355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Валерий Августинович » Битва за скорость. Великая война авиамоторов » Текст книги (страница 21)
Битва за скорость. Великая война авиамоторов
  • Текст добавлен: 7 октября 2016, 02:04

Текст книги "Битва за скорость. Великая война авиамоторов"


Автор книги: Валерий Августинович



сообщить о нарушении

Текущая страница: 21 (всего у книги 24 страниц)

ПОСЛЕДНИЙ ИЗ «МОГИКАН»

Название хорошего романа может стать и часто становится метафорой исторической ситуации, отсылая ее к контексту романа. Так произошло и со знаменитым романом Фенимора Купера, заголовок которого мы использовали для названия настоящей главы. Единственным отличием от первоначального названия является закавычивание имени индейского племени. «Могикане» здесь – не индейское исчезающее племя, а уходящее с исторической арены поколение настоящих инженеров зрелой фазы инновационной волны развития авиационных двигателей. Уходящее поколение со своей этикой. Как мы уже отмечали, вслед за энтузиастами и инженерами идет третье поколение – поколение жестких финансовых менеджеров, слабо разбирающихся в технике, а процесс проектирования двигателей становится суммой технологий.

Пассажирская реактивная авиация существует 50 лет, а именно с 1954 г., когда первый реактивный самолет «Комета-4» разработки английской частной компании «Де Хэвиленд» начал эксплуатироваться на регулярных линиях. Судьба этого самолета и компании печальна: после ряда катастроф (в частности, разгерметизации прозрачного люка в потолке пассажирской кабины, предназначенного дизайнерами салона для… наблюдения звездного неба) проект прекратил свое существование, а компания разорилась. Другая английская компания «ВАС» (British Aircraft Corporation) продержалась с государственной помощью до середины 1970-х гг., выпустив в эксплуатацию линейку удачных машин, более или менее успешно конкурируя с «Боингом» и «Дугласом». Однако долго конкурировать с американским авиапромом на мировом рынке Великобритания не смогла. И это понятно: силы несопоставимы. США – это ведущая морская и авиационная держава, причем не только в технологическом и финансовом плане, но и в инновационном (одно имя Нортроп чего стоит). Кстати, именно по причине своего авиационного доминирования США в свое время и «пропустили» старт в космическом соревновании, и приняли неудачную «самолетную» схему космического челнока. США дожили до того, что у них не стало собственного ракетного носителя: Атлас-5 для своей первой ступени использует российский двигатель РД-180, без которого эксплуатация этой ракеты просто невозможна – не хватает тяги для старта ракеты с более надежным (и более тяжелым) несущим «жестким» корпусом (изначально ракета проектировалась с нежестким корпусом, наддуваемым при работе двигателей).

Точку в конкуренции с Великобританией поставил Боинг своей моделью «Боинг-747» (1970 г.). По своему опыту пассажира автор этих строк считает этот самолет лучшим в мире, лучше всех последующих моделей «Боинга», включая «летающий сарай» «Боинг-777». Попытка европейцев, в первую очередь французов, помнящих свое историческое первенство в авиации, обогнать США в инновационном проекте сверхзвукового пассажирского самолета (СПС) закончилась коммерческим крахом англо-французского «Конкорда». Но и США здесь так и не смогли предложить работающую альтернативу (американский СПС «Боинг-2707» остался в проекте). Единственное, что предприняли США вдогонку, – это мелкую месть в виде запрета посадки «Конкорда» в аэропорту Нью-Йорка якобы по экологическим соображениям чрезмерного шума.

Только после объединения европейских усилий в компании Airbus (1970-е гг.) и придании ее проектам статуса жизненно важных с беспрецедентной господдержкой объединенная Европа стала успешно конкурировать с США. Ее первый новый продукт – франко-германский аэробус А-300 с американскими двигателями General Electric позиционировался как «воздушный автобус» большой вместимости, по сути, на региональных трассах типа Париж – Тулуза или Франкфурт – Мюнхен. Автору приходилось летать как раз на этих трассах на этом «сарае», иначе не скажешь – настоящий автобус. О какой-то тонкой «оптимальности» проекта говорить не приходится, главное – выполнение функции массовых перевозок наиболее дешевым способом. Двигатель поставили, какой был в наличии, обслуживание на борту – минимальное: воду даже не успевают всем разнести за время полета. На А-300 отрабатывалась технология международного сотрудничества и производства полного цикла создания современного самолета. Для обеспечения этого успеха, в частности, была создана сетевая научная структура, в которой в рамках исследовательских программ было задействовано большинство европейских научных институтов, а не только авиационного профиля. Сегодняшний амбициозный, статусный и суперрисковый проект А-380 должен показать, выиграли европейцы конкуренцию у США или нет.

Советская гражданская реактивная авиация стартовала практически одновременно с английской: в июне 1955 г. автор лично наблюдал на воздушном параде в Тушино пролет первого пассажирского реактивного самолета Ту-104. Это был вполне хороший самолет. Вообще, можно как угодно относиться к нашей авиации, но советская и сегодня российская авиация не знала таких скандальных катастроф из-за конструктивных дефектов, какие были у американцев. Вот только три известных примера: взрыв центрального топливного бака на В-747 в наборе высоты при вылете рейсового самолета из Нью-Йорка в 1996 г. (все пассажиры погибли), отрыв двигателя от крыла из-за поломки болта передней подвески на самолете DC-10, разгерметизация грузовой кабины с вылетом грузового люка и части фюзеляжа с девятью пассажирами на самолете В-747 и, наконец, недавнее (2009 г.) «исчезновение» над Атлантическим океаном французского А-330 с более чем 200 пассажирами на борту.

Начало эксплуатации В-747 через Тихий океан началось вообще с беспрецедентного решения: четырехдвигательный флагман пассажирского воздушного флота США имел на борту запасной двигатель, притороченный со снятым вентилятором к фюзеляжу с внешней стороны наподобие запасного колеса у автомобиля. «Продуваемый» набегающим потоком воздуха двигатель без снятого и уложенного в самолет вентилятора создавал бы большое аэродинамическое сопротивление. Можно себе представить реакцию современных СМИ на аналогичное решение, если бы оно было принято применительно к российскому самолету. Перечень американских, да и европейских авиационных провалов можно было бы продолжить. Чего стоит, например, «гордость» английской авиации, региональный четырехмоторный (!) самолет ВЕА-146, на котором по Европе летал Тони Блэр, или самоубийственный американский конвертоплан V-22 «Оспри» для морской пехоты. Все эти издержки технической мысли покрываются государством.

Основным критерием качества магистральной авиации является экономичность перевозок, оцениваемая по параметру затрат топлива при перевозке одного пассажира на один километр, т. е. грамм топлива/пасс. км. За пятьдесят лет этот расходный показатель уменьшился от 70–90 у самолетов Ту-104 и «Комета-4» до 20 (самолеты Ту-214 и А-320), т. е. в четыре раза. И главную роль здесь сыграл технический прогресс в двигателестроении – повышение температуры газа перед турбиной и связанное с ним увеличение степени двухконтурности. А отсюда и повышение кпд двигателя.

Между тем в конце 1970-х гг. на «гражданском» фронте по заказу государства разрабатывается линейка новых самолетов: дальнемагистральный ИЛ-96, среднемагистральный Ту-204 и ближнемагистральный ИЛ-114. Эти самолеты были аналогами уже эксплуатировавшихся на Западе соответственно американских «Боинг-767», «Боинг-757». Как и в случае предыдущего поколения магистральных самолетов, советский авиапром просто повторял без всяких инноваций западные модели, но с лагом почти на целое поколение. Очевидно, что прямую конкуренцию с Западом в таком случае выиграть невозможно, что и произошло при открытии рынка в 1990-е гг.

Но пока мы – в 1980-х гг. Предстоит новая схватка с конкурентами за двигатели. Вначале конкурентов заранее развели по классам тяги: Н. Д. Кузнецову отдали «большой» двигатель под ИЛ-96, П. А. Соловьеву – «средний» под Ту-204, КБ Климова, где генеральным уже был С. П. Изотов – «малый» турбовинтовой под ИЛ-114. К этому времени ОКБ Соловьева уже десять лет, как вело проектные работы на бумаге по двигателю такого типа (ставшего в конце концов ПС-90), примеряясь к возможной, но так и несостоявшейся, ремоторизации ИЛ-86. Каждый год отдел перспективных разработок КБ Ильюшина (во главе КБ в это время был уже Г. В. Новожилов) заказывало проекты двигателя вокруг одних и тех же параметров. К этому времени ОКБ при разработке двигателя Д-30Ф6 уже освоило высокие температуры, и это дало шанс обойти конкурента по «обходному пути» термодинамической эффективности. Главным «козырем» ОКБ Н. Д. Кузнецова была провозглашаемая им надежность разрабатываемых им двигателей, имевших меньший уровень температуры газа перед турбиной.

Как измеряется надежность авиационных двигателей? Основным показателем надежности является наработка парка двигателей данного типа на одно выключение в полете по причине отказа двигателя за текущий год эксплуатации. Двигатели считаются имеющими хорошую надежность, если этот показатель имеет уровень не ниже 100 000 часов на одно выключение в полете. То есть если большая авиакомпания, к примеру, имеет парк двухдвигательных магистральных самолетов в количестве 100 штук, то за год суммарный налет двигателей этой авиакомпании составит примерно 600 тыс. часов (при среднем налете воздушного судна 3000 часов в год). Это означает, что допускается за год иметь шесть выключений двигателей в полете. Такая надежность достигается не сразу после начала серийного производства и эксплуатации. Но, начиная с некоторого времени, показатели стабилизируются и могут объективно свидетельствовать о надежности всей системы. Если сравнить показатели надежности типичных авиационных двигателей (американских JT9D, CF6-50 и российского ПС-90), то мы не увидим большой разницы Все эти двигатели в вышеприведенном смысле надежны. И, как показывает опыт, нет прямой зависимости надежности двигателя от уровня температуры газа перед турбиной. Надежность двигателя в большой степени зависит от надежности элементов системы (комплектующих), стабильности технологии производства и грамотного обслуживания двигателя в эксплуатации.

«Роллс-Ройс», создав инновационный трехвальный двигатель большой двухконтурности для широкофюзеляжных самолетов, тем самым создал и моду на «трех-вальность». И Запорожское КБ под руководством Лота-рева (сменившего Ивченко), и Самарское КБ Кузнецова поддались этой моде и, несмотря на сложность трансмиссии, сделали-таки трехвальные двигатели для грузового самолета большой вместимости АН-124 (двигатель Д-18), ближнемагистрального самолета Ту-334 (двигатель Д-436) и стратегического бомбардировщика Ту-160, аналога американского В-1, (двигатель НК-32).

Выбором облика будущего ПС-90 П. А. Соловьев занимался лично, как никаким другим двигателем. Изучая на выставках в Ле-Бурже и Фарнборо зарубежные двигатели-аналоги большей размерности с их впечатляющими фланцами корпусных деталей, он пришел к четкому для себя выводу о предельном диаметре вентилятора (не более 2 метров). «Мастодонтов» делать мы не будем». Не сразу был сделан и окончательный выбор между двухвальной традиционной схемой двигателя и модной в то время трехвальной. В конце 1979 г. Соловьев принял решение в пользу традиционной схемы. Так же остро шла борьба внутри ОКБ о выборе размерности компрессора. В КБ было две базовых размерности, отличающихся на 25 % по расходу воздуха. От выбора размерности при ограничении на диаметр двигателя зависело очень многое, в первую очередь степень двухконтурности, а следовательно, и экономичность будущего проекта. Были и риски по повышенной температуре газа и ограниченности форсирования двигателя по тяге в случае выбора меньшей размерности компрессора. Здесь никто не может предложить решения, кроме главного конструктора – это его выбор. Соловьев принял решение в пользу приоритета экономичности и – выиграл, как показали последующие события.

Главный конкурент Пермского ОКБ тоже не дремал. Опережая ОКБ Соловьева в готовности двигателя (его НК-56 уже вовсю проходил стендовые испытания, а в Перми еще только шла поузловая доводка), Кузнецов вышел с предложением делать вместо двух разных двигателей для ИЛ-96 и Ту-204 один, унифицированный для обоих самолетов. Предложение было разумным, тем более это видно сегодня, когда стало ясно, что внутренний рынок имеет достаточный для рентабельного производства объем только в сегменте ближне-среднемагистральных самолетов. Но в процессе оптимизации самолетов (проект Ту-204 сделали двухдвигательным вместо первоначально трехдвигательного, а в ИЛ-96 уменьшили пассажировместимость) под один тип двигателя оказалось, что почти готовый НК-56 великоват. А пермский будущий ПС-90 соответственно маловат. Соловьеву пришлось форсировать двигатель по температуре газа, а Самарскому КБ – полностью переделывать свой двигатель, уменьшая геометрические размеры.

Тем временем был объявлен конкурс на двигатель для этих самолетов, окончательная оценка которого должна была быть сделана по результатам натурных испытаний в термобарокамере, имитирующей высотные условия полета. Изменения условий технического задания на двигатель позволили выровнять шансы, самарский задел готовых сборочных единиц, по сути, был обнулен. Параметры ПС-90 были выше, лучше и экономичность, что и было продемонстрировано на испытаниях.



Последний из «могикан», генеральный конструктор П. А. Соловьев.

Победу тогдашний министр авиапрома И. С. Силаев присудил П. А. Соловьеву, несмотря на мнение большинства экспертов в пользу Самары. Позиция экспертов понятна: научно-инженерный потенциал ОКБ Кузнецова, включая мощную лабораторную базу, был объективно выше. Но… судьба в лице министра авиапрома распорядилась иначе.

Как оказалось, это спасло и Пермское КБ и Пермский моторный завод в период краха экономики из-за так называемых «реформ». Инерция позволила «проскочить» этот период, хотя и с потерями, а уже освоенное производство ПС-90 существенно облегчило процесс конверсии авиационных двигателей в наземные газотурбинные установки. Ставка Соловьева на высокие параметры обеспечила конкурентоспособность и наземной техники, о чем тогда никто не задумывался. Наземным применением авиационных двигателей в Пермском ОКБ до 1990-х гг. не занимались – это была прерогатива Самарского КБ. Именно на базе отработавших в эксплуатации турбовинтовых двигателей Н К-12 в ОКБ Кузнецова были созданы первые советские газоперекачивающие агрегаты, которые серийно изготавливали на казанском заводе, бывшем № 16.

Последний «удар» был отбит, когда А. А. Туполев неожиданно попросил увеличить тягу двигателя ПС-90 на 15 % для увеличенной (дальней) модификации самолета Ту-204, получившего обозначение Ту-214. Двигатель и так уже был форсирован в сравнении с первоначальным проектом, и дальнейшее повышение режима было рискованным. Увеличение же геометрических размеров было неприемлемым – нарушалась взаимозаменяемость с таким же двигателем для Ту-204. Что делать? Автор этих строк с коллегой А. А. Пожаринским приехали разбираться в туполевское ОКБ. Пошли к инженерам-аэродинамикам, которые бесхитростно показали нам действительный потребный уровень тяги двигателя при взлете самолета. Оказалось, что при обеспечении взлета Ту-214 даже при одном отказавшем двигателе достаточно тяги 14 тонн. Ас нас просили 18 тонн. То есть даже уже нормального согласованного уровня 16 тонн было лишку! Самолетчики хотели, как всегда, иметь запас на всякий случай, но это было неприемлемо для двигателя. Решение возникло сразу же: ввести так называемый «ЧР» («чрезвычайный режим»), кратковременное использование которого допустить только в случае реального отказа двигателя при взлете. А для этого разработать алгоритм вырабатывания сигнала отказа двигателя при взлете и автоматического вывода исправного (соседнего) двигателя на повышенный до 17,5 тонны тяги режим. Такой алгоритм при участии автора этих строк был разработан и успешно внедрен на самолете Ту-214. Задача была решена. Во время сертификационных испытаний самолета был продемонстрирован надежный взлет при одном выключенном двигателе и выходе на «ЧР» второго двигателя. И в последующей эксплуатации – ни одного отказа алгоритма или ложного срабатывания!

Самарское КБ, получив утешительный приз в виде заказа на разработку перспективного винто-вентиляторного двигателя со сверхбольшой степенью двухконтурности НК-93, застряло на перепутье – денег на реализацию такого амбициозного проекта у государства не нашлось. В Пермском КБ тоже разрабатывался инновационный проект двигателя, но для гиперзвука – двухконтурный турбопрямоточный двигатель с авторотирующим вентилятором. Волна кризиса накрыла и этот многообещавший проект.

После победы в конкурсе началась настоящая работа. Что такое создание нового двигателя, рассказано ниже.

Опыт создания двигателей свидетельствует, что достижение поставленной цели – сертификации двигателя – в ограниченное время может быть осуществлено при следующих условиях. Аэродинамическая доводка основных узлов (компрессор, камера сгорания, турбина, сопло) должна быть проведена на моделях, стендах поузловой доводки до начала производства и сборки первого образца натурного двигателя. Планирование работ в условиях ограниченности ресурсов как постоянно действующего фактора должно проводиться в соответствии с иерархией приоритетов: поставка опытных двигателей на высотный стенд-имитатор полетных условий, летающую лабораторию и опытный самолет – годовое планирование; сборка, специальные и длительные испытания двигателей – месячное планирование; поставка сборочных единиц на сборку – недельное планирование.



Двигатель сверхбольшой двухконтурности НК-93 на летающей лаборатории ИЛ-76ДП. МАКС-2009.

С чего начинается работа по доводке двигателя, когда первый двигатель собран и поставлен на испытательный стенд? Сначала нужно убедиться, что он не развалится сразу же при выходе на расчетный режим работы. Для этого необходимо после отладки запуска в первую очередь проверить уровень осевых сил, действующих на опоры ротора (подшипники). Далее – определить по уровню температуры газа за турбиной допустимый максимальный режим работы двигателя в данной сборочной компоновке. Как правило, окончательный конструктивный облик двигателя появляется не сразу – некоторые системы имеют промежуточный характер из-за фактора времени. Одновременно проводится оценка главного термодинамического параметра – удельного расхода топлива, или кпд двигателя, с целью определения узлов, где есть недобор эффективности. Если более-менее все в порядке, то один двигатель отправляется на высотный стенд-имитатор, второй – на летающую лабораторию, а третий ставится на опережающие длительные испытания с целью выявления «узких» мест, ограничивающих ресурс двигателя. Еще один двигатель «обвешивается» большим количеством датчиков для проведения специспытаний: тензометрирования и термометрирования лопаток компрессора и турбины. И пошло-поехало. Все это требует времени и времени большого.

Существенным признаком авиационного двигателя как сложной технической системы является его непрерывное становление, т. е. наличие на каждом этапе жизненного цикла элементов и технологий, «отмирающих» в процессе жизни двигателя, и появление новых конструктивных элементов и технологий, повышающих ресурс, надежность, экономичность и прочих интегральных показателей качества.

Неполнота априорной информации о тепловых, механических, акустических и других нагрузках в системе двигателя приводит к тому, что в процессе работы создаваемого двигателя неизбежно выявляются дефекты, ограничивающие работоспособность двигателя. Эти дефекты условно могут быть разделены на две основные группы: дефекты, устраняемые настройкой системы без существенных конструктивных переделок, и дефекты, ограничивающие ресурс двигателя и устраняемые изменением конструкции основных узлов.

В качестве примера рассмотрим перечень дефектов (после разборки и дефектации) первого собранного двигателя ПС-90А, прошедшего первые 500-часовые испытания [31]:

• высокая температура под капотом внутреннего контура;

• нестабильный запуск;

• нагарообразование в камере сгорания;

• обрыв отдельных лопаток компрессора высокого давления;

• трещины на крупных лопатках статора вентилятора (диаметр вентилятора около 2 м);

• прогар и оплавление входных кромок лопаток соплового аппарата турбины;

• сколы, трещины и отгиб полок рабочих лопаток турбины;

• поломки трубопроводов;

• течь масла через радиальные зазоры в воздушных лабиринтных уплотнениях.

На первый взгляд мы имеем удручающую картину состояния двигателя, которая может привести в отчаяние неопытного главного конструктора. Однако большинство этих дефектов относятся к первому типу, т. е. достаточно просто устраняются настройкой системы. В самом деле, высокая температура под капотом устраняется увеличением расхода циркулирующего охлаждающего воздуха (т. е. увеличением площади вентиляционных окон обтекателя), прогары лопаток турбины – оптимизацией расположения отверстий для выпуска охлаждающего воздуха, течь масла – изменением расстояния между масляной форсункой и лабиринтом, поломки трубопроводов – выбором точек крепления на корпусе двигателя, устраняющих резонансные колебания труб и т. д. Дефекты второго типа в принципе обусловливают необходимость существенного изменения конструкции: изменение силовой схемы, числа ступеней турбокомпрессора и т. п. В практике КБ П. А. Соловьева, и в этом персональная заслуга этого последнего из «могикан», ни разу не возникало такой необходимости, что говорит о взвешенности подхода главного конструктора к оценке новизны и рисков. Такой баланс соблюсти очень трудно: идти приходится по лезвию или-или. Или неконкурентоспособность из-за исповедуемой консервативности, или большие риски не уложиться во времени с тем же результатом провала.



Современный испытательный стенд (НПО «Сатурн», г. Рыбинск).

Самым большим капиталом сегодня является пока еще сохранившийся опыт создания надежной авиатехники (что подтверждено 50-летней массовой эксплуатацией воздушных судов советского производства). Такая кредитная история дорогого стоит. Авиация в России (и военная, и гражданская – это единая неразрывная система) – это инструмент сохранения суверенитета. В этом качестве необходимо рассматривать авиацию (так же, как и космос, очевидно, не являющийся прибыльным бизнесом) как неизбежное «бремя», а не источник прибыли. Если автопром – это чистая коммерция (массовое производство), а космос – чистая дотация (единичное производство), то в авиапроме необходимо сочетать коммерцию и дотацию. Вопрос стоит о минимизации бремени дотации при условии выполнения авиацией своей геополитической функции. Необходим баланс коммерческих и геополитических интересов, когда имеешь дело с авиацией. Именно в нахождении оптимума сочетания этих интересов и заключается сложность (и одновременно инновационность) решения проблемы.

Очевидно, что сегодня в эпоху примата «суммы технологий» международная и внутренняя кооперация жизненно необходима для сохранения позиций на рынке.

И здесь мы наблюдаем исторический зигзаг: начало пермских моторов было связано с американской фирмой «Райт», а возобновление международного сотрудничества уже в форме участия в капитале акционерного общества – с ее тогдашним конкурентом «Пратт-Уитни», авиационное направление которой тоже развилось на базе конструкторской школы Райта.


    Ваша оценка произведения:

Популярные книги за неделю