355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Валерий Августинович » Битва за скорость. Великая война авиамоторов » Текст книги (страница 16)
Битва за скорость. Великая война авиамоторов
  • Текст добавлен: 7 октября 2016, 02:04

Текст книги "Битва за скорость. Великая война авиамоторов"


Автор книги: Валерий Августинович



сообщить о нарушении

Текущая страница: 16 (всего у книги 24 страниц)

А вот в США в середине 1960-х гг. перешли от проектирования двигателей по принципу «что получится», классическим примером которого является проектирование двигателя JT3D («Пратт-Уитни») для «Боинга 707», к концептуальному, целевому подходу. Для этого было открыто щедрое финансирование научно-технического задела по федеральным программам на государственные, бюджетные деньги. И здесь сразу США пошли в отрыв, конечно, с крупными «синяками» и «шишками», но – вперед. Особенно это ярко проявилось в проектировании двигателей на фирме «Пратт-Уитни». Вначале произошел переход скачком на двигатели с высокой (5–8) степенью двухконтурности для дозвуковых самолетов большой дальности, первым из которых был военно-транспортный С-5 «Galaxy» (двигатель TF-39-GE), совершивший первый полет уже в 1968 г. США пошли в отрыв, а в СССР авиадвигателестроение стало «тормозить», не сумев воспользоваться уже имеющимся заделом. Причиной этого в первую очередь было отсутствие прорывных проектов самолетов и снижение инновационности самой авиамоторной науки. Как мы увидим далее, переломный 1970-й год застал нашу отраслевую науку врасплох.

При проектировании двигателя с большой двухконтурностью JT9D-PW для 350-тонного (вот это размах!) пассажирского самолета В-747 в основу был заложен принцип минимизации количества опор роторов. И здесь мы должны задать вопрос: а сколько вообще роторов должно быть в турбореактивном двигателе? Один? Два? Три? Четыре? Принцип здесь простой: из школьной физики известно, что мощность – это произведение силы на скорость. В компрессоре или турбине сила, действующая в окружном направлении на лопатки, пропорциональна углу поворота потока между лопаток, а скорость – это окружная скорость вращающихся с диском лопаток.

Угол поворота ограничен геометрией (на 180°, к примеру, поток разворачивать просто бессмысленно), а окружная скорость – сверхзвуковой скоростью на концах лопаток (волновые потери сильно снижают эффективность преобразования скорости в давление). Таким образом, для уменьшения количества ступеней компрессора и турбины стараются иметь максимально возможную окружную скорость. Если двигатель двухконтурный, то вентилятор и компрессор высокого давления имеют разные диаметры из-за разного расхода воздуха через них. Значит, при одинаковой окружной скорости эти нагнетатели (и вентилятор, и компрессор) будут иметь разные обороты, и чем больше степень двухконтурности, тем больше эта разница. То есть в двухконтурных двигателях минимальное количество роторов, а следовательно, и валов, равно двум.

Исключением является французский двухконтурный одновальный двигатель военного назначения М-53. Здесь пошли на снижение эффективности компрессора высокого давления ради уменьшения количества трудноохлаждаемых «горячих» опор-подшипников – двигатель применяется на сверхзвуковом самолете, да и степень двухконтурности у него невысокая, соответственно невелика и разница диаметров вентилятора и компрессора.

Кроме того, со сжатием воздуха в каждой последующей ступени повышается его температура, а следовательно, увеличивается скорость звука. Поэтому мы можем допустить увеличение окружной скорости в каждой последующей ступени ротора компрессора без боязни увеличения волновых потерь. То есть теоретически каждую следующую ступень компрессора желательно вращать с большей окружной скоростью – уровень волновых потерь это допускает. Иначе, сколько ступеней компрессора – столько должно быть роторов с точки зрения минимизации числа ступеней. Но… при этом кратно увеличивается количество подшипниковых опор, нормальную работу которых при больших окружных скоростях и высоких температурах обеспечивать трудно. Таким образом, один-два ротора для одноконтурного и два-три ротора двухконтурного двигателя – это устоявшаяся практика. При этом в случае длинных валов их часто делают разрезными, каждый на двух опорах. Поэтому даже при двух роторах количество опор может быть не четыре, а больше – например, семь (по две на каждый компрессор, три – на две турбины, где одна из опор – общая, межвальная).

Так вот, при проектировании JT9D отказались от разрезных валов, приняв решение: два ротора – четыре подшипниковых узла. Все бы хорошо, но вскоре оказалось, что «паразитные», «лишние» опоры в разрезных валах через свои силовые связи подобно обручам увеличивали жесткость корпусов двигателя. Как только их убрали, корпус компрессора стало «корежить», превращая его из круглого в овальный. А из-за этого пришлось увеличивать радиальные зазоры между лопатками компрессора и корпусом и катастрофически терять кпд. Корпус компрессора на двигателе JT9D пришлось усиливать с помощью продольной балки-«ухвата», ставшей с тех пор атрибутом двигателей с большой степенью двухконтурности. В общем, классическая ошибка конструктора, обусловленная, как уже отмечалось, всегдашней нехваткой времени. Все просчитать невозможно, и многие решения принимаются интуитивно.

Ниже в таблице без комментариев представлены три наилучших компрессора конца 1950-х гг., воплощающих в себе разные приоритеты (школы) проектирования: минимальное количество ступеней (а следовательно, и массы, и стоимости), максимальную степень сжатия, оптимальное сочетание того и другого. Чем выше степень сжатия в двигателе, тем он экономичнее. Выбирайте, что вам нравится. Каждый вариант имеет свои достоинства и недостатки. Для сравнения в последней строке таблицы представлен достигнутый на сегодня (XXI век) уровень проектирования компрессоров. ЕЗЕ – это европейский газогенератор, «сердце» перспективных двигателей следующего поколения, проектируемых на выполнение «трех Е»: эффективность, экология и энергосбережение. В этом проекте реализованы все последние достижения науки и техники в области авиационного двигателестроения. Следует отметить, что немецкие аэродинамики и конструкторы сохранили свои ведущие позиции в проектировании компрессоров и сегодня.


Двигатели Р11-300 и J-79-GE были самыми массовыми в истории реактивной авиации и не в последнюю очередь благодаря конструкции своих компрессоров. Р11-300 было произведено в разных странах около 20 тыс. штук, a J-79-GE, тоже включая лицензионное производство (вплоть до 1993 г. в Израиле), – около 17 тыс. штук.

Таким образом, в мире сложилось две школы проектирования компрессоров турбореактивных двигателей: двухвальные малоступенчатые и одновальные многоступенчатые. К первой школе принадлежали «Пратт-Уитни» в США и ОКБ-300 в СССР. Ко второй школе – соответственно, «Дженерал Электрик» в США, ОКБ-36 (Добрынин), ОКБ-165 (Люлька), ОКБ-19 (Соловьев) в СССР. Далее оказалось, что при повышении температуры газа перед турбиной и связанным с этим переходом к двухконтурной схеме двигателя в выигрыше оказалась последняя школа. Ее разработки компрессоров, по сути, не претерпели изменений при постановке на своем валу впереди компрессора низкого давления (вентилятора и «бустера» – подпорных ступеней). А вот сторонникам первой школы пришлось заново разрабатывать многоступенчатый компрессор… или переходить на трехвальную схему. Но и в последнем случае компрессор нужно было разрабатывать заново: трансмиссия (вал вентилятора) не проходил через втулочное сечение малого диаметра компрессора. Так вторая школа получила конкурентное преимущество во времени.

Поучительна история «взлета и падения» советского ОКБ-300. «Отец-основатель» ОКБ-300 А. А. Микулин был личностью незаурядной. Не имея высшего инженерного образования, он сумел, используя природный талант и практические знания, полученные в конструкторской школе Н. Р. Брилинга (КБ в НАМИ), вырваться вперед в первой фазе инновационной волны поршневого авиационного моторостроения, организовав разработку (из того, что было) модификации лицензионного БМВ-VI. Как мы помним, эта разработка получила индекс АМ-34. Следующим рискованным, но удачным ходом оказался рекордный беспосадочный перелет В. П. Чкалова через Северный полюс в Америку на одномоторном (АМ-34) туполевском самолете АНТ-25. Так А. А. Микулин завоевал авторитету Сталина, который он использовал «на всю катушку», правда, для дела. Репрессии 1930-х его миновали. Как он сам объяснял причину этого своему сыну: «меня охраняло то, что я никогда не рассказывал, что я видел, у кого бывал, что слышал» ( Берне, с. 270). В войну модификация микулинского мотора АМ-38 стояла на знаменитом штурмовике Ил-2. В совокупности это стало «охранной грамотой» для Микулина. Имея прямую телефонную связь со Сталиным, установленную по его указанию, и личные неформальные контакты с высшим руководством (с тем же всесильным Л. П. Берией) на отдыхе, Микулин мог себе позволить и позволял многое. В первую очередь это касалось влияния на выделяемые ресурсы для своего ОКБ. Очевидно, что неизбежный при этом «обход» бюрократической иерархии в лице министра авиапрома не добавлял ему доброжелателей в этом слое управленцев. Как только Сталин ушел из жизни, в 1955 г. Микулина сняли с работы. Но в этом отстранении его от руководства ОКБ были и объективные причины. Микулин по своему складу личности был изобретатель, он и прославился именно как изобретатель, попав в резонанс первой фазы инновационной волны, когда бал правят «изобретатели». Но к 1955 г. начинается доминирование «инженеров», когда требуется и системное мышление, и планирование результата, и долгая «нудная» работа по доводке. Время Микулина ушло.

Если посмотреть на ряд микулинских, вернее, ОКБ-300 разработок турбореактивных двигателей, то мы увидим восемь моделей, начиная от первенца АМТ КРД-01, в серию не пошедшего, и далее серийные АМ-3 (РД-ЗМ), АМ-5 и его модификации (АМ-7, РД-9Б (АМ-9), удачный и передовой для своего времени массовый Р11-300 (АМ-11) и его модификации (Р13-300 (AM-13), Р29-300 (АМ-29), P95Ш), специфические почти гиперзвуковой Р15-300 (AM-15) и вертикального взлета Р79-300. Урожай солидный! Автор намеренно оставил в скобках индексацию AM даже в тех моделях, которые не сохранили ее после увольнения Микулина, чтобы подчеркнуть преемственность разработок. Микулин, являясь психологическим типом «изобретателя», конечно, органически не мог заимствовать уже готовое и известное. Задачу конкретной реализации идеи турбореактивного двигателя он попытался решить самостоятельно, сознательно не вступая в контакте немецкими инженерами, очутившимися после войны в СССР. Для психологического типа «инженера» это поведение – иррационально. «Инженер», как пчела, собирает информацию, где только можно. А для «изобретателя» – естественно.

Так появился первый оригинальный микулинский турбореактивный двигатель АМТКРД-01, особенностью которого была «слоеная» компоновка компрессора и камеры сгорания – камера сгорания располагалась над компрессором, а поток воздуха имел два поворота на 180°: за компрессором он разворачивался в обратную сторону по внешней стороне корпуса, проходил до начала компрессора, затем вновь разворачивался и заходил в камеру сгорания на большем радиусе. В осевом направлении такая компоновка была очень компактной, но в радиальном имела большой «лоб» и, с учетом внешнего сопротивления, не давала никаких преимуществ. Такая конструктивная схема двигателя хороша для… танка, но не для самолета. Кстати, в 1944 г., когда немцы занялись проектированием газотурбинного танкового двигателя, такая схема рассматривалась ими. На этом примере изобретатель Микулин виден как на ладони. Оригинальное решение частной задачи, отсутствие системного подхода, когда решения надо «взвешивать», находить компромисс. То же можно было наблюдать и при создании еще поршневого АМ-34: двигатель получился мощный как и задумывался, но и тяжелый одновременно – перехода на новый технический уровень не произошло.

Безусловно, крупным успехом ОКБ-300 было создание АМ-3 для «европейского» по радиусу действия (т. е. бомбежки Европы) бомбардировщика Ту-16. Но, как свидетельствуют очевидцы, основную работу по его конструированию и доводке осуществили заместители главного конструктора С. К. Туманский и П. Ф. Зубец. Любимым же детищем Микулина была сильно уменьшенная модель АМ-3, а именно АМ-5.

К 1955 г., когда вовсю шли работы по созданию оригинального АМ-11, получившего окончательное обозначение Р11-300, спорадическая деятельность «изобретателя» Микулина вошла в противоречие с тяжелой и «нудной», но системной работой по доводке двигателя. Нужно было кадровое решение – это было понятно всем. Была назначена комиссия под председательством В. Я. Климова, по результатам которой Микулин и был отстранен от работы. Его попытки пройти «по верхам», заручившись поддержкой Г. М. Маленкова, некогда курировавшего авиапром и хорошо знавшего Александра Александровича, окончились неудачей. Буквально накануне Пленум ЦК снял Маленкова с работы по предложению набиравшего силу Н. С. Хрущева. Вместо Микулина главным конструктором был назначен его первый заместитель С. К. Туманский. Этому, конечно, помогло и то, что Туманский тоже имел влиятельных друзей-однокашников по учебе в Академии им. Жуковского: замминистра авиапрома П. В. Дементьева и зам. главкома ВВС по вооружению А. Н. Пономарева, брата всесильного секретаря ЦК Б. Н. Пономарева.

Туманский сосредоточил усилия ОКБ-300 на двигателе Р11-300, разбросав остальную тематику по филиалам, вскоре ставших полноценными ОКБ. Тематику АМ-3 и его модификации передали в ОКБ-16 в Казани, куда переехал и П. Ф. Зубец. Он-то и довел этот двигатель по ресурсу, тяге и снизив его массу до известного нам успешного РД-ЗМ, а позже разработал на его базе двигатель «16–17» для мясищевского «бомбера» М-50.

Двигатель РД-9Б (для МиГ-19) передали в Уфу, где вскоре (в 1956 г.) выехавший туда из ОКБ-300 В. Н. Сорокин, бывший ведущим конструктором по первому микулинскому АМТКРД-01, восстановит ОКБ. Впоследствии это ОКБ разработает модификацию Р11-300, получившую индекс Р13-300, затем Р95Ш («Ш» – штурмовик, т. е. Су-25) и, наконец, двигатели для крылатых ракет.

На Тушинском заводе, где серийно производился микулинский АМ-5 (для перехватчика Як-25), тоже будет создано СЖБ-500, главным конструктором которого вначале будет Н. Г. Мецхваришвили, а затем (с 1967 г.) более известный К. Р. Хачатуров. Последний продолжит линию Р11-300, разработав на его основе двигатель Р29-300 (для МиГ-23).

А на московской площадке после Р11 -300 в 1960-е гг. будет создан совершенно другой, новый двигатель Р15БФ2-300 для нового перехватчика МиГ-25.

Таким образом, в середине 1950-х десятилетнее доминирование ОКБ В. Я. Климова в нише двигателей для реактивных истребителей сменится следующим десятилетним лидерством ОКБ-300 под руководством С. К. Туманского. ОКБ-165 А. М. Люльки в это время переживает трудное время – ниша двигателей для боевых самолетов воздушного боя занимается ОКБ-300. Поговаривают (1954 г.) о возможном закрытии ОКБ-165. А климовское ОКБ-117 в 1960-е гг. уходит в нишу разработок вертолетных и танковых двигателей (ГТД-1000 для Т-80), где добивается крупного успеха. Этот успех неразрывно связан с именем преемника В. Я. Климова – главным конструктором С. П. Изотовым. В сравнении с мощными двигателями для истребителей, а тем более для бомбардировщиков вертолетные двигатели имеют маленькую размерность, т. е. малые геометрические размеры лопаток компрессора и турбины. Это создает трудности как для производства, так и для эксплуатации таких двигателей. Тонкие, миниатюрные лопатки компрессора очень чувствительны к эрозионному износу, чего в полной мере «нахлебались» американцы во вьетнамской войне, когда поднимаемая винтом вертолета кремнистая пыль засасывается компрессором двигателя. Лопатки быстро истончаются до толщины листа бумаги – ресурс оказался совсем не такой, как было заявлено, и расходовался он по-другому. Пришлось срочно разрабатывать циклонную очистку воздуха с потерей мощности на прокачку. В производстве – тоже проблемы: при сборке требуется обеспечивать очень маленькие уровни дисбалансов ротора. Динамическая балансировка ротора вертолетного двигателя – это настоящий «хай-тек». Маленькие размеры лопаток турбины накладывают серьезные ограничения на литье охлаждаемых лопаток и тем самым на достижимый уровень температуры газа перед турбиной, а вместе с ней и на экономичность двигателя. В общем, желающим освоить эту нишу есть над чем поработать.

К чести ОКБ Климова, оно справилось с этими проблемами. Начав, по сути, с нуля, с копии зарубежного аналога («Аллисон-250») с осецентробежным компрессором ГТД-350 (350 л с.), вскоре оно освоило эту оказавшуюся очень перспективной нишу. Следующий двигатель ТВ2-117 мощностью 1500 л.с. с неохлаждаемой турбиной для самого массового двухдвигательного вертолета Ми-8 за тридцать лет производства (1965–1995) был тиражирован в количестве 23 тыс. штук на Пермском моторном заводе. Суммарный налет двигателей составил 100 млн часов! Это производство оказалось очень выгодным и экономически – настоящий коммерческий продукт. В общем, редкая удача. Следующая, форсированная до 2000–2500 л.с. модификация ТВЗ-117, разработанная в 1972 г., оказалась не менее удачной. Масса двигателя всего 300 кг, в сравнении с поршневыми двигателями съем мощности с одного килограмма массы в 3 раза больше!

Этим двигателем оснащается большое количество типов вертолетов конструкции Камова и Миля, наиболее известными из которых являются боевые Ка-52 «Аллигатор» и Ми-28 «Ночной охотник». Зарубежными аналогами двигателя ТВЗ-117 или ВК-2500 являются французская «Макила» (фирма «Турбомека») для вертолета «Пума» и американский T700-GE для вертолета «Апач». Правда, T700-GE в сравнении с ВК-2500 имеет лучшую экономичность благодаря существенно более высокой степени сжатия компрессора. В этом двигателе реализована классическая осецентробежная (5+1) схема компрессора, когда последние осевые ступени из-за их неэффективности заменяются одной центробежной ступенью. На ТВЗ-117 на это не пошли, по-видимому, из-за нежелания радикальной переделки исходной, хорошо зарекомендовавшей себя конструкции осевого 12-ступенчатого компрессора.

Большое количество транспортных вертолетов Ми-17, оснащенных этими двигателями, идет на экспорт. На сегодня производство двигателя ТВЗ-117 на запорожском заводе «Мотор-Сич» достигло 22 тыс. штук. Последняя модификация двигателя получила возвращенную первоначальную марку с инициалами основателя ОКБ, а именно ВК-2500. И вновь планируется перенести производство этого двигателя в «родные» климовские места – в Уфу в связи с тем, что Запорожье теперь – заграница.

Еще одной удачной разработкой климовского ОКБ стала силовая газотурбинная установка для танка Т-80. Как известно, в нашей стране разработаны два типа «основных боевых танка» (MBT – «main battle tank»): Т-80 с газотурбинным двигателем (ГТД-1000 мощностью 1000 л.с.) и Т-90 – с дизельным. И тот и другой имеют свои преимущества и недостатки. ГТД имеет лучшие характеристики по мощности в холодном климате, где дизель, в частности, плохо запускается. А дизельный двигатель имеет преимущество перед ГТД в жарком климате, где последний теряет свою мощность из-за ограничения по температуре газов перед турбиной. Поэтому Т-90 успешно продается в Индию, а Т-80 используется в северных широтах. Газотурбинный двигатель для танка пытались создать еще немецкие конструкторы начиная с 1944 г., чтобы повысить маневренность своих новых тяжелых танков «Тигр» и «Пантера». В реальных боях оказалось, что их изначально низкая маневренность, обусловленная малым отношением мощности к весу танка (на «тигре» 10 л.с./т, т. е. в два раза меньше, чем на советском Т-34) существенно обесценивает присущие им превосходство в вооружении и бронезащите над танками противника. Как мы знаем, газотурбинные двигатели, одинаковые по мощности с дизелями, имеют меньшие вес и габариты, но больший расход топлива.

Главным немецким разработчиком ГТД для танка стал доктор Альфред Мюллер, научно-исследовательский отдел двигателей в СС (Kraftfahr Technische Versuchsanstalt der SS). Он имел большой опыт в разработке турбин и нагнетателей для самолетов. В 1937 г. он сотрудничал с фирмой «БМВ» и в 1943 г. пытался заинтересовать военных применением газотурбинных двигателей на танках, когда проблемы с маневренностью нового поколения танков стали очевидны. То есть и в Германии, и в СССР, и, как мы увидим, в США именно авиационные двигатели явились основой для разработки танковых ГТД. Вначале для разработки приняли схему со свободной, т. е. не связанной механически с ротором компрессора силовой турбиной (двухвальная схема, ставшая позднее классической для вертолетных двигателей). Этот проект оценили как слишком дорогой. Кроме того, проблемой была самопроизвольная «раскрутка» вала свободной турбины в момент переключения передачи, когда она оставалась без нагрузки. За основу первого немецкого ГТД первоначально был принят авиационный двигатель разработки «Хейнкель-Хирт» 109–011 с диагональным компрессором. Этот двигатель был изготовлен «в железе» и испытан в сентябре 1944 г. Однако поиски оптимальной конструкции продолжались и наконец остановились на авиационном прототипе БМВ 109–003 с самым передовым осевым компрессором того времени разработки Brown Boveri & Cie (проект Hermso). Специфические особенности применения ГТД на танках потребовали их учета при разработке первого немецкого танкового двигателя GT 101. В частности, потребовалось ввести промежуточную опору ротора для повышения его жесткости при воздействии ударных нагрузок, возникающих, например, при наезде на мину. На «тигр» GT101 не поместился по длине, поэтому для его установки была выбрана Т-5 «пантера» (машина спецназначения 171). При постановке ГТД на «пантеру» ожидалось, что удельная мощность танка повысится вдвое (с 13,5 до 27 л.с./т). Мощность на выходном валу GT 101 составляла 1150 л.с.

Проблемы, которые пришлось решить немецким инженерам, были весьма не простые. В первую очередь – с запуском двигателя и трансмиссией благодаря отказу от схемы со «свободной» турбиной. В схеме со свободной турбиной основной ротор раскручивается легко от стартера небольшой мощности, а затем уже с выходом на режим этого ротора начинает раскручиваться и силовая турбина. Кроме того, надо было решить проблему повышенного (примерно на 100 %) расхода топлива ГТД в сравнении с поршневым двигателем. Для уменьшения расхода топлива на фирме Brown Boveri инженер В. Хринижак (ставший специалистом мирового уровня в этой области) спроектировал керамический вращающийся теплообменник на выходе из турбины для регенерации тепла на выхлопе и использования его для подогрева воздуха на входе в камеру сгорания. Тем самым для подогрева рабочего тела в камере сгорания до нужной температуры потребовалось меньшее (на 30 %) количество топлива, что сгладило различие в экономичности поршневого и газотурбинного двигателей того времени. На очередном витке разработки снова из-за проблем запуска вернулись к идее свободной силовой турбины, но с регулированием (уменьшением) мощности при снятии нагрузки. Оставив турбокомпрессорную группу неизменной с GT-101, силовую турбину вообще выделили в отдельный блок со своей камерой сгорания. Получился ГТД GT-102.

И, наконец, при постановке теплообменника получился двигатель-шедевр, имевший индекс GT-103. Немецкий танковый ГТД не успел повоевать – война закончилась раньше. На последнем этапе работ во главе проекта поставили Макса Адольфа Мюллера вместо Альфреда Мюллера, когда после заговора генералов июля 1944 г. меняли руководство на более лояльное нацистской идеологии. Как мы помним, Макс Адольф Мюллер был самым талантливым немецким инженером-газотурбин-щиком, начинавшим на «Юнкерсе». Именно из-за нацистских взглядов его в свое время выжили с фирмы – он ушел на «Хейнкель-Хирт» со своим проектом, но не ужился и там. Его преемник на «Юнкерсе» австриец Ансельм Франц успешно завершил работу над «Юмо» 109–004, а после войны в 1960-х гг. был в США руководителем разработки газотурбинного двигателя AGT-1500 мощностью 1500 л.с. для американского танка М1 «Абрамс» («Abrahams»). Вот такая предыстория ГТД для танков. «Война мощных моторов» переместилась с неба на землю.

Но вернемся снова на «небо». К 1970 году облик современного двигателя как для гражданской, так и для военной авиации определился. За последующие сорок лет не появилось ничего принципиально нового в схеме двигателя. Конечно, появились новые конструкционные материалы, повысилась температура газа перед турбиной и степень сжатия, более эффективными стали турбина и компрессор, появилась электронная система управления двигателем. Но главным инновационным направлением в двигателях гражданской авиации после 1980 г. стало уменьшение вредного влияния авиационных двигателей на окружающую среду: постоянное снижение уровней эмиссии вредных веществ: окислов азота и углерода. Столь же строго при эксплуатации двигателей стали требовать и уменьшение уровня шума при взлете и посадке.

Когда же появились публикации с изображением американского новейшего двигателя F100-PW для самолета воздушного боя нового поколения F-15, а затем и F101-GE для бомбардировщика В-1, то мы не увидели в них ничего нового – все это мы уже «проехали», решая проблемы проектирования мотора для перехватчика МиГ-31,о чем написано далее в специальной главе. Начиная с 1970 г. схемы двигателей определились и стали классическими. И самые современные на сегодня F118-GE и F119-PW мало чем отличаются от уже упомянутых двигателей. Удалось, правда, в этих двигателях минимизировать число ступеней турбины, доведя их до (1+1), т. е. по одной ступени для привода вентилятора и компрессора. Носившаяся было в воздухе в 1980-е гг. идея разработки двигателя так называемого изменяемого цикла (ДИЦ), позволявшего сочетать наилучшим образом экономичность на дозвуке (двухконтурная схема) и максимальную тягу на сверхзвуке (турбореактивная схема), оказалась в реализации дорогой. Тем не менее опытные экземпляры такого двигателя F-120 фирмы «Дженерал Электрик» были сделаны и послужили основой для совместного проекта «Дженерал Электрик» и «Роллс-Ройс» – двигателя F-136 для новейшего самолета воздушного боя JSF F-35. Возможно, ДИЦ еще появится, если потребители будут согласны заплатить за это чудо техники. Однако автор этих строк на таком самолете, как и на конвертоплане «Оспри» V-22 для морской пехоты, не полетел бы.

А между тем, и при проектировании этих двигателей (поколение F-100) американцы опять заложили новую концепцию: минимизацию массы двигателя (было задано отношение тяги к весу, равное 8). И все было подчинено этому принципу: деталей было меньше (а следовательно, было меньше и соединений, болтов, фланцев и т. п., что облегчало двигатель), но они были более сложной формы, т. е. требовали разработки новых технологических процессов – обработки на станках с ЧПУ (числовым программным управлением). Универсальное оборудование для производства деталей таких двигателей уже не годилось. Вместо крепежа и отверстий для него в дисках турбины и компрессора, снижающих циклическую долговечность (ресурс), позднее была разработана технология сварки трением и электронно-лучевой сварки – ротора, даже турбины стали сварные. А в двигателе F-101 инновационным было применение одноступенчатой высоконагруженной турбины привода компрессора. Обычно для таких целей применялась двухступенчатая турбина (как, в частности, на том же F100-PW). К чему это тогда привело, мы увидим далее.

Что и говорить, американцы снова сделали шаг вперед и шаг не «тупой», а концептуально мотивированный. Но любой большой шаг вперед влечет за собой и «непредсказуемые» проблемы. Так получилось и с двигателями F100-PWh F101-GE. Ниже в таблице представлена история проблем создания двигателей, возникающих при каждом шаге вперед. Каждая возникающая проблема инициировала интенсивные исследования сущности этой проблемы, а затем и разработку правил проектирования двигателей, которые решали эти проблемы еще на стадии проектирования будущих двигателей.


Так, при создании нового самолета воздушного боя F-15, который американцы, знающие толк в рекламе, назвали «машиной для завоевания превосходства в воздухе», одним из требований было обеспечение высокой энерговооруженности самолета. То есть требовался высокий уровень тяги двигателей. Как только самолет был создан и началась отработка его тактического применения в учебных воздушных боях, то оказалось, что количество смен режима работы двигателей в диапазоне min-max за полет в несколько раз превосходит используемое на двигателях предыдущего поколения. Летчик очень активно начал пользоваться рычагом управления двигателем при маневрировании самолетом, сбрасывая и увеличивая режим работы двигателя. За стандартный часовой полет количество смен режима работы двигателей доходило до 10. Что это означает? Не что иное, как повышенные циклические нагрузки на детали, в первую очередь лопатки турбины. Если учесть, что в двигателях следующего поколения был повышен и уровень температуры газа перед турбиной, то двигателисты столкнулись с принципиально новой проблемой обеспечения термоциклической долговечности лопаток турбины. За 1000-часовой ресурс двигателя лопатки турбины должны были выдерживать без появления трещин 10 000 термоциклов! А 10 4циклов – это уже база испытаний на малоцикловую усталость (10 6циклов – это база испытаний на многоцикловую усталость). Проблема была очень серьезная. И подошли к ее решению американцы очень серьезно: в частности, построили специальный стенд для натурных циклических испытаний лопаток турбины в системе двигателя.

Столь же серьезными проблемами нового двигателя F100-PW, как и для всех двигателей разработки «Пратт-Уитни», были помпаж компрессора при встречной даче газа, автоколебания в форсажной камере сгорания и прочий «джентльменский набор». Правда, автоколебания в форсажной камере были «запрограммированы» еще при проектировании – периодическое наступление на одни и те же грабли (что у нас, что у них). Первоначально фронт стабилизаторов горения в форсажной камере по наружному контуру был расположен в одной плоскости, чего делать ни в коем случае нельзя – об этом уже и студенты знают. Американцы однако сделали (видимо, произошла смена поколений инженеров) и… естественно, напоролись на виброгорение, т. е. автоколебания термоакустической природы.

А переход на одноступенчатую турбину привода компрессора в двигателе F101-GE привел к неприятным следствиям в виде термического рассогласования статора и ротора турбины при выходе непрогретого двигателя на максимальный режим и обратно. «Толстая» ступица диска ротора турбины прогревалась (охлаждалась) в разы медленнее, чем «тонкий» корпус статора. В результате на максимальном режиме долгое время сохранялся увеличенный радиальный зазор между лопатками турбины и сопряженным корпусом. Это приводило к потере кпд и соответственно длительному «забросу» температуры газа перед турбиной на 60*. Соответственно при сбросе газа возникала вероятность врезания лопаток в корпус из-за быстрого охлаждения последнего. Пришлось увеличивать величину радиального зазора и терять из-за этого кпд турбины. Когда фирма «Дженерал Электрик» создала альянс с французской SNECMA для производства серии двигателей CFM для европейских «аэробусов», то она в качестве своего пая передала «сердце» двигателя F-101, т. е. компрессор, камеру сгорания и турбину высокого давления с ее «непрогретостью». Этот «дар» оказался «троянским конем»: в результате двигатели серии CFM долго еще не обеспечивали желаемой экономичности. В будущем на двигателях для коммерческих самолетов больше никогда не ставили одноступенчатых турбин привода компрессора. Радикальным образом проблема термического согласования ротора и статора турбины решена конструктивно только недавно на все том же инновационном двигателе ЕЗЕ.


    Ваша оценка произведения:

Популярные книги за неделю