь
-
1
-
1
-
-
Убийство от неизвестных орудий
17
1
2
–
2
2
Определенное постоянство числа фактов свойственно, конечно, не только «удушениям и утоплениям». Вот еще одна таблица, на этот раз полученная на основании статистических данных по городу Берлину в начале нашего века (табл. 8.2).
Таблица 8.2
События, обстоятельства, факты
Год
1900
1901
1902
Несчастные случаи в воскресенье
5219
5316
5250
Несчастные случаи
7612
7446
7702
в понедельник
Вдовы, в третий раз вступившие в брак
23
37
26
Вдовы, в четвертый раз вступившие в брак
3
3
4
Переезды на другую квартиру в октябре
125627
133937
134 202
Переезды на другую
45210
48493
46512
квартиру в ноябре
Извозчики, отъехавшие
5205
5738
5945
с седоками от Потсдамского вокзала
Извозчики, отъехавшие
1352
1306
1341
с седоками от Герлицкого
вокзала
Что может, казалось бы, быть дальше от каких-либо правил, чем вступление в брак? Случайна обычно сама встреча будущих супругов. От многих трудноуловимых обстоятельств зависит, решат ли они связать свои жизни, – без раздумий и сомнений дело, как правило, не обходится. Внешность, характер – все тут имеет значение. Однако, как видно из таблицы, даже в таком событии, как брак, явно просматриваются железные регулярности, непреложные правила.
Закономерности в случайных явлениях были издавна подмечены и использованы людьми, в частности, для предсказания погоды по так называемым народным приметам. Существует, например, примета, по которой в первых числах августа – в Ильин день – увеличивается количество гроз («Илья Пророк в золотой колеснице по небу катается»). Метеорологи в результате почти сорокалетних наблюдений составили любопытную таблицу (табл. 8.3).
Таблица 8.3
Дата
31.VII
1.VIII
2.VIII
3.VIII
4.VIII
5.VIII
Число гроз
6
19
14
19
8
5
Таблица не оставляет сомнения в точности народных примет: в первых числах августа количество гроз действительно резко увеличивается. Так рождались безошибочные предсказания.
Одним из первых ученых, отметивших закономерности в массовых случайных явлениях был великий французский ученый П. Лаплас (кстати, А. Кетле был его учеником). Лаплас просмотрел метрические книги города Парижа с записями о рождении детей с 1745 года (в этом году впервые начали отмечать в книгах пол младенца) по 1884 год. За это время было зарегистрировано 393 386 мальчиков и 377 555 девочек. Таким образом, на каждые 25 мальчиков приходилось примерно по 24 девочки. Между тем Лаплас знал, что во Франции, а также в большинстве стран Европы и Америки это отношение составляет 22 и 21. Предоставим поэтому повсюду слово самому Лапласу: «Когда я стал размышлять об этом, то мне показалось, что замеченная разница зависит от того, что родители из деревни и провинции оставляют при себе мальчиков (мужчина в хозяйстве – более ценная рабочая сила), а в приют для подкидышей отправляют девочек». Изучив списки парижских детских приютов, Лаплас убедился в справедливости своего предположения: в случайном соотношении полов новорожденных просматривалась железная закономерность.
Итак, в сложных запутанных массовых явлениях, зависящих от необозримого множества случайных причин, случайность как бы перестала быть случайной. Неопределенность уступает место определенности. Вывод этот настолько ошеломлял, что знаменитый статистик К. Пирсон не поленился бросить монету 24 000 раз и... получил 12012 «гербов», что дает частоту, весы близкую к 0,5. Закономерность и здесь оказалась вполне определенной.
Произведем и мы не менее поучительный эксперимент.
Предложите вашему знакомому придумать свой личный шифр – каждая буква алфавита заменяется каким-либо «хитрым» значком: точкой, кружочком, треугольником и т. п. – и написать этим, известным только ему одному, шифром письмо вам на одной-двух страницах. Ручаюсь за эффект после того, как вы через некоторое время огласите расшифрованный текст письма.
Секрет этого «фокуса» в том, что в случайном, казалось бы, наборе букв «шифровки» проявляется строгая регулярность: частота появления каждой из букв алфавита в тексте является практически постоянной. Приведем эти данные (табл. 8.4).
Таблица 8.4
Относительная частота появления в тексте букв русского алфавита
Буква
Частота
Буква
Частота
Буква
Частота
а
0,075
К
0,034
Ф
0,002
б
0,017
л
0,042
X
0,011
в
0,046
м
0,031
ц
0,005
г
0,016
и
0,065
ч
0,015
д
0,030
о
0,110
ш
0,007
е, ё
0,087
II
0,028
щ
0,004
ж
0,009
р
0,048
ь, ъ
0,017
3
0,018
с
0,055
ы
0,019
и
0,075
т
0,065
э
0,003
и
0,012
у
0,025
ю
0,022
я
0,022
Из таблицы следует, что на каждую тысячу букв в среднем приходится 75 букв а, 17 букв б, 46 букв в и т. д.
Получив шифрованное письмо, вам придется лишь подсчитать частоты появления в нем различных секретных значков и сопоставить их с теми частотами, что в таблице. Так, если на тысячу восемьсот букв письма окажется 135 «треугольников», то это означает, что данный значок
А вот еще один эксперимент – специально для любителей «счастливых» билетов. (Как известно, «счастливым» считается такой трамвайный, автобусный, троллейбусный билет, у которого сумма первых трех цифр равна сумме трех последних). В теории вероятностей существует формула, в соответствии с которой на каждые 100 билетов в среднем 5–6 должны оказаться «счастливыми». И если не полениться собрать необходимую пачку в сто билетов, то можно легко в этом убедиться.
«Обязательность» случая была давно подмечена предприимчивыми людьми.
В чем смысл игры для хозяина рулетки? Главный «секрет производства» здесь в том, что выпадение цифры 0 – ее называют «зеро» – всегда в пользу хозяина, независимо от того, на «красное» или «черное» поставил игрок свои деньги. За счет этой единственной цифры и существует хозяин рулетки. И не только он. Целое государство Монако живет за счет доходов знаменитого игорного дома в Монте-Карло, где идет крупная игра в рулетку. Трудно придумать более яркий пример использования закономерностей случайных явлений: выход «зеро» определенное число раз столь же обязателен, как, скажем, падение подброшенного камня на землю, хотя каждая отдельная цифра появляется случайно и никакими силами заранее угадана быть не может.
И все же Смок Беллью, герой повести Джека Лондона, если вы помните, научился почти безошибочно предугадывать, где остановится шарик. Как ему это удавалось делать?
Джек Лондон раскрывает секрет своего любимого героя. Наблюдая за игрой, Смок подметил, что колесо останавливалось не как попало – этого, казалось бы, следовало ожидать, – а по определенным правилам. «Случайно я дважды отметил, где остановился шарик, когда вначале против него был номер девять. Оба раза выиграл двадцать шестой». Столь странное поведение колеса объяснялось тем, что рулетка стояла недалеко от печки: ее деревянное колесо рассохлось и покоробилось. Смоку удалось уловить скрытую от других закономерность поведения колеса.
Стоит ли, однако, утверждать, что можно выявить систему у любых – всех проявлений случая? Попробуйте, например, установить общие закономерности изменения моды, формы одежды, которая, безусловно, относится к случайным явлениям. На рис. 8.1 показаны колебания мод женской одежды почти за 50 лет XX века. Срок вполне достаточный, чтобы найти хоть какие-нибудь основательные регулярности. Однако их нет. Все – и форма шляпок, и силуэт платья – меняются «как попало». Остается незыблемым лишь общий принцип: «новое – это прочно забытое старое». Предпринимавшиеся попытки связать капризы моды с мировыми катаклизмами – войнами, экономическими кризисами, даже с солнечной активностью – ни к чему не привели.
Рис. 8.1. Динамика дамской моды
Возможность установления определенного порядка, закономерностей в случайных явлениях, как правило, связана с наличием в них так называемой «устойчивой частоты»: появление интересующего нас события, например рождение младенца мужского пола, при многократном повторении происходит в одинаковой доле от общего числа рождений.
Поисками закономерностей в случайных явлениях занимается специальная, хорошо разработанная в наши дни наука – статистика. Именно статистика после многих наблюдений над случаем делает заключение о том, устойчива ли частота его появления. Когда такую устойчивость удается обнаружить, статистики говорят о наличии статистического ансамбля.
Изучением закономерностей в случайных явлениях занимается теория вероятностей. Познакомимся с основами этой науки.
Как и многие другие понятия, слово «вероятность» с его производным «вероятно» входит в нашу жизнь с детства. Мы говорим: вероятно, вечером будет дождь; я, вероятно, простудился и т. п.
« Вероятно» в этих привычных фразах означает «возможно» – этим словом субъективно оценивается возможность наступления интересующего нас случайного события в будущем. Если же появляется необходимость показать степень этой возможности, мы уточняем: «весьма вероятно», «маловероятно», «совершенно невероятно». Более четкие градации, чем «много» и «мало», в обиходном языке не предусмотрены. Между тем жизненные задачи требуют оценки вероятности более конкретной, чем «много» или «мало». Сегодня на морском транспорте сказать: вероятно, будет (или не будет) происшествие – это значит не сказать почти ничего. Степень возможности появления будущего случайного события – вероятность – должна быть оценена объективно точно, определенным числом.