355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Виктор Комаров » По следам бесконечности » Текст книги (страница 4)
По следам бесконечности
  • Текст добавлен: 16 апреля 2017, 23:30

Текст книги "По следам бесконечности"


Автор книги: Виктор Комаров


Жанры:

   

Философия

,

сообщить о нарушении

Текущая страница: 4 (всего у книги 13 страниц)

Снова кризис!..

Дифференциальное и интегральное исчисления – исчисления бесконечно малых – явились не только крупным достижением математики, но и важнейшим этапом в развитии всего естествознания и человеческой мысли вообще.

От абстрактных рассуждений о бесконечном древнегреческих философов человек перешел к практическим операциям с бесконечностями.

При этом характерно, что разработка нового математического метода была вызвана к жизни потребностями развивающихся физических наук, в первую очередь механики. Другими словами, этот скачок был обусловлен не только внутренней логикой развития самой математической науки, но прежде всего общим уровнем развития естествознания.

Если раньше решение тех или иных научных задач носило вполне очевидный, наглядный характер, то теперь впервые для этой цели стали использоваться величины, которые не только нельзя было представить себе непосредственно, по и природа которых отличалась явной неопределенностью и даже противоречивостью.

Дело в том, что теоретические основания исчисления бесконечно малых и Ньютоном и школой Лейбница были разработаны недостаточно четко. Далеко не безупречными были и руководящие идеи.

В частности, и у Ньютона и у Лейбница в одних и тех же вычислениях бесконечно малые принимались то за действительные величины, то за величины, равные нулю, которые затем просто-напросто отбрасывались. Считалось также, что прибавление бесконечно малого не изменяет конечного слагаемого.

Однако в то же время большинство математиков рассматривало бесконечно малое как наименьшее значение убывающей величины (то есть как актуально бесконечно малое). Но такое наименьшее значение должно быть заведомо больше нуля, следовательно, его отбрасывание – операция явно незаконная.

Создалась довольно странная ситуация: применение неясных по природе и внутренне противоречивых бесконечно малых величин каким-то образом приводило к правильным результатам. Такое положение вещей производило впечатление чего-то загадочного, таинственного, граничило с мистикой.

Математики того времени, писал Карл Маркс, «…сами верили в таинственный характер новооткрытого исчисления, которое давало правильные (и притом в геометрическом применении прямо поразительные) результаты математически положительно неправильным путем. Таким образом, сами себя мистифицировали и тем более ценили новое открытие, тем более бесили толпу старых ортодоксальных математиков и вызывали с их стороны враждебные вопли, будившие отклик даже в мире неспециалистов и необходимые для прокладывания пути новому»[7]7
  К. Маркс. Математические рукописи. М., «Наука», 1968, стр. 169.


[Закрыть]
.

Невольно напрашивается вопрос: что же такое анализ бесконечно малых – точная наука или приближенный метод?

Сам Лейбниц считал, что его метод дает точные результаты, обосновывая это следующим образом: то, что несравненно меньше, бесполезно принимать в расчет но сравнению с тем, что несравненно больше него; так, частица магнитной жидкости, проходящая через стекло, не сравнима с песчинкой, песчинка с земным шаром, а этот последний с небесной твердью…

Подобные аргументы, основанные на аналогиях, не слишком убедительны.

В 1734 году появился ядовитейший трактат Дж. Беркли под необычно длинным и претенциозным названием «Аналист, или Рассуждение, обращенное к неверующему математику, в котором рассматривается, более ли ясно пли более очевидно выводятся предмет, принципы и умозаключения современного анализа, чем религиозные таинства и догматы веры».

Беркли, исходя из своего принципа «существовать – значит быть воспринимаемым», беззастенчиво потешался над бесконечно малыми, называя их «тенями усопших величин».

Такой вещи, как тысячная часть дюйма, существовать не может, утверждал Беркли, тем более не могут существовать бесконечно малые величины. Ведь ни то, ни другое мы не можем воспринять. А потому, как бы ни был полезен ньютоновский метод математического анализа, заключал Беркли, это всего лишь ловкая сноровка, искусство или, скорее, ухищрение.

Любопытно, что с аналогичной ситуацией столкнулась и современная теоретическая физика. Ей приходится иметь дело с бесконечностями, которые, казалось бы, не имеют реального физического смысла. Однако операции с этими величинами приводят к результатам, которые прекрасно подтверждаются на опыте.

В наше время, после великой революции в физике на рубеже XIX и XX столетий, когда квантовая механика принесла с собой вероятностное понимание окружающей действительности и ученые перестали требовать от научных теорий окончательных и однозначных ответов на любые вопросы, такое положение дел представляется довольно естественным и не очень-то смущает. Хотя, разумеется, и современные физики не оставляют настойчивых попыток выяснить природу загадочных бесконечностей.

Но в те времена, когда набирала силу и утверждалась ньютоновская классическая физика с ее чисто механистическими представлениями о природе всех мировых процессов и непоколебимой уверенностью в абсолютной предопределенности всех без исключения явлений, противоречивый характер бесконечно малых величин привел к очередному кризису основ математики, сравнимому с тем, который возник в древности в связи с апориями Зенона.

Преодолеть этот кризис долгое время не удавалось.

В 1784 году Берлинская академия наук, президентом которой был знаменитый математик Лагранж, даже объявила конкурс на тему «о строгой и ясной теории того, что в математике называют бесконечным».

Предлагалось показать, «каким образом из противоречивых посылок получаются столь многочисленные истинные положения, и предложить вместо понятия бесконечности другое, отчетливое и достоверное понятие, однако чтобы вычисления не стали затруднительными или долгими».

Однако и эта попытка не принесла особого успеха.

Выход из второго кризиса оснований математики был найден в теории пределов. С точки зрения этой теории, бесконечно малая – это переменная величина, предел которой равен нулю.

А если говорить строго, величина называется бесконечно малой, если, начиная с какого-то момента, ее численные значения сделаются и будут оставаться меньше наперед заданного сколь угодно малого положительного числа.

Таким образом, бесконечно малые стали рассматриваться как процесс, то есть не как актуальная, а как потенциальная бесконечность.

С появлением математического анализа идея бесконечности начинает играть все большую и большую роль, постепенно выдвигаясь на самый передний план. Не случайно выдающийся немецкий математик XIX столетия Д. Гильберт называл математический анализ «единой симфонией бесконечного».

С тех пор вся математика оказалась настолько тесно связанной с понятием бесконечности, что многие исследователи даже определяют ее как «науку о бесконечном».

Оценивая роль бесконечности в математике с позиций науки второй половины текущего столетия, известные ученые А. Френкель и И. Бар-Хиллел, например, пишут, что «для математики – в отличие почти от всех других наук – это понятие является настолько жизненно необходимым, что огромное большинство математических фактов, не имеющих отношения к бесконечности, едва ли не тривиально».

Немного философии

По выражению академика Наана, кризисы в науке свидетельствуют о достаточно высоком уровне ее развития.

В самом деле, для того чтобы сложились неразрешимые противоречия принципиального характера, наука должна накопить достаточно большой материал: факты и теории, построенные для их объяснения.

Кризис в науке обычно возникает либо тогда, когда появляются новые факты, которые не укладываются в рамки существующей теории, либо развитие этой теории вскрывает присущие ей глубокие внутренние противоречия.

Кризис в математике XVII столетия был несколько иного рода, он возник в связи с тем, что вдруг оказались неясными и даже сомнительными самые основы этой науки.

Но по какой бы причине ни возникал кризис – он требует глубокого философского осмысления. Ведь кризис – это не просто тупик, глухая стена, конец пути. Как правило, это предвестник скачка, рождения оригинальных идей, появления принципиально новых путей, предвестник быстрого прогресса.

В такие периоды, как подчеркивал В. И. Ленин в эпоху кризиса физики на рубеже XIX и XX столетий, естествознанию ни в коем случае не обойтись без философии.

Поэтому но удивительно, что начиная с XVII столетия проблема бесконечности вновь, как и в Древней Греции, оказывается в поле зрения не только математиков, но и философов.

И прежде всего вопрос стоял так: присуща ли бесконечность, в той или иной форме, самой природе или она привносится в нее человеком?

Такой крупнейший французский философ, как Рене Декарт (1596–1650), утверждал, что представление о бесконечности каких-либо объектов материального мира «проистекает из недостаточности нашего разума, а не из природы». Тем самым Декарт хотел сказать, что никакой реальной бесконечности в мире не существует, она – продукт несовершенства человеческого мышления. При этом вовсе не случайно Декарт называет бесконечность мира неопределенностью, превращая ее в своеобразный символ неспособности человека охватить своим разумом окружающий мир, представить себе его границы.

Над проблемой бесконечности задумывался и такой выдающийся немецкий философ, как Иммануил Кант (1724–1804). Но хотя Кант, по существу, интересовался вполне определенным типом бесконечности, а именно – бесконечностью мира в пространстве и во времени, а саму бесконечность понимал как бесконечную протяженность, он тем не менее во многом разделял точку зрения Декарта.

– Бесконечность – плод человеческого ума, – утверждал и Кант. – Это понятие совершенно неприменимо к реальному миру. Мир сам по себе ни конечен, ни бесконечен, ибо о «мире как таковом» вообще ничего нельзя сказать.

Кант видел противоречивость бесконечности. Но, будучи метафизиком, он был убежден в том, что любые противоречия присущи только человеку, человеческому сознанию, а в природе их нет. Поэтому противоречивость бесконечности служила для него доказательством ее субъективного характера.

В подтверждение своей точки зрения Кант приводил «антиномии», весьма похожие на апории Зенона.

Он пытался доказать, что применение наших представлений о бесконечности к окружающей природе неизбежно приводит к неразрешимым противоречиям.

– Предположим, – говорил, например, Кант, – что у мира не было начала во времени. Но если так, то до любого, в том числе и до настоящего, момента, протекла вечность. Однако бесконечность неисчерпаема и бесконечный ряд не может быть завершен. А следовательно, настоящий момент никогда не мог бы наступить. Но так как он все же наступил, следовательно, мир конечен во времени.

Однако это были чисто абстрактные логические рассуждения, основанные на ньютоновском представлении об абсолютном пространстве и абсолютном времени.

Гораздо более глубокие мысли о пространстве и времени высказывал впоследствии Гегель (1770–1831).

Он, в какой-то мере предвосхищая будущую физику, критиковал Ньютона, считавшего пространство пустым вместилищем небесных тел, а время некоей абсолютной, зависящей только от самого себя длительностью, и отрывавшего, таким образом, пространство и время от материи.

Не принимал Гегель и точку зрения Канта.

«Это уже слишком большая нежность по отношению к миру, – писал он, – удалить из него противоречие, перенести, напротив, это противоречие в дух, в разум и оставить его там неразрешенным».

Однако и сам Гегель выводил бесконечность мира из бесконечности мирового духовного процесса, – ведь мир для Гегеля представлялся инобытием идеи.

В то же время любопытно отметить, что эту бесконечность Гегель понимал не просто как бесконечное повторение одного и того же. Он считал, что с изменением масштабов неизбежно должны возникать и новые качества.

И Гегель, и Кант, и Декарт понимали бесконечность как отсутствие границ, И главная проблема, которая их занимала, состояла в том, как оправдать использование идеи бесконечности, если на практике мы всегда имеем дело с конечными величинами.

Проблема бесконечного издавна привлекала внимание не только философов и математиков, но также богословов и теологов, утверждавших, что высшая истинная бесконечность – это бесконечность бога.

– Именно в бесконечности – высшее совершенство и высшее благо, – утверждали они. – Конечность говорит о несовершенстве и потому относится к материальному миру.

Весна 1960 года. Маленький французский городок Ройямон, недалеко от Парижа. Здесь в тихом и цветущем местечке, словно самой природой предназначенном для отвлеченных размышлений, проходила международная конференция философов. На нее съехались представители самых различных школ и направлений – материалисты, идеалисты, идеологи религии.

Как-то в перерыве между заседаниями один из советских философов разговорился с богословом-доминиканцем, одним из теоретиков современного католицизма.

– Как вы, теологи, решаете в настоящее время вопрос о конечности или бесконечности мира? Ведь, если не ошибаюсь, в свое время религия категорически отводила бесконечность исключительно для бога?

– Да, таковы были взгляды святого Августина, – подтвердил доминиканец. – Но Фома Аквинский, чье учение признано теперь единственной истинной философией католической церкви, исходя из Аристотеля, учил, что материя также бесконечна, но только в ином смысле, а именно в смысле формы, а не бытия, которое эту форму определяет и является богом.

– Не значит ли это, – спросил философ, – что вы оставляете себе возможность, судя по обстоятельствам, пользоваться то одной, то другой стороной этого учения?

Вопрос был достаточно прямой, и доминиканец ухмыльнулся:

– Понимаю… Вас интересует, как мы относимся к гипотезам науки?.. Мы признаем право науки исследовать материальный мир. И вполне принимаем ту картину Вселенной, которую она нам рисует… Но, помимо мира материального, есть другой мир, мир высший, недоступный науке, бог, сотворивший материю и вдохнувший в псе жизнь.

И добавил, как бы поясняя:

– Великой драме, которую мы называем космосом, предшествовал творческий проект: геометрия Вселенной. Бог повсюду занимается геометрией, и гений человека состоит в том, что он фиксирует ее буквами, фигурами и уравнениями.

Но философ был хорошо знаком, с этой тактикой «мирного сосуществования» и «разделения сфер», пропагандируемой современными богословами. Его интересовало другое.

– А как же все-таки с конечностью и бесконечностью? – повторил он свой вопрос.

– Что бы там ученые ни утверждали – конечен мир или бесконечен, религиозное познание этим не затрагивается. Если Вселенная бесконечна – в этом воплощено величие господа, если же она конечна – то и в том воля и мудрость божия…

– А если Вселенная все-таки бесконечна, способна ли наука познать эту бесконечность?

– Бесконечность нельзя охватить обычными человеческими понятиями. Для этого необходим сверхъестественный носитель мудрости – господь бог…

На том и закончилась эта беседа, показавшая еще раз, что современные защитники религии стараются обратить в свою пользу любые данные науки, любые се выводы и достижения в познании окружающей природы. И делают это довольно искусно. Хотя, разумеется, это всего лишь ловкий тактический прием. Существо религии от этого не изменилось: как и прежде, все от бога. Но в наш век космических полетов и атомной энергии на одной слепой вере в сверхъестественное далеко не уедешь. Вот современные богословы и стараются сделать религию более приемлемой для современного человека, придать ей видимость научной обоснованности. И для этой цели они не только ловко жонглируют научными данными, но идут и на прямую фальсификацию.

Странный мир множеств

Только разработка понятия «предела» помогла уяснить природу бесконечно малых величин. Но само это понятие получило строгое обоснование лишь в теории бесконечных множеств, создание которой стало одним из выдающихся достижений математики XIX столетия. Именно в этот период началось изучение множеств, состоящих из бесконечно большого числа элементов.

Пожалуй, самый первый шаг был сделай еще Галилео Галилеем. Великим флорентийский ученый обнаружил, что можно установить так называемое взаимно однозначное соответствие между натуральными числами и их квадратами. Для этого достаточно соотнести каждому целому числу результат его возведения во вторую степень. Таким образом, получается, что множество квадратов натуральных чисел так же велико, как и множество всех натуральных чисел. Галилей обратил внимание на довольно неожиданное обстоятельство: из этого следовало, что бесконечное множество может быть равно своему подмножеству – ведь далеко не каждое целое число является квадратом какого-либо другого целого числа.

А это, в свою очередь, означало, что аксиома «часть меньше целого» может оказаться недействительной, когда речь идет о бесконечности. Замечание великого физика лишь усилило недоверие к бесконечным множествам. Кстати, это недоверие разделял и сам Галилей, а много позже, в 1833 году, математик Коши, один из создателей теории пределов, цитировал его высказывания для подтверждения подобной же точки зрения.

И лишь в середине XIX столетия чешский математик Бернард Больцано (1781–1848) пришел к обоснованному выводу о том, что отличие конечных множеств от бесконечных в том именно и состоит, что бесконечное множество равномощно своей собственной части.

Труд Больцано «Парадоксы бесконечного» вышел в свет в 1855 году, спустя три года после смерти ученого. Правда, это было скорее философское, нежели математическое исследование. Попытки Больцано образовать бесконечные множества все более высоких мощностей не увенчались успехом.

Решить эту задачу удалось только выдающемуся немецкому математику Георгу Кантору (1845–1918).

В 1883 году Кантор опубликовал статью «О бесконечных линейных точечных многообразиях». Как и книга Больцано, это было тоже философское сочинение с математическим уклоном, на что прямо указывал подзаголовок «Математически-философский опыт в учении о бесконечности».

По его автор поставил перед собой сложнейшую задачу: не только осмыслить философское содержание понятия бесконечности, но и отыскать математические средства для его описания.

Кантор смело отбросил ставший уже чем-то традиционным страх математиков перед операциями с бесконечностью. Он свел понятие бесконечности к понятию бесконечных множеств и первым планомерно и последовательно занялся изучением их свойств.

Таким образом, основным объектом исследования в новой теории стало множество – совокупность объектов, отвечающих определенному условию, объединенных некоторым общим признаком.

«Под многообразием или множеством, – писал Кантор, – я понимаю вообще всякое многое, которое можно мыслить как единое, т. с. всякую совокупность определенных элементов, которая может быть связана в одно целое, с помощью некоторого закона».

Скажем, множество четных чисел можно, по Кантору, определить так: это совокупность всех целых чисел, которые без остатка делятся на два.

Подобным же способом можно образовать и другие множества, как конечные, так и бесконечные, состоящие из тех или иных объектов. Например, множество всех людей, владеющих французским языком, или множество всех звезд с поверхностной температурой выше 6 тысяч градусов, или множество всех окружностей, обладающих общим центром.

Пожалуй, ни до Кантора, ни после него никто из математиков не брался с такой смелостью за проблему бесконечности и не вкладывал столько сил в ее решение.

«Я отлично знаю, что рассматриваемая мною тема, – писал Кантор, – была во все времена объектом самых различных мнений и толкований. Что ни математики, ни философы не пришли здесь к полному согласию. Поэтому я очень далек от мысли, что я могу сказать последнее слово в столь трудном, сложном и всеобъемлющем вопросе, как проблема бесконечности. Но так как многолетние занятия этой проблемой привели меня к определенным убеждениям и так как в дальнейшем ходе моих работ эти последние не поколебались, но лишь укрепились, то я счел своей обязанностью систематизировать их и опубликовать».

Кантор отлично понимал, что речь идет о расширении ряда целых чисел за бесконечное, то есть об операции совершенно необычной с точки зрения привычных математических и тем более обыденных житейских представлений.

– Я нисколько не скрываю от себя, – говорил Кантор своим друзьям, – что, решаясь на это, я вступаю в конфликт с широко распространенными взглядами на математическую бесконечность.

Речь шла о взглядах, укоренившихся еще со времен Аристотеля, то есть об отношении к математической бесконечности как к бесконечности, становящейся потенциальной, которая может стать меньше или больше любой заданной величины, но которая в то же время сама всегда остается величиной конечной.

Даже великий Гаусс считал, что конечный человек не отважится рассматривать бесконечное как нечто данное и доступное его привычной интуиции.

«…Прежде всего я протестую против пользования бесконечной величиной в качестве законченной, каковое пользование в математике никогда не дозволяется – писал он в одном из своих писем. – Бесконечное является лишь facon de parber (способ выражения), между тем как речь идет собственно о пределах, к которым известные отношения приближаются довольно близко, тогда как другим предоставляется возрастать без ограничения».

– Говоря о «конечности рассудка», – возражал по этому поводу Георг Кантор, – молчаливо предполагают, что его способность образования чисел ограничивается только конечными числами. Но если окажется, что рассудок в состоянии также в известном смысле определять и отличать друг от друга бесконечные числа, то придется приписать человеческому рассудку предикат «бесконечный», что, по моему мнению, единственно правильно. Как ни ограничена человеческая природа, к ней все-таки прилипло очень много от бесконечного.

Если говорить совершенно строго, то потенциальная бесконечность абсолютно непригодна для решения практических задач. Ведь потенциальная бесконечность – это «вечно незавершенный процесс».

Другими словами, одно дело осуществимость потенциальной бесконечности в теории и совсем другое на практике. Воспользуемся современным примером из области теоретической кибернетики. С точки зрения этой науки осуществим любой алгоритм, даже если он требует бесконечного числа шагов. Но реальная электронно-вычислительная машина не в силах решить подобную задачу. Такой расчет лежит за пределами ее возможностей – ведь она обладает всего лишь конечной памятью и способна осуществить хотя и очень большое, но конечное число операций.

Впрочем, математики находили выход из положения: совсем не обязательно достигать бесконечности: на каком-то шаге можно остановиться и вести все расчеты с определенной степенью точности, достаточной, чтобы решение имело практический смысл. Скажем, при вычислении числа π то есть отношения длины окружности к ее поперечнику, вовсе не обязательно находить бесконечное число знаков после занятой. Вполне можно ограничиться, например, пятью знаками – не сотнями и не десятками знаков, а пятью или даже четырьмя. Для практических математических операций этого вполне достаточно.

– Потенциальная бесконечность, – признавал и Георг Кантор, – оказалась весьма хорошим и в высшей степени ценным оружием и в математике и в естествознании.

Но теория множеств, развитая Кантором, по существу, имеет дело с актуальной бесконечностью. С этой целью Кантор обобщил понятие обычного числа до понятия трансфинитного числа. Он сделал попытку создать математический аппарат для описания актуально бесконечных множеств.

Например, первое трансфинитное число ω Кантор определяет как наименьшее из всех чисел, больших любого натурального числа. При этом он использовал одно из определений предела: Т является пределом {аn}, если Т наименьшее из чисел, больших каждого из аn. Последующие трансфинитные числа получаются из ω путем прибавления единицы: ω + 1, ω + 2, ω + 3… Трансфинитное число следующего, второго класса ω2 есть наименьшее из всех чисел, больших чисел вида ω + n и т. д.

Счетные множества имеют мощность первого числового класса. Следующая мощность может быть приписана всем числам второго класса и т. д. Так строится шкала последовательно увеличивающихся мощностей бесконечных множеств.

«Все так называемые доказательства против возможности актуально-бесконечных чисел по существу ошибочны, – писал Кантор в одной из своих работ. – Потому что они заранее приписывают или скорее навязывают бесконечным числам все свойства конечных. Между тем, бесконечные числа должны образовать благодаря своей противоположности конечным числам совершенно новый числовой вид, свойства которого вполне зависят от природы вещей и образуют предмет исследования, а не нашего произвола или наших предрассудков».

Главной отличительной особенностью теории Кантора явилось то обстоятельство, что бесконечные множества рассматривались в ней в завершенном виде как совокупность бесконечного числа всех содержащихся в них элементов.

«Эта бесконечность элементов, – писал советский академик Н. Лузин, – „схваченная“ вместе в одно целое данным характеристическим свойством, является тем самым уже данной вся целиком, уже сформированной и неизменной и, следовательно, как бы уже неподвижной и замкнутой в себе».

Георгу Кантору удалось достичь блестящих результатов и решить ряд очень важных задач, имевших первостепенное значение для развития математической науки.

Но, пожалуй, одной из самых замечательных особенностей новой теории множеств явилась ее небывалая общность. Операции с множествами и подмножествами не накладывают абсолютно никаких ограничений на характер объектов, составляющих эти множества. Они могут быть одушевленными или неодушевленными, маленькими или большими, реальными или воображаемыми. Это обстоятельство привело к тому, что понятия теории множеств стали в одни ряд с наиболее общими понятиями логики.

А в одном пункте теория множеств даже ушла вперед: ведь ее понятия относятся к бесконечным классам объектов, в то время как даже самые общие понятия формальной логики относятся к конечным классам. При этом оказывались нарушенными обычные нормы мышления. Потеряло прежний универсальный смысл утверждение «целое больше своей части». Для трансфинитных чисел операция сложения оказалась зависимой от порядка слагаемых.

После работ Кантора операции с бесконечными множествами стали проводиться как если бы все их элементы находились в нашем распоряжении. Бесконечное в самом деле приобрело актуальный характер.

Смелые идеи Кантора, вступившие в противоречие с многовековыми традициями, господствовавшими в математике, идеи, которые приводили к неожиданным и парадоксальным результатам, встретили серьезную оппозицию в лице многих ученых того времени, хотя ни один значительный математик не выступил в печати с отрицанием теории множеств или ее отдельных положений.

Предубеждение к повой теории в какой-то мере объяснялось еще тем, что Кантор, будучи глубоко верующим католиком, придавал своим статьям откровенно выраженную теологическую форму.

Так, он, например, пытался проводить параллель между свойствами бесконечных множеств и библейскими представлениями о боге.

И все же большинство так или иначе сознавали необходимость теории множеств для самых разнообразных областей математики, В частности, с неизменным вниманием относился к исследованиям Кантора его бывший учитель – один из крупнейших математиков того времени немецкий ученый Вейерштрасс. Когда в 1874 году Кантор доказал несчетность множества действительных чисел, заключенных на отрезке, Вейерштрасс убедил его опубликовать полученный результат и сделал все, чтобы работа Кантора была напечатана в самом распространенном математическом периодическом издании того времени «Журнале чистой и прикладной математики».

В августе 1897 года в Цюрихе состоялся первый Международный конгресс математиков, на котором присутствовало около 250 ученых из 16 стран. В первый же день на пленарном заседании выступал А. Гурвиц с докладом по теории так называемых аналитических функций. Все его выступление было пронизано теоретико-множественными идеями.

Теории множеств посвятил свой доклад также известный французский математик Ж. Адамар.

Это было официальным признанием теории.


    Ваша оценка произведения:

Популярные книги за неделю