355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Виктор Комаров » По следам бесконечности » Текст книги (страница 5)
По следам бесконечности
  • Текст добавлен: 16 апреля 2017, 23:30

Текст книги "По следам бесконечности"


Автор книги: Виктор Комаров


Жанры:

   

Философия

,

сообщить о нарушении

Текущая страница: 5 (всего у книги 13 страниц)

Третий кризис

Казалось, все говорило о том, что теперь шествие теории множеств будет победным. Стремительно росло число публикуемых работ. Чуть ли не поголовно увлекались новой теорией молодые математики и студенты. Наконец получил глубокое и всестороннее обоснование анализ бесконечно малых.

– Мы можем сказать сегодня с удовлетворением, – торжественно объявил один из самых выдающихся математиков XIX века французский ученый Анри Пуанкаре (1854–1912), – что достигнута абсолютная строгость.

Вообще это был весьма любопытный период в истории естествознания, когда не только в математике, но и в физике создалось ощущение безмятежного благополучия, которое уже ничто не сможет нарушить. Разумеется, ученые знали, что есть еще немало проблем, которые предстоит исследовать, но были искренне убеждены в том, что в их распоряжении имеются уже все средства для решения чуть ли не любых задач.

В действительности же это было всего лишь обманчивое затишье перед бурей. И она разразилась почти одновременно и в физике и в математике. Возможно, такое совпадение не было простой случайностью. Историкам науки еще предстоит исследовать этот вопрос. Во всяком случае физика и математика развивались в тесной связи друг с другом.

То, что произошло в физике, достаточно общеизвестно. Был открыт целый ряд новых фактов, которые не укладывались в стройную и, казалось бы, непогрешимую картину мира, созданную классической физикой. Этот конфликт между теорией и природой привел к настоящей революции – появились совершенно новые физические теории: теория относительности и квантовая механика, новые не только в смысле новых положений и формул, но и в смысле совершенно нового подхода к пониманию явлений природы.

Кризис в математике разразился уже через два года. после оптимистического заявления Пуанкаре. Известный английский ученый Б. Рассел и независимо от него Цермелло обнаружили неожиданный парадокс. Оказалось, что стройные и, казалось бы, логически неуязвимые положения теории множеств приводят к вопиющему логическому противоречию. Суть его состоит в следующем.

Некоторые множества содержат сами себя в качестве одного из элементов. Например, множество всех абстрактных понятий само является абстрактным понятием и потому тоже входит в это множество.

Вполне правомерно, с точки зрения канторовской теории множеств, рассматривать и множество всех существующих вообще множеств или множество всех множеств, обладающих определенным свойством.

Вот и составим множество всех множеств, которые не являются своим собственным элементом, и назовем его множеством А. Но поскольку мы собрали все множества, обладающие таким свойством, среди них должно быть и само множество А. Следовательно, А принадлежит к числу множеств, которые являются своим собственным элементом. Но ведь мы составили множество А только из таких множеств, которые не входят сами в себя.

Несколько короче эту странную ситуацию можно выразить в следующей парадоксальной фразе: множество всех множеств, не являющихся своим собственным элементом, является своим элементом тогда и только тогда, когда оно не является своим элементом…

Тот же парадокс можно изложить и в более житейской форме. Одному брадобрею разрешили брить тех и только тех людей, которые не бреются сами. Таким образом, множество всех людей на Земле, казалось бы, делится на две категории, два различных подмножества – подмножество тех, кто бреется сам, и тех, кто сам не бреется.

Но к какому из двух подмножеств отнести самого парикмахера?

Если он сам себя брить не будет, то попадет в число тех, кого он должен брить. Но если он сам себя побреет, то окажется среди тех людей, которых он брить не должен.

Некоторые парадоксы теории множеств были известны и до этого. Два из них обнаружил сам Кантор, когда после продолжительной болезни, вызванной нервным переутомлением, слова вернулся к математическим исследованиям.

Но парадокс Рассела – Цермелло произвел неизмеримо более сильное впечатление. Ведь он затрагивал не только теорию множеств и даже не только математику, но и логику вообще, – вспомним историю с брадобреем.

Возможно, все дело в том, что нельзя рассматривать слишком обширные множества – такие, как множество всех множеств, обладающих определенными свойствами.

Но если запретить множество всех множеств, мы придем к противоречию с канторовским определением множества.

«Чтобы вообще иметь теорию множеств, – пишет известный математик С. К. Клини в своей книге „Введение в математику“, – надо иметь теоремы, справедливые для всех множеств, а все множества, по канторовскому определению, образуют множество. Если это не так, то мы должны указать, каким определением множества мы будем пользоваться взамен…»

Но главное даже не в этом. Дело в том, что одним из основных, фундаментальных положений логики является так называемый закон исключенного третьего, основанный на многовековом практическом опыте человечества. Коротко этот закон можно выразить так: или «да» – или «нет». Другими словами, любое утверждение либо истинно, либо ложно – третьего быть не может, не может человек одновременно и бриться и не бриться.

Закон исключенного третьего можно сформулировать и в несколько иной более строгой форме: если об одном и том же предмете высказывается некоторое утверждение и утверждение, его отрицающее, то если одно из них истин по, то другое обязательно ложно.

В истории с брадобреем мы еще как-то можем найти выход из положения: брадобрея, удовлетворяющего предъявленным условиям, просто не может существовать, и закон исключенного третьего остается неприкосновенным. А вот в общем случае бесконечных множеств все обстоит значительно сложнее. Здесь уже далеко не ясно, существует или не существует объект с заданными свойствами; не можем мы, очевидно, поручиться и за справедливость закона исключенного третьего.

В области бесконечного отказывает наш опыт, а следовательно, нет и никакой гарантии того, что на эту область можно автоматически переносить законы нашей обычной логики.

События, развернувшиеся после того, как стал известен парадокс Рассела – Цермелло, Жорж Адамар назвал землетрясением в математике. И очень многие исследователи сразу же отшатнулись от теории множеств, а вместе с ней снова от операций с бесконечностью.

Даже немецкий математик Рихард Дедекинд (1831–1916), который начал работать в области теории множеств еще до Кантора и одновременно с Кантором развивал основные идеи в этой области, теперь пытался в своих работах обходиться без теоретико-множественных представлений.

А уже известный нам Давид Гильберт предпочитал воздерживаться от утверждений, что прямые и плоскости есть множества точек.

– Опубликование парадокса Рассела – Цермелло, – говорил он, – оказало на математический мир прямо-таки катастрофическое действие.

Но, как совершенно справедливо заметил, правда, по несколько иному поводу, советский ученый академик А. Н. Колмогоров, проблема не перестает быть проблемой от того, что о ней стараются не говорить.

Сам Кантор поставил устранение парадоксов главной своей задачей. И в последние годы жизни, по существу, только и занимался этой проблемой. Но решить ее так ему и не удалось.

Трудились над ней и другие математики. Но словно в насмешку число парадоксов не только не уменьшилось, но даже возросло.

Среди этих парадоксов особый интерес представляет так называемый «парадокс Сколема», который состоит в том, что при определенных обстоятельствах можно несчетное множество отобразить в счетное множество. Этот парадокс наводит на весьма интересную мысль: понятия счетности и несчетности, быть может, носят относительный характер.

Третий кризис оснований математики оказался необычайно глубоким. Он не преодолен до конца и сегодня, хотя, после того как прошел первый шок, над поисками выхода из создавшейся критической ситуации задумывались многие выдающиеся умы.

Чтобы лучше оценить случившееся, попробуем представить себе обсуждение этой волнующей проблемы математиками различных направлений.

Первый математик: Я надеюсь, все со мной согласятся, что состояние, в котором мы находимся сейчас в отношении парадоксов, на продолжительное время невыносимо.

Второй математик: Еще бы! Подумайте только: в математике, этом образце достоверности и истинности, образование понятий и ход умозаключений приводит к нелепостям. Где же искать надежность и истинность, если даже само математическое мышление дает осечку?

Третий математик: Что произошло бы с истинностью наших знаний, если бы даже в математике не стало достоверной истины?

Первый математик: На мой взгляд, в традиционном понимании математики и логики нет решительно ничего, что могло бы послужить основой для устранения парадокса Рассела. Это надо уяснить с самого начала. Я убежден, что любые попытки выйти из положения с помощью традиционных способов мышления, имевших хождение до XX столетия, заведомо недостаточны и обречены на провал.

Второй математик: Мне думается, что все дело в проблеме существования. Как в самом деле выяснить, существует ли то или иное бесконечное множество с заданными свойствами? Ведь мы в принципе не можем перебрать все его элементы. Необходим какой-то критерий.

Первый математик: Какой же?

Второй математик: Я думаю, наиболее целесообразно считать существующим то, что внутренне непротиворечиво. Помните, как у Гегеля: все разумное действительно.

Третий математик; А на мой взгляд, существующим следует признавать только то, что можно сконструировать, построить. Разумеется, хотя бы в принципе.

Первый математик: А все остальное?

Третий математик: Все остальное следует из математики исключить, безжалостно изгнать как нечто лишенное смысла. Разумеется, нельзя полностью исключить из математики бесконечность, но вполне возможно уничтожить ее актуальный характер.

Первый математик: А как же быть с логикой?

Второй математик: Все дело в бесконечности, в бесконечности как таковой. А поскольку бесконечность проникает во всю математику, неизбежна реформа не только математики, но также и логики. Надо изучать математические построения сами по себе, а классическая логика для этого явно непригодна. И прежде всего необходимо отвергнуть принцип исключенного третьего.

Первый математик; Не слишком ли радикальные меры вы предлагаете? Для того чтобы вылечить палец, незачем ампутировать ногу. Отнять у математиков закон исключенного третьего – это то же самое, что забрать у астрономов телескоп или запретить боксерам пользоваться перчатками.

Такова ситуация. И наша маленькая дискуссия рисует ее достаточно объективно. Ибо все или почти все слова, произнесенные ее участниками, действительно были, хотя и в разное время, произнесены вполне реальными представителями математической науки.

Впрочем, на первых порах споры и диспуты были далеко не столь академичными. Страсти накалялись до предела.

– Не может быть никакой дискуссии, – говорил в то время математик Лебег, – ибо у спорящих нет общей логики, и ничего, кроме взаимных оскорблений, у них получиться не может.

Прошло двадцать пять лет. И вот в сентябре 1930 года по инициативе научного журнала «Открытия» в г. Кёнигсберге собрался международный симпозиум, призванный обсудить вопрос об основаниях математики, все еще не потерявший свою остроту.

«Участники симпозиума серьезно пытались нанять друг друга, – вспоминает один из тогдашних докладчиков А. Гейтинг. – Но каждый был убежден, что именно его точка зрения единственно правильная, что никакая другая не имеет права называться математикой и что его точка зрения обязательно победит в недалеком будущем».

Увы, надежды не оправдались. Прошло еще сорок с лишним лет, но кризисная ситуация сохранилась.

«Дух мирного сотрудничества одержал победу над духом непримиримой борьбы, – писал недавно тот же А. Гейтинг. – Ни одно из направлений теперь не претендует на право представлять единственно верную математику».

Итак, кризис, вызванный парадоксом Рассела – Цермелло, не преодолен и до сегодняшнего дня. И значение этого кризиса далеко не ограничивается рамками математики. В сущности, это глубокая философская проблема.

Столкновение с бесконечностью привело древнегреческих философов к зачаткам диалектического мышления. Оно показало, что реальный мир отнюдь не является зеркальным повторением наших идеализированных представлений о нем, что далеко не всегда и не во всем можно полностью доверяться наглядности и обыденному здравому смыслу.

Вторая встреча с бесконечностью – с бесконечно малыми величинами – также имела глубокое принципиальное значение. Она убедительно продемонстрировала, что понятие бесконечного не беспочвенная абстракция, ничего общего не имеющая с реальной действительностью – оказалось, что с бесконечностями можно оперировать и получать практические результаты.

Кризис, вызванный парадоксом Рассела – Цермелло, стал новой ступенью в изучении проблемы бесконечного.

И эта новая ступень, как с полным основанием считают многие ученые, потребовала и нового способа мышления, соответствующего тому уровню развития естествознания, какого оно достигло в нашу эпоху.

Существует ли такой способ? Да, существует. Это материалистическая диалектика, отражающая, с одной стороны, существо тех реальных процессов, которые происходят в окружающем нас мире, а с другой стороны, сложный и противоречивый процесс их познания.

И, пожалуй, самое знаменательное, что этот метод и сам по себе не является чем-то застывшим и раз навсегда данным. Как подчеркивал В. И. Ленин, диалектический материализм меняет свой вид с каждым великим научным открытием.

Революция в физике уже внесла свой весомый вклад в развитие материалистической диалектики. Теория относительности раскрыла перед нами глубочайшую внутреннюю взаимосвязь, казалось бы, совершенно разнородных явлений природы, убедила в том, что многие физические величины, представлявшиеся абсолютными, в действительности изменяются в зависимости от внешних условий. Квантовая теория разрушила метафизическое представление о причинности, показав, что будущее отнюдь не вытекает из прошлого с железной однозначностью, а связано с ним законами вероятности.

Кроме того, революция в физике продемонстрировала относительность наших знаний, не оставив сомнений в том, что любые естественнонаучные теории всегда обладают определенными границами применимости.

Что принесет с собой разрешение третьего великого кризиса в математике?

«Возможно, – говорит академик Наан, – мы стоим на пороге наиболее грандиозной революции в точных науках, в сравнении с которой даже коперниковская или канторовская революция или революции, связанные с открытием неэвклидовых геометрий, построением квантовой теории или теории относительности будут казаться не столь уж радикальными».

Проблема континуума

Одним из важнейших постулатов, на который опирались все существовавшие до сих пор физические картины мира, а вместе с ними и наше мировоззрение, является постулат о непрерывности пространства и времени, то есть об их неограниченной бесконечной делимости.

Вопрос стоит так: если имеются две сколь угодно близкие точки, можно ли поместить между ними еще одну? И то же самое для моментов времени.

– Мы даже не можем по-настоящему представить себе, каков был бы мир, например, со «щелями» во времени! – говорит академик Наан. – И все-таки подобную возможность нельзя считать заранее исключенной.

Одним словом, непрерывность – одно из тех математических понятий, которые играют важнейшую роль в построении современной физической картины мира.

Даже частичный отказ от постулата непрерывности повел бы не только к принципиальным изменениям наших физических представлений о Вселенной, но и к весьма существенным последствиям философского характера. Ведь с этим постулатом самым тесным образом связаны такие фундаментальные понятия, как причинность, познаваемость всех частей мира и многие другие.

Если пространство и время дискретны, то есть состоят из отдельных обособленных точек или моментов, разделенных непроходимыми щелями, то их общее число во Вселенной хотя и может быть бесконечным, но эта бесконечность не более чем счетная. Эти точки или моменты можно, в принципе, перенумеровать с помощью чисел натурального ряда.

Если же пространство и время непрерывны, то уже на любом отрезке длины или интервале времени мы встретимся с множеством более высокой мощности, чем счетная, – множеством мощности континуума.

Еще Георг Кантор сформулировал проблему, которая представляет не только чисто математический, но и глубокий физический интерес: насколько велика пропасть, разделяющая эти две бесконечности – счетную и континуальную?

Эта проблема возникает совершенно естественным образом. В самом деле, ведь между двумя любыми соседними числами натурального ряда, скажем, между единицей и двойкой располагается бесконечное множество точек числовой прямой – действительных чисел. Таким образом, континуальная бесконечность бесконечно богаче счетной или, иначе говоря, бесконечен скачок от счетного множества к континууму. Поэтому вполне логично задаться вопросом о существовании промежуточных бесконечностей.

Сам Кантор считал, что бесконечных множеств с промежуточной мощностью не существует. Это утверждение, получившее название проблемы континуума, он пытался доказать на протяжении многих лет, исходя из основных положений теории множеств, но безуспешно.

Проблема континуума – одна из тех знаменитых математических задач, которые, однажды возникнув, на протяжении многих десятилетий оставались неразрешенными, волнуя умы множества ученых.

На рубеже XIX и XX столетий Давид Гильберт, перечисляя важнейшие с его точки зрения задачи математики будущего, поставил проблему континуума на первое место.

Однако все колоссальные усилия математиков, направленные на ее решение, не принесли ничего реального вплоть до 1940 года, когда выяснилось, что проблема континуума теснейшим образом связана с другим важнейшим положением теории множеств, так называемой аксиомой выбора.

Как и в основе многих других математических теорий, в фундаменте теории множеств лежит система аксиом, исходных положений, из которых путем логических заключений выводятся все остальные положения.

Система аксиом должна быть непротиворечивой – логические выводы, полученные на ее основе, не должны вступать в противоречия друг с другом. Это одно из фундаментальных требований к исходным положениям любой научной теории, так как из противоречивых утверждений можно вывести все что угодно.

Ведь если два утверждения противоречат друг другу – одно из них неизбежно является ложным. Показательна в этом смысле своеобразная теорема, которую приводит математик Хаусдорф в качестве подстрочного примечания в своей знаменитой книге «Теория множеств»:

«Если дважды два равно пяти – то существуют ведьмы…»

Итак – непротиворечивость. Но, как уже было сказано, система исходных положений канторовской теории множеств этому требованию, к сожалению, не удовлетворяет – их логическое развитие приводит к неустранимым парадоксам.

И многие математики как раз и видят выход из третьего великого кризиса в том, чтобы построить такую аксиоматику теории множеств, которая «давала бы все, что нужно, и ничего лишнего», то есть не приводила бы к парадоксам.

Попыток предпринималось немало. В настоящее время наибольшим признанием пользуется система аксиом Цермелло – Френкеля.

С парадоксами она пытается расправиться путем введения специальных «ограничительных» аксиом, попросту запрещающих существование таких множеств, которые приводят к неразрешимым противоречиям.

Удастся ли таким путем до конца преодолеть все трудности, покажет будущее. Сейчас нас интересует другое. В системе аксиом Цермелло – Френкеля есть несколько аксиом, непосредственно связанных с бесконечностью. Одна из них, например, постулирует ее существование. Другая – «аксиома выбора», аксиома, которая подобно вопросу о непрерывности имеет самое непосредственное отношение к нашим представлениям о физике Вселенной.

Как известно, обычные натуральные числа характеризуют не только количество, но и порядок. Пятый значит пятый по счету, то есть следующий за четвертым и предшествующий шестому.

Трансфинитные числа, введенные Кантором, устанавливают аналогичный порядок в мире бесконечностей. Кантор предполагал, что с помощью трансфинитных чисел можно перенумеровать любое бесконечное множество и тем самым упорядочить его подобно множеству натуральных чисел.

В том и заключается главный смысл теории множеств, что она превратила математическую бесконечность из чего-то неясного и расплывчатого, находящегося «по ту сторону» от обычных объектов, с которыми мы можем оперировать, в нечто доступное измерению и численному выражению, построила аппарат для исчисления бесконечностей. В дальнейшем предположение Кантора о возможности упорядочения любого множества было строго доказано исходя из аксиомы, предложенной Цермелло и получившей впоследствии название аксиомы выбора.

Для человека, мало знакомого с математикой, эта аксиома прозвучит, должно быть, несколько странно.

Предположим, что у нас имеется бесконечное множество непересекающихся, то есть не имеющих общих элементов бесконечных множеств. Тогда, утверждает аксиома выбора, можно построить по меньшей мере одно множество, которое содержит по одному и только одному элементу из каждого нашего множества.

На первый взгляд, такое утверждение представляется довольно тривиальным. В самом деле, если в школе есть, скажем, десять шестых классов и в каждом из них по 30–40 человек, то нет абсолютно ничего сложного в том, чтобы составить множество, и далеко не единственное, в которое войдет по одному представителю из каждого класса.

Да, действительно, для конечных множеств все получается очень просто. В сущности, в этом случае аксиома выбора – уже не аксиома, ее можно совершенно строго доказать.

Но вот, можно ли ее автоматически обобщить на случай бесконечных множеств, далеко не очевидно. Этот вопрос не мог не волновать математиков, хотя бы уже потому, что из аксиомы выбора непосредственно следует справедливость предположения Кантора об отсутствии промежуточных мощностей между счетным множеством и континуумом.

Вопрос стоял так; противоречит или не противоречит аксиома выбора другим исходным аксиомам теории множеств? После многолетних усилий ряда ученых в 1938–1948 гг. Курт Гёдель наконец нашел ответ на этот вопрос: аксиома выбора независима от других аксиом теории множеств и не вступает с ними в противоречие. А это означало, что континуум-гипотезу Кантора нельзя опровергнуть.

Но тем самым сложилась ситуация, весьма напоминающая знаменитую историю с пятым постулатом Эвклида и чреватая далеко идущими последствиями.

Среди основополагающих аксиом эвклидовой геометрии есть одна аксиома, посвященная вопросу о параллельных и хорошо известная каждому школьнику. Эта аксиома – пятый постулат – утверждает, что через точку, расположенную вне прямой линии, можно провести лишь единственную прямую, параллельную данной. Это утверждение, согласующееся с нашим повседневным опытом, в течение длительного времени считалось вполне очевидным и не вызывало никаких сомнений. Правда, неоднократно делались попытки доказать пятый постулат, вывести его из других аксиом; однако эти попытки не приносили успеха, хотя подобными исследованиями занимались такие выдающиеся математики, как Лагранж, Лаплас, Даламбер, Фурье, Гаусс и многие другие.

Так продолжалось до тех пор, пока проблемой не заинтересовался наш соотечественник Н. И. Лобачевский (1792–1856). Он предпринял попытку построить такую геометрию, все аксиомы которой были бы тождественны обычным, но пятый постулат заменен другим: через точку, лежащую вне прямой, можно провести сколько угодно линий, ей параллельных.

Лобачевский рассуждал так: если подобное предположение неверно, оно неизбежно приведет к противоречию, и утверждение Эвклида о параллельных прямых будет тем самым доказано.

Однако никаких противоречий не возникло: оказалось, что с помощью системы аксиом, выбранной Лобачевским, тоже может быть построена вполне непротиворечивая геометрия.

Как известно, открытие Лобачевского совершило подлинный переворот в математических представлениях. Оно не только указало принципиально новые пути для развития самой математики, но. и дало чрезвычайно важный толчок к новому пониманию роли математических и, в частности, геометрических методов в изучении окружающего нас мира.

Если эвклидова геометрия не единственная возможная геометрическая система, то вполне вероятно, что и геометрические свойства Вселенной могут выходить за рамки этой системы.

По существу, это был первый шаг к новой картине мира, построенной впоследствии теорией относительности.

В 1962–1964 гг. П. Коэн осуществил последний и самый важный шаг в решении проблемы континуума. Ему удалось доказать, что система аксиом Цермелло – Френкеля остается непротиворечивой и в том случае, если заменить аксиому выбора другой аксиомой, противоположной по содержанию. В этой системе аксиом не выполняется и континуум-гипотеза Кантора, что также не приводит ни к каким противоречиям.

Многие считают, что открытие Коэна является одним из самых выдающихся достижений естественных наук во второй половине текущего столетия, и его можно сравнить с такими научными свершениями, как, скажем, открытие квазаров и пульсаров в астрономии или крушение закона «четности» в физике.

Ведь из работы Коэна следует, что может быть построена вполне непротиворечивая математика, в которой ни аксиома выбора, ни континуум-гипотеза не выполняются. И если обычная математика – это математика упорядоченного мира, то новая, о которой идет речь, – это математика мира, не поддающегося упорядочению. Вопрос: в какой степени такая математика отражает свойства реальной Вселенной, существуют ли в природе физические условия, которые ей соответствуют?

Заранее предугадать ответ на этот вопрос, разумеется, невозможно, его может дать только дальнейшее изучение реального мира.

Но сам по себе вопрос этот вполне законный. Хотя математические теории часто развиваются по своей внутренней логике и потому кажутся иной раз совершенно оторванными от реальности, в конечном счете в их основе лежат те или иные объективные факты. И поэтому тесная связь между математическими представлениями и развитием физической картины мира – связь, которую мы обнаруживаем буквально на всех этапах истории естествознания, далеко не случайна.

Совершенно отчетливо проглядывает эта связь и в исследовании проблемы бесконечности Вселенной, в изучении геометрических свойств окружающего нас мира.


    Ваша оценка произведения:

Популярные книги за неделю