Текст книги "По следам бесконечности"
Автор книги: Виктор Комаров
сообщить о нарушении
Текущая страница: 2 (всего у книги 13 страниц)
Древние греки и бесконечность
В VII–V веках до нашей эры поразительных успехов добилась греческая философия, которая дала науке целый ряд гениальных догадок и смогла подняться до постановки многих кардинальных проблем, сохранивших свою актуальность и до сегодняшнего дня.
Среди таких проблем, привлекавших внимание древнегреческих мыслителей, важное место занимала проблема бесконечного.
Именно тогда были заложены основы современной математической науки, которая стремится ответить не только на вопрос «как?», по и на вопрос «почему?». Этим математика греков с самого начала отличалась от математики Востока, где ученые почти не занимались теорией.
Вообще древние греки не выделяли математику из общего знания. Их философия была натурфилософией, охватывавшей и математику и физику. И потому первоначально философское и математическое понятия бесконечности были слиты в древнегреческой науке воедино.
Отцом греческой математики, как гласит предание, был родовитый гражданин города Милета, богатый купец Фалес (конец VII века – начало VI века до н. э.), В первой половине VI столетия он посетил Вавилон и Египет и познакомился там с немалым числом научных открытий.
Но, судя по всему, это отнюдь не было простое заимствование. Фалес не просто знакомил своих соотечественников с научными положениями египтян и вавилонян, но стремился доказать их справедливость.
По свидетельству историков, Фалес был патриархом греческих мудрецов, первым изобретателем геометрии у греков, самым сведущим наблюдателем небесных светил. Он определил продолжительность года, изучал движение Луны и планет, атмосферные явления и многое другое.
Ему дважды доставался золотой треножник, который по повелению дельфийского оракула присуждался мудрейшему из эллинов.
Именно в милетской школе философов, основанной Фалесом, и появилось впервые в древнегреческой науке понятие бесконечности.
К сожалению, история не сохранила сведений о том, как Фалес сам понимал бесконечность. Но его преемник и последователь Анаксимандр (около 610 г. – 546 г. до н. э.) создал учение об «апейроне» – беспредельном, первоматерии, бесконечной в пространстве и во времени, вечно движущейся, обладающей бесчисленным количеством качеств.
– Вселенная, – говорил он, – бесконечна и бесчисленны ее миры.
Другой представитель милетской школы Анаксимен (VI век до н. э.) был астрономом. Периодически повторяющееся движение небесных тел привело его к мысли о том, что бесконечность связана с цикличностью, вечным круговоротом материи.
Одним из самых выдающихся философов Древней Греции, задумывавшимся над проблемой конечного и бесконечного, был Пифагор (около 580 г. – 500 г. до н. э.). В молодости он объездил много стран, побывал на Востоке и в Египте, познакомился с восточными религиозными мистериями и даже был принят в касту египетских жрецов.
Красивый и величественный, он обращал на себя внимание и невольно внушал благоговейное чувство. К тому же Пифагор при всех обстоятельствах держал себя спокойно и с достоинством. Он казался многим таинственным существом высшего порядка, непохожим на других.
Сам Пифагор охотно поддерживал слухи о своей сверхъестественности и даже прямо выдавал себя за посланца высших сил. Он утверждал, что произошел не от людей, а особым образом. Есть три вида разумных существ, говорил он, боги, люди и подобные Пифагору.
– Я некогда был сыном бога Гермеса, – сообщал он при всяком удобном случае.
В то время из Фракии в Грецию пришел культ страдающего бога Диониса, или Вакха. Его последователи смотрели на жизнь как на тяжкое испытание.
Нет средь людей никого, кто был бы счастлив на свете! – трагически восклицал поэт Солон. – Все несчастны, над кем солнце на небе блестит.
При рождении ребенка близкие усаживались вокруг и оплакивали младенца, скорбя о несчастьях, которые ожидают его в жизни. Умерших же погребали с радостью и ликованием, полагая, что теперь они избавились от всех зол и живут в вечном блаженстве. Жены умерших даже ожесточенно ссорились друг с другом за честь быть умерщвленными на могиле мужа.
– Кто скажет нам, – вопрошал Еврипид, – не смерть ли жизнь земная и смерти час – не жизни ли начало?
И подобно тому, как это было у первобытных людей, тайна жизни и смерти, смерти и бессмертия невольно побуждала древних греков к философским размышлениям о конечном и бесконечном. Но, как и у первобытных предков, рассуждения такого рода носили явно религиозный характер.
Пифагор не был последователем культа Диониса. Гораздо больше по душе пришлось ему учение реформатора дионисийского культа Орфея – основателя новой религиозно-мистической секты. Собственно учение орфиков было как бы оборотной стороной вакхического культа. Если жизнь ограничена и все существующее и возникающее должно быть готово к несчастьям и горестной гибели, то человек в священном безумном экстазе должен «выйти из себя» и слиться со всем окружающим в мистическом единстве.
Поэтому члены секты орфиков видели цель жизни в духовном очищении от «земной скверны» с помощью музыки, таинственных обрядов и созерцательного погружения в себя. От орфиков Пифагор вынес убеждение, что главная цель, к которой должен стремиться человек, – это нравственное и интеллектуальное самосовершенствование, поиски истины. Когда человек вдохновенно прозревает истину, его должен охватывать вакхический восторг. Искать же истину, полагал Пифагор, следует в сочетаниях музыкальных звуков и математических символов.
Вот каким путем Пифагор пришел к занятиям математикой и к мистике чисел.
Он основал свой собственный орден, не то что-то вроде первобытной общины, не то монастырь, не то школу, куда поступали, чтобы обучаться в течение всей жизни. Его основой было учение о переселении душ, этакое мистическое представление о бесконечности человеческой души.
По утрам, просыпаясь, члены ордена задавали себе всегда один и тот же вопрос:
– Что я должен сделать сегодня?
А вечером, прежде чем отойти ко сну, спрашивали себя:
– В чем сегодня я погрешил? Чего не сделал?
В отведенные часы посвященные собирались в специальном помещении, часть которого была отгорожена тяжелым занавесом. Там, за занавесом, невидимый для присутствующих находился Учитель – Пифагор.
– Кто ты такой? – спросил его однажды один из тех, кто после тщательного отбора и испытательного срока все еще мог в течение нескольких лет общаться с мудрецом только через занавеску. – Кто ты? Чудотворец? Святой? Или, может быть, жрец?
– Нет, – отвечал голос. – Я не чудотворец, не жрец и не святой. Я – философ.
– Что это значит? – осведомился удивленный юноша. – Я никогда не слышал такого слова.
– Тогда послушай, – раздался голос. – В этом мире есть три сорта людей. Они похожи на тех, кто приходит на Олимпийские игры. Одни приходят для борьбы и состязаний. Другие покупать и продавать. Третьи приходят просто наблюдать. Эти – лучше всех. Так и в самой жизни: люди суетятся и становятся либо рабами славы, либо богатства. Мудрые же созерцают, они искатели истины, только к ней они и стремятся. Это и есть философы.
По вот наступил день, когда Пифагор предстал перед своими учениками без занавеса. Облаченный в белые льняные одежды, он держался величественно, говорил неторопливо, с достоинством.
– В чем сущность вещей? – начал он и после многозначительной паузы ответил: – В числах! В чем первооснова, первоначало всего сущего? В числах. Что определяет все качества и свойства вещей? Числа! Числа! И только числа! Число – первичный элемент всякой вещи, ее принцип. Вещи подражают числам. Конечны ли числа? Вне всякого сомнения. Число не может быть бесконечным. Ведь числа – всегда четные или нечетные. А бесконечное число не является ни четным, ни нечетным.
Пифагор снова выдержал многозначительную паузу и пытливо оглядел своих учеников, как бы приглашая их к беседе.
– Учитель, – осмелился спросить один из них. – Я слышал, что мудрецы из Милета утверждают, будто первоначало всего сущего – апейрон, материя, бесконечная и безграничная.
Пифагор, не торопясь с ответом, медленно прошелся перед своими слушателями. Потом весомо сказал:
– Первоначало – число… И оно – конечно.
– А беспредельное? – последовал вопрос. – Существует ли оно?
– Беспредельное – пустота, неограниченная и неощутимая. Отсутствие бытия, небытие. Пустота проникает извне через небесный свод внутрь Вселенной и разграничивает предметы, разделяет числа.
Пифагор помолчал, как бы оценивая впечатление, произведенное его словами, а затем продолжал назидательно:
– Число – олицетворение добра, а бесконечная пустота – олицетворение зла. Конечное и упорядоченное неизмеримо ценнее, чем бесконечное и неопределенное. В конечности – красота и совершенство. В безграничности – незавершенность и несовершенство. Следует преклониться перед конечным и питать отвращение к бесконечному.
В мистическом учении пифагорейцев сказалась одна из характерных особенностей древнегреческой науки. У греков впервые получил применение метод абстракции, то есть когда любой объект рассматривался лишь с точки зрения его пространственной формы, а от всех прочих свойств исследователь отвлекался.
Этот метод был выдающимся достижением человеческой мысли. Именно благодаря ему достигла небывалого уровня обобщения греческая геометрия.
Но операции с «чистыми формами» таят в себе опасность. Поскольку выполняются они не опытным путем, а с помощью одних только логических рассуждений, – может сложиться впечатление, что математические понятия существуют сами по себе, независимо от каких бы то ни было реальных материальных основ. Такая ситуация и в дальнейшем не раз складывалась в естествознании, приводя определенную часть ученых к глубоко ошибочным идеалистическим выводам о первичности духовного начала.
Пифагорейская мистика чисел была одним из первых идеалистических учений, возникших в результате безудержного абсолютизирования математических абстракций.
Бессмертные парадоксы
Как мы уже отмечали в начале этой книги, понятие бесконечного – одно из самых парадоксальных понятий, с которым когда-либо встречался человек.
Бесконечное противоречит повседневному жизненному опыту, противоречит очевидности, противоречит привычному здравому смыслу.
И только тот исследователь может достичь успеха в изучении бесконечности, который обладает способностью парадоксально мыслить, преодолевать гипноз привычных представлений, подниматься над обыденным здравым смыслом.
Опыт истории науки убедительно свидетельствует о том, что человек в своих научных исследованиях и в жизни следует одним и тем же принципам. Любой человек всегда остается самим собой, чем бы он ни занимался.
У древнегреческих мыслителей сходство между научными рассуждениями и обыденным мышлением обнаруживается с особенной отчетливостью. Не случайно многие античные философы и в жизни поступали вопреки общепринятому, вопреки утвердившемуся повседневному здравому смыслу. И, видимо, не случайно именно те мыслители, которые обнаруживали особую склонность к парадоксальному мышлению, отличались оригинальным отношен нем к жизни и необычным поведением, добивались наиболее значительных успехов в развитии философских представлений об окружающем мире, в том числе и в изучении бесконечности.
Яркий пример тому Эмпедокл (около 490 г. – 430 г. до н. э.) – один из выдающихся мыслителей древности. Он жил в Сицилии, пользовался величайшим уважением своих соотечественников и при желании мог бы запять высокое положение. Ему даже предлагали царский венец, но Эмпедокл, не раздумывая, отказался от столь заманчивой перспективы. И в то же время он вполне благосклонно относился к тому, чтобы его считали божеством.
Эмпедокл яростно обличал роскошь, но сам разгуливал в дорогих одеждах с золотой повязкой на голове.
А когда мудрецу наскучила жизнь, он рассчитался с ней весьма оригинальным способом – прыгнул в кратер вулкана Этна.
Судя по всему столь странный поступок Эмпедокла непосредственно вытекал из его философского учения, согласно которому ничто в мире не возникает из ничего и ничто не пропадает бесследно, а следовательно, мир бесконечен во времени.
Этот сицилийский мудрец писал:
Но и другое тебе я поведаю: в мире сем тленном
Нет никакого рожденья, как нет и губительной смерти.
Есть лишь смешенье одно с размешеньем того, что смешалось,
Что и зовут неразумно рождением темные люди.
Глупые! Как близорука их мысль, коль они полагают,
Будто действительно раньше не бывшее может возникнуть,
Иль умереть и разрушиться может совсем то, что было.
Ибо из вовсе не бывшего сущее стать не способно…
Но, пожалуй, самым большим оригиналом среди всех древнегреческих философов был Зенон Элейский (около 490 г. – 430 г. до н. э.), приемный сын и любимый ученик выдающегося мыслителя Парменида (конец VI века – V век до н. э.), человек, которому суждено было заложить подлинно научный фундамент исследования бесконечного.
Этому в немалой степени способствовало и доведенное у древних греков едва ли не до совершенства искусство спора. В публичных дискуссиях и состязаниях ораторов, где победа определялась прежде всего авторитетом логических доказательств и способностью убедить присутствующих, родилось и было отточено острое оружие: умение доказать свою правоту путем столкновения противоречивых доводов и посылок. Соперники изобретали впечатляющие аргументы, рассыпали перлы остроумия, старались подловить своего противника, заманить в ловушку, поставить его в безвыходное положение. Судьи тут же определяли победителя.
Да и сама греческая философия развивалась в условиях постоянных споров, острой полемики различных философских школ и направлений.
В отличие от Востока, где громадную, определяющую роль играла сила традиций и где мыслители и философы выступали в роли непогрешимых пророков, вещающих непререкаемые истины, греки выше всего ценили разум и были твердо убеждены в том, что все в мире может быть понято и исследовано с помощью чисто логических рассуждений и доказательств.
Благодаря этому греческие философы чувствовали себя во многом независимыми от предвзятых представлений об окружающем мире. Мысль их парила свободно и не страшилась даже таких утверждений, которые на первый взгляд могли показаться абсурдными.
Этот полет смелой мысли, а также приобретенная в бесчисленных спорах и диспутах привычка к парадоксальным рассуждениям и заключениям несомненно сыграли первостепенную роль в поразительных достижениях древнегреческой науки, в особенности математики, и, в частности, в изучении бесконечности.
За долгие годы занятий философией Зенон выработал в себе блестящую способность опровергать противника и посредством возражений ставить его в затруднительное положение, научился рассматривать один и тот же предмет с противоположных сторон.
– Без всестороннего и обстоятельного разыскания невозможно уразуметь истину, – говорил он.
Зенон обладал не только выдающимся умом, но и, пожалуй, лучше, чем кто бы то ни было, умел мыслить парадоксально – многие его рассуждения и заключения оказывались неожиданными даже для самых выдающихся мудрецов.
Эта удивительная способность к парадоксальным выводам и привела Зенона к его знаменитым апориям – одному из самых поразительных достижений человеческой мысли.
Во времена Зенона в древнегреческой математике и философии со всей остротой встал вопрос о свойствах пространства и времени, теснейшим образом связанный с представлениями о конечном и бесконечном. Вопрос ставился так: можно ли и до каких пор осуществлять процесс делимости тела, пространства и времени? Завершится ли когда-либо такой процесс или он будет продолжаться беспредельно?
Одна из первых концепций бесконечности была выдвинута выдающимся философом-материалистом Анаксагором (около 500 г. – 428 г. до н. э.), известным своей непримиримой борьбой с мистикой и религией.
Началом всего сущего Анаксагор считал «гомеомерии» – бесконечное число элементов материи. Их сочетания дают все многообразие вещей.
Процесс деления тела бесконечен, утверждал он, и потому нет смысла говорить о его конечном результате. Следовательно, не существует наименьших неделимых частиц. Число частиц, из которых состоит данная вещь, всегда можно увеличить.
«И в малом ведь нет наименьшего, по всегда есть меньшее. Ибо бытие не может разрешиться в небытие, но и в отношении к большому есть большее. И оно равно малому по количеству. Сама же по себе каждая вещь и велика и мала».
Следовательно, бесконечное существует в обе стороны. Это была первая математическая формулировка понятия бесконечно большого и бесконечно малого как возможности увеличения сверх любой заданной величины и возможности неограниченного деления.
Но если пространственные элементы и промежутки времени можно делить без конца, то пространство и время непрерывны.
Наряду с концепцией Анаксагора существовала и другая, противоположная концепция, одним из родоначальников которой был Демокрит (около 460 г. – 370 г. до н. э.), – учение о «неделимых», мельчайших частях линий, поверхностей и тел. Демокрит признавал бесконечность Вселенной и числа атомов во Вселенной. Но считал, что тело нельзя делить бесконечно, а лишь до неделимых атомов. С помощью этой теории Демокриту удалось решить несколько очень трудных математических задач – например, найти выражение для объема пирамиды.
Но поскольку в распоряжении древних греков не было никаких экспериментальных фактов, по которым можно было бы судить о действительных свойствах реального пространства и реального времени, споры между сторонниками Анаксагора и Демокрита были в то время довольно беспредметными.
Величайшая заслуга Зенона состоит в том, что он впервые показал: и та и другая концепция ведут к глубоким противоречиям и парадоксам.
Парадокс – утверждение, которое непосредственно вытекает из привычных представлений или существующих научных теорий, но тем не менее вступает в противоречие о ними самими.
Именно такие парадоксальные следствия учения о бесконечной делимости пространства и обнаружил Зенон…Быстроногий Ахиллес хочет догнать медленно ползущую черепаху. Но пока он пробежит разделяющее их расстояние, черепаха тоже проползет немного вперед. И Ахиллесу придется теперь преодолевать это дополнительное расстояние. Но пока он сделает ото, черепаха вновь уйдет вперед – и так до бесконечности. Значит, несмотря на то, что Ахиллес передвигается намного быстрее черепахи, он все равно никогда не может ее догнать. Или, другими словами, будет догонять ее бесконечно длительное время.
Этим парадоксом Зенон показал, что предположение о бесконечной делимости пространства приводит к противоречию с реальным фактом движения.
Вместе с этой апорией Зенон сформулировал и еще одну – под названием «Дихотомия». Если черепаха после сигнала к старту не сдвинется с места, Ахиллес все равно ее не догонит. Ведь прежде чем преодолеть все расстояние, он должен преодолеть его четверть. И так далее… И поскольку процесс деления пополам никогда не может окончиться, Ахиллес вообще не сдвинется с места.
Отсюда следовало, что в природе нет и не может быть никакого движения.
Парадоксы Зенона привели древнегреческих мыслителей в настоящее смятение. Однако все попытки каким-либо способом их опровергнуть заканчивались неудачей.
До нас дошел рассказ о том, как философ Диоген, когда его познакомили с апориями Зенона, ни слова не говоря, поднялся с места и начал расхаживать взад и вперед.
Много веков спустя остроумию Диогена отдал должное Александр Сергеевич Пушкин:
Движенья нет, сказал мудрец брадатый.
Другой смолчал и стал пред ним ходить…
Казалось бы, апории Зенона тем самым были опровергнуты с помощью самого могущественного аргумента – опыта.
Однако проблема была, гораздо сложнее, чем это может показаться на первый взгляд.
Не спасло положения и атомистическое учение Демокрита, не допускающее бесконечного делания. Правда, существование «неделимых» устраняло парадокс Ахиллесу и черепахи. Как только в процессе деления мы дошли бы до «неделимых», все стало бы на свои места – Ахиллес догнал бы черепаху.
Однако в двух других апориях Зенон показал, что и предположение о существовании неделимых элементов пространства и времени также исключает возможность движения. Одна из этих апорий называется «Стрела».
…Стрела выпущена из лука. Если стрела летит – это значит, что она последовательно проходит точку за точкой своего пути. Что значит: проходит через точку? Значит, находится в ней какое-то время, то есть пребывает в состоянии покоя. Следовательно, движение стрелы есть совокупность состояний покоя. Следовательно, движение есть покой.
Таким образом, получалось, что обе противоположные концепции – и бесконечной делимости (то есть непрерывности) пространства и времени и существования неделимых элементов (то есть дискретности пространства и времени) – в равной степени ведут в тупик.
А вскоре обнаружилось к тому же, что метод «неделимых» Демокрита сталкивается и с другими непреодолимыми трудностями. Если атом имеет конечную величину, то разве можно утверждать, что конечная величина, какая бы она ни была, не может быть вновь разделена?
Возник, например, и такой вопрос: как разделить круг пополам? Если существуют «неделимые», то центр круга будет принадлежать только одной половине.
Окончательную катастрофу учение Демокрита потерпело тогда, когда были обнаружены несоизмеримые отрезки. Если есть наименьшие «неделимые», то, очевидно, любой отрезок должен состоять из целого их числа. Но оказалось, что между стороной квадрата и его диагональю нет никакой общей меры. То есть не существует такого отрезка, который укладывался бы на диагонали квадрата и его стороне целое число раз.
Результатом всех этих потрясений было то, что и бесконечность и неделимые оказались изгнанными из математики. К слишком сложным противоречиям, сложным даже для изощренных в логических спорах умов греческих мыслителей, вело применение этих понятий.
Бесконечность стали всячески обходить, прибегая для этого ко всевозможным логическим ухищрениям.
Когда Эвклиду, например, потребовалось сформулировать свою знаменитую теорему о множестве простых чисел, он вышел из затруднения следующим образом; «простых чисел существует больше всякого предложенного количества простых чисел».
И все же математики оказались в затруднительном положении – они тем самым лишились возможности вычислять площади и объемы. Надо было найти новый способ решения этой задачи без помощи бесконечности.
Такой способ – метод черпков – был разработан Евдоксом и Архимедом. Впоследствии, в XVII веке, он получил название метода исчерпывания.
В основе метода черпков лежала аксиома Евдокса– Архимеда: если из какой-либо величины отнять ее половину (или больше), а затем с каждым остатком поступать так же, то через конечное число шагов можно получить величину меньше любой заданной.
Однако и метод черпков, увы, обладал весьма существенным недостатком. Его можно было применять только в тех случаях, когда уже было известно, что именно требуется доказать. А для этого надо было воспользоваться «неделимыми» Демокрита…
Апории Зенона обнаружили и еще одну трудность. В ту пору в древнегреческой математике было распространено представление о том, что конечная величина есть совокупность бесконечного множества непротяженных точек. В частности, такой концепции, видимо, придерживались ранние пифагорейцы. Частями беспредельного для них были не материальные атомы, а геометрические точки.
Но если тело представлено бесконечной совокупностью неделимых точек, не имеющих измерений, то их сумма равна нулю. А это значит, что тело, имеющее измерение, лишено измерения.
Если же неделимые точки имеют измерение, то тело конечной величины оказывается бесконечно большим.