Текст книги "Битва за скорость. Великая война авиамоторов"
Автор книги: Валерий Августинович
Жанры:
Военная проза
,сообщить о нарушении
Текущая страница: 11 (всего у книги 24 страниц)
Из этих простых соотношений следуют два важных вывода.
Во-первых, полетный кпд двигателя можно повысить, если убрать мотогондолу и тем самым уменьшить внешнее сопротивление. Это можно сделать, заменив способ генерации прироста скорости рабочего тела – вместо преобразования работы в скорость истечения на сопле поставить турбину с передачей мощности на винт. Очевидно, что на дозвуковых скоростях, где отсутствует волновое сопротивление, внешнее сопротивление винта будет существенно меньше в сравнении с мотогондолой просто из-за меньшей площади обтекаемой поверхности. Понятно, что уменьшение прироста скорости рабочего тела на винте, дающее увеличение полетного кпд, придется компенсировать увеличением размера винта (в сравнении с мотогондолой), что мы и наблюдаем в действительности. Но и в этом случае мы имеем некоторое оптимальное значение прироста скорости и соответственно полетного кпд. Только на этот раз ограничение настает при движении в сторону уменьшения по шкале W/V по весовым характеристикам: начиная с некоторого значения W/V прирост массы (веса) винтовой группы вместе с редуктором, шумоглушением и поддерживающим самолетным пилоном начинает перевешивать выигрыш в топливной экономичности за счет увеличения полетного кпд. То есть и в случае турбовинтового двигателя мы тоже не можем достичь полетного кпд 100 %.
Во-вторых, стремление увеличить термический кпд за счет повышения температуры входит в коллизию со стремлением увеличить полетный кпд. В самом деле, увеличение термического кпд – это суть увеличение свободной работы на выходе из двигателя, которую мы можем превратить либо прямо в кинетическую энергию струи газа (скорость истечения), либо в полезную мощность на валу турбины. Правда, предварительно необходимо превратить эту свободную работу тоже в кинетическую энергию (скорость истечения) в сопловом аппарате, с последующим преобразованием скорости в мощность посредством ее разворота в лопатках турбины.
Но поскольку оптимальное отношение W/V определяется оптимальным значением полетного кпд, то увеличение термического кпд и, значит, скорости истечения приведет к отклонению от оптимального значения W/V, и чем больше, тем дальше. Что же делать? И вот здесь на сцену выходят двухконтурные (или турбовентиляторные) двигатели. Пока температура газа перед турбиной была низкой и соответственно низким был и термический кпд (меньше 30 % – английский двигатель Avon), проблемы согласования термического и полетного кпд не возникало. Примерно достигался желаемый оптимум. Однако с увеличением температуры газа перед турбиной эта проблема стала во весь рост. Решение было найдено в схеме двухконтурного двигателя с двумя концентрическими соплами: во внутреннем контуре двухконтурного двигателя оставляется только та часть работы, которая необходима для расширения газа до оптимальной (с точки зрения полетного кпд) скорости. Оказавшаяся излишней часть работы срабатывается на турбине, которая приводит компрессор (вентилятор), сжимающий дополнительную массу воздуха в наружном контуре. Этот воздух далее расширяется в наружном сопле тоже с оптимальной (такой же, как и во внутреннем контуре) скоростью. В зависимости от располагаемой излишней мощности внутреннего контура может быть выбрана оптимальной степень двухконтурности, т. е. отношение расхода через наружный контур к расходу воздуха через внутренний контур.
Так решается противоречие, или коллизия, между оптимальными значениями термического и полетного кпд. Очевидно, что чем выше температура газа перед турбиной, тем выше степень двухконтурности двигателя. Интересно, что первый в мире двухконтурный двигатель в «железе» сделали немцы (доктор Лейст), когда никакой технической необходимости в этом не было. Уровень температуры газа перед турбиной тогда был низкий.
За пятьдесят лет развития авиационных двигателей температура газа перед турбиной увеличилась от Т=900К до 1800К, т. е. почти на 200 градусов каждые десять лет. А степень двухконтурности двигателей дозвуковых самолетов увеличилась от 0 до более 10. Ниже в таблице представлены некоторые замечательные образцы двухконтурных двигателей, иллюстрирующие тенденцию увеличения степени двухконтурности для двигателей дозвуковых самолетов. А именно: первый двухконтурный двигатель в мире (DB. 109–007, Германия), первый серийный двухконтурный двигатель в мире («Конуэй», «Роллс-Ройс», Англия), самый массовый двухконтурный двигатель в мире (JT8D, «Пратт-Уитни», налет 600 млн часов), советский двухконтурный двигатель с оптимальной степенью двухконтурности для того уровня температуры газа (Д-30КУ, ОКБ Соловьева), трехвальный двигатель с «повышенной» степенью двухконтурности, первый в ряду таких двигателей (RB.211, «Роллс-Ройс»), двигатель со «сверхвысокой степенью двухконтурности и редукторным приводом винто-вентилятора (НК-93, ОКБ Кузнецова). Отдельно необходимо отметить самый большой двухконтурный двигатель в мире разработки фирмы «Дженерал Электрик» GE90 (1993 г.). Этот «сорокатонник» (по тяге) имеет вентилятор (22 лопатки) диаметром 3,124 м и степень двухконтурности, равную 8,5. Этот мотор – шедевр инженерной мысли устанавливается на двухдвигательный дальнемагистральный «Боинг-777», летающий через океаны. Хотя, надо отметить (по личному опыту автора этих строк), что В777, пришедший на замену четырехдвигательного В747, не смог превзойти этот лайнер по удобству пассажирского салона. На взгляд автора, В747 остался непревзойденным по удобству дальнемагистральным самолетом.
Вообще схема двухконтурного двигателя с точки зрения термодинамики является парадоксальной, или инновационной: ведь по всем правилам преобразования тепла в работу необходимо осуществить последовательно процессы сжатия рабочего тела (повышения давления), затем подвод тепла (горением или теплообменом) и, наконец, расширение (превращение в скорость, или кинетическую энергию). Только в этом случае за счет разницы температур в начале сжатия и расширения рабочего тела мы получаем прирост скорости, а следовательно, и механической работы. И первые проекты, и даже двигатели (НК-6, Д-20) выполнялись именно по этой схеме. Но на практике оказалось, что устойчивое горение организовать в «холодном» наружном контуре сложно, и от этого отказались в пользу общей (на оба контура) форсажной камеры для двигателей сверхзвуковых самолетов.
В нашем же случае двухконтурных двигателей для дозвуковых самолетов в наружном контуре происходит только сжатие (за счет подвода работы из внутреннего контура) и расширение. То есть с точки зрения термодинамики двигателя (преобразование тепла в работу) это – чистые потери. Выигрыш, точнее, зона оптимальности применения этой схемы, появляется только тогда, когда мы рассматриваем систему в целом вместе с движителем, т. е. преобразователем кинетической энергии двигателя в тяговую мощность с учетом внешнего сопротивления и массы силовой установки.
В двигателях для сверхзвуковых самолетов степень двухконтурности тоже увеличилась, хотя и не так сильно: от 0 до 0,5. И это понятно: высокая скорость полета требует высокой скорости истечения, которая может быть обеспечена сочетанием высокой температуры (постановка форкамеры) и максимально возможной степенью расширения. А для обеспечения последней (скорости истечения) передавать энергию во второй контур нецелесообразно.
Уровень максимальной температуры ограничивается в первую очередь прочностными свойствами конструкционных материалов и эффективностью охлаждения горячих деталей (в первую очередь лопаток турбины), а также теплотворной способностью топлива. Так, для жаропрочных никелевых сплавов монокристаллической структуры, широко применяемых в газовых турбинах, допустимый максимальный уровень температуры лопаток составляет 1150 градусов Цельсия (1423К), а максимальная температура пламени типичного углеводородного топлива (метан, авиационный керосин) составляет 2500К.
В тени фигуры А. Микулина, умело «пиарившего» (как сейчас бы сказали) самого себя в глазах «хозяина», т. е. Сталина, остались выдающиеся конструкторы авиационных двигателей В. А. Добрынин, С. К. Туманский и П. Ф. Зубец. Добрынин, вовремя уйдя из-под опеки Микулина, сумел оставить след в истории моторостроения, дав свои инициалы как поршневым, так и турбореактивным моторам. А вот Туманскому и Зубцу в этом смысле не повезло. Туманский, являясь, по сути, главным конструктором послевоенных турбореактивных двигателей ОКБ-300, не вошел в историю в той степени, в какой заслужил. Да и о Добрынине тоже мало пишут – талантливый конструктор был скромным и интеллигентным человеком.
Как мы видим, после войны произошло изменение в расположении моторных ОКБ. Если до войны ОКБ строго располагались на площадках серийных заводов, то после войны такая привязка перестала быть правилом. Ведущие ОКБ Климова, Микулина, Кузнецова, Люльки вместе с опытным производством географически отделились от серийных заводов. Этот процесс начался еще в войну. Первым осознал представившуюся возможность выбора удобной производственной площадки для будущего КБ и не где-нибудь в Рыбинске, а в самой Москве, Александр Микулин. Еще в 1942 г. он сумел убедить Сталина при личной с ним встрече в необходимости отделения ОКБ от серийных заводов и создания при КБ мощного опытного производства. Это был правильный шаг: современному моторному ОКБ, занимающемуся созданием сложных двигателей, собственное мощное производство необходимо. Приходится изготавливать и испытывать множество вариантов конструкций. В эвакуированной Москве осталось много практически опустевших производственных площадок, числящихся за НКАП. Так, на базе одного из небольших заводов в Лужниках в 1943 г. возникло ОКБ-300, ставшее в 1950-е гг. самым именитым в Советском Союзе.
В начале 1950-х двигатели разработки ОКБ-300 делались на серийных заводах в Тушино, Казани, Уфе и Перми. Микулину удалось сделать самое главное – собрать команду профессионалов и оснастить материальную базу новорожденного ОКБ. Здесь работали такие известные люди, как Б. С. Стечкин, С. К. Туманский, П. Ф. Зубец («Прокоп», как его звали коллеги). Борис Сергеевич Стечкин, выпускник МВТУ 1918 г., является главным отечественным теоретиком воздушно-реактивных двигателей. По его учебникам (два тома выпущены в 1956 г. и 1958 г.) училось не одно поколение авиационных инженеров. По влиянию на формирование отечественной школы проектирования авиационных турбореактивных двигателей он стоит в одном ряду с Н. Р. Брилингом, основателем школы проектирования поршневых двигателей. Судьба сводила их вместе. Как вспоминает ученик Б. С. Стечкина – А. Н. Огуречников, впоследствии руководитель отдела прочности завода № 300, один из выдающихся ученых-прочнистов:
«Я впервые увидел Бориса Сергеевича в 1930 г. В комнату со стеклянными перегородками, в которой я работал конструктором бюро главного металлурга Рыбинского авиационного завода, вошел главный металлург Ефрем Ильич Липский, который, обратившись ко мне, сказал: «Алексей, видишь вот тех троих, стоящих в лаборатории механических испытаний у пресса, так двое из них, а может, и все трое – гениальные люди. На мой вопрос: «Кто же они, осчастливившие нас своим присутствием?» – Е. И. Липский ответил: «Вот этот – Борис Сергеевич Стечкин, рядом с ним Александр Александрович Микулин, а следующий – Николай Романович Брилинг» ( Берне, с. 117).
Б. С. Стечкин, в частности, предложил успешно осуществленную в двигателе Р11-300 схему двухвального компрессора. Не нужно забывать, что то время требовало существенно больших интеллектуальных усилий для понимания процессов, происходящих в турбореактивных двигателях. Математических моделей двигателей в современном смысле тогда не было, не было и того, сегодня огромного, накопленного опыта заблуждений, ошибок и… успехов.
Чуть позже, в 1959 г., фундаментальное исследование термодинамики новых тогда двухконтурных турбореактивных двигателей провел и опубликовал А. Л. Клячкин, признанный специалист в этой области, профессор РКВВИУ (Рижское Краснознаменное военно-воздушное инженерное училище), позже преобразованного в РИИГА (Рижский институт инженеров гражданской авиации). И Рижский, и Киевский институты инженеров гражданской авиации были сильными учебными заведениями, кадры для Аэрофлота готовились там хорошо. Автор этих строк как раз в это время учился в вузе и уже изучал только что опубликованную теорию двухконтурных двигателей. Когда же он пришел на работу в ОКБ Соловьева в начале 1964 г., то удивился, что при проектировании, по сути, нового двигателя Д-30 выбрана «неоптимальная» степень двухконтурности (1). Уже тогда казалось, что надо бы ее повысить до 1,5. Позже и англичане, и американцы переделали свои первые двухконтурные двигатели именно в этом направлении.
Но вернемся к структурированию моторной части авиапрома. Как известно, «свято место пусто не бывает». На функционально освободившихся площадках серийных заводов постепенно выросли новые, хотя и менее известные опытно-конструкторские бюро. Вначале эти бюро занимались конструкторским сопровождением серийного производства разработок более именитых КБ, являясь их филиалами, а затем постепенно стали выполнять и функции разработчиков. Благо номенклатура разрабатываемых двигателей была огромна как по назначению, так и по размерности. Так появились ОКБ Хачатурова в Тушино (завод № 500), Сорокина в Уфе (завод № 26), Лусса в Москве на Семеновской (завод № 45), Глушенкова в Омске (завод № 29), Зубца в Казани (завод № 16). В результате опытно-конструкторских бюро стало больше, чем серийных заводов, и началась конкуренция за серийные мощности. Ситуацию «разруливали» в Министерстве авиационной промышленности, но сложились и «группы влияния» – система управления была достаточно сложной. На выбор двигателя решающее влияние оказывали самолетные КБ и, в первую очередь генеральные конструкторы самолетов. И здесь многое определяли личные отношения, верования и т. п. психологические факторы.
После войны основными игроками в авиационном моторостроении стали США, СССР и Великобритания. Причем Великобритания уже имела сложившуюся школу конструирования турбореактивной техники, а в США и СССР только предстояло ее создать. Таким образом, именно Великобритания (фирмы «Роллс-Ройс», «Бристоль» и «Армстронг-Сиддли») шла впереди. Парадокс, но к моменту «войны моторов» на турбореактивном поле позиции главных геополитических соперников США и СССР были почти одинаковы – стартовали они от нуля с разницей в пять лет. Если до войны в США в поршневом авиамоторостроении доминировали фирмы «Кертис-Райт» и «Пратт-Уитни», то с наступлением эры воздушно-реактивных двигателей ситуация изменилась. «Кертис-Райт» долго сопротивлялась, но не смогла адаптироваться к изменившимся условиям и вскоре сошла со сцены. Но зато появилось мощное моторное отделение фирмы «Дженерал Электрик», доселе не участвовавшее в этом бизнесе в качестве основного игрока.
«Дженерал Электрик», фирма, созданная еще Томасом Эдисоном, в начале XX века занималась в том числе и разработкой стационарных турбин для привода электрогенераторов. В 1930-е гг. ее опыт в разработке турбин пригодился при создании турбокомпрессоров наддува авиационных моторов. Большую роль в этом сыграл инженер Сэнфорд Мосс (Sanford Moss). Большая потребность в турбокомпрессорах наддува привела к расширению производственной базы «Дженерал Электрик» – ее продукция производилась на заводах в четырех штатах. Таким образом, к моменту начала инновационной волны развития турбореактивных двигателей «Дженерал Электрик» оказалась наиболее подготовленной в США. В мощном старте и последующем быстром развитии этой фирмы явным образом виден и немецкий след («БМВ»). В этом смысле советским аналогом американской «Дженерал Электрик» является также возникшее после войны ОКБ Н. Д. Кузнецова, ставшее со временем самым мощным КБ в Советском Союзе.
И здесь, как и в случае с «Дженерал Электрик», определяющим фактором развития ОКБ Н. Д. Кузнецова стало немецкое наследие, причем не только и не столько в виде материальных носителей (чертежи, узлы моторов), сколько в носителях знаний. Первоначально налаживание серийного производства трофейных немецких аналогов Юмо 109–004 (РД-10) в Уфе поручили В. Я. Климову. Но когда появилась возможность приобрести и наладить серийное производство английского, более совершенного двигателя, то В. Я. Климов уехал в Великобританию за «Нином» в 1946 г., а затем и перебрался с ним в Ленинград. Вскоре под его крыло попали заводы № 45 и № 500, где начали производство английских двигателей под советскими индексами РД (соответственно РД-45 и РД-500). В Уфе за Климова остался Н. Д. Кузнецов. Лавочкин тоже перебрался в Москву, а его самолетное ОКБ-21 в Нижнем Новгороде (тогда г. Горький) также было расформировано.
Вскоре (1946 г.) постановлением Правительства на площадках номерных заводов были организованы новые Государственные заводы – № 1 (в Подберезье на границе Московской и Тверской области) и № 2 (Самара), целью которых было освоение немецкого наследия фирмы «Юнкерс» (инновационный по тому времени самолет с крылом обратной стреловидности Ю-287 с турбореактивными двигателями «Юмо» 109–012 и турбовинтовой двигатель «БМВ» 109–028). Самолетное КБ (Госзавод № 1) возглавил заместитель Лавочкина С. М. Алексеев, а моторное КБ (Госзавод № 2) – Н. М. Олехнович. После закрытия ОКБ-26 в Уфе в 1949 г. руководителем госзавода № 2 становится заместитель В. Я. Климова и не менее в будущем знаменитый Н. Д. Кузнецов. А на госзаводе № 1 работал, в частности, технический директор фирмы «Юнкерс» Брунольф Бааде. Летчики-испытатели тоже были немцы.
Так и на берегу Волги под Самарой возник поселок Управленческий, куда было переведено, по сути, немецкое конструкторское бюро с фирмы «Юнкерс Моторен» из Дессау и Бернберга: ни много ни мало 400 инженеров и столько же квалифицированных рабочих. Полноценное КБ! Город Дессау, центр фирмы «Юнкерс», расположенный недалеко от Лейпцига, попал под советскую зону оккупации.
Главный конструктор ОКБ Н. Д. Кузнецов был выходцем (с 1938 г.) из Военно-воздушной инженерной академии им. проф. Н. Е. Жуковского, «генерал», как его позже называли. В свое время, будучи на фронте в 1942 г. в должности старшего инженера 39-й ИАД, он «познакомился» с всесильным Г. М. Маленковым. Как это произошло? События нетрудно реконструировать. Как правило, Маленков выезжал на фронт в качестве председателя комиссии ЦК для разборки крупных неприятностей (в частности, после известной битвы под Прохоровкой или неудачного наступления Западного фронта в Белоруссии зимой 1943/44 г.). Очевидно, что и этот выезд преследовал подобную цель. По-видимому, одним из факторов военной неудачи явилась плохая боеготовность авиации. Докладывать пришлось Н. Д. Кузнецову, который убедительно «перевел стрелки» на моторный завод в Уфе, поставлявший дефектные моторы. Маленков еще до войны курировал авиапром и поэтому принял простое решение – направить грамотного военного инженера Н. Д. Кузнецова парторгом ЦК в ОКБ-26 в Уфу для исправления положения. Как говорится, ему и «карты – в руки».
Как говорят, Н. Д. Кузнецов, будучи уже генерал-лейтенантом, надевал мундир, когда надо было ходить по высокому начальству. Вообще в СССР среди главных конструкторов-мотористов было всего пять генералов авиационной инженерной службы: генерал-майор А. А. Микулин, генерал-майор В. Я. Климов, генерал-майор А. Д. Ча-ромский, генерал-лейтенант А. Д. Швецов и уже упомянутый генерал-лейтенант Н. Д. Кузнецов. Оставшись единственным (в 1960-е гг.) действующим генералом, он и получил это персональное прозвище. За время освоения двигателя 109–004 в Уфе он хорошо познакомился с немецкой техникой. На новом же месте в Управленческом начали новый проект из заделов того же «Юнкерс Моторен» и «БМВ».
Основой разработок советских турбовинтовых двигателей стал немецкий проект «Юмо» 109–022, получивший обозначение ТВ-2, и имевшаяся информация по проекту большого турбовинтового «БМВ» 109–028, а «главными конструкторами» – доктор Шойбе (Scheibe) с «Юнкерса» (ОКБ-1) и доктор Престель (ОКБ-2) с «БМВ». Позже объединенное КБ возглавил австриец доктор Фердинанд Бранднер. Как мы помним, талантливого конструктора немца Мюллера на проекте «Юмо»109–004 заменил австриец Ансельм Франц – почему-то руководство «Юнкерса» предпочитало австрийцев, возможно, из-за оппозиции нацистской идеологии. Здесь же в Управленческом была создана мощная материальная база для разработки двигателей: опытное производство, лабораторная база и испытательные стенды.
Интересна и трансформация системы названий авиационных двигателей. В Великобритании и США после войны почти исчезают «агрессивные», можно сказать, романтические названия моторов типа холодного оружия («Сабля», «Рапира», «Кинжал», как реликт после войны остался только турбовинтовой двигатель Dart – «Копье»), хищных животных («Лев», «Пума») и птиц («Ястреб», «Кондор» и т. п.), жалящих насекомых («Оса», «Шершень»). Вместо них вводится система «нейтральных» названий – в Великобритании на фирме «Роллс-Ройс» по именам шотландских рек (Avon, Conway, Spey, Тау и т. п.), а на Бристоле выбрали мифологические, античные наименования («Орфей», «Протей», «Олимп», «Пегас», «Кентавр», «Геркулес»). Названия «хищников» (почему-то змей) сохранились только на фирме «Армстронг-Сиддли», разрабатывавшей турбовинтовые двигатели «Мамба», «Питон», «Гадюка» («Viper»). Как известно, в долине шотландской реки Спей (Speyside) находится производство знаменитого односолодового шотландского виски. Обозначения газотурбинных двигателей разработки «Роллс-Ройс» начинались и с использованием индекса RB (например, тот же Spey имел и обозначение RB.163, а также другие двигатели – RB. 199, RB.211), что означало «Rolls-Royce Barnoldswick» по первоначальному (в 1942 г.) месту расположения КБ газотурбинных двигателей в северном Ланкашире.
А в США переходят, по сути, на немецкую систему обозначений, и это неслучайно – по сути, во главе американских моторных фирм стояли немцы. В довоенной Германии никогда не увлекались названиями моторов, предпочитая использовать инициалы фирмы-разработчика (DB, BMW) с порядковым числовым номером. В США вместо привычных индексов поршневых моторов, обозначающих схему расположения цилиндров (R и V) и величину объема цилиндров в кубических дюймах, для турбореактивных двигателей вводятся обозначения «J» (т. е. jet-реактивный) с числовым порядковым индексом и инициалами фирмы-разработчика (Pratt & Whittney, Westinghouse, General Electric, Wright). Например, первые американские реактивные двигатели имели индексы J-30-PW, J-30-WE («Yankee» – «Янки»), J-31-GE. Потом появились и ставшие широко известными J-47, J-57, J-58, J-75, J-79, J-85, J-93 и т. п. Кстати, последней разработкой некогда успешной фирмы «Райт» был турбореактивный двигатель с осевым компрессором J-65-W для самолета-истребителя F-84.
Соответственно двухконтурные, или, иначе, турбовентиляторные, двигатели военного назначения получили обозначения «TF» (т. е. «turbo-fan» – турбовентиляторный): известные TF-30, TF-33, TF-39, TF-41 и т. п. Турбовальные (вертолетные) двигатели обозначались индексом «Т» с соответствующим числовым индексом (Т-56, Т-64 и т. п.). В новейшее время двигатели гражданского назначения имеют «немецкую» систему обозначения по инициалам фирмы: PW (Pratt-Whitney), GE (General Electric) с четырехзначным числовым обозначением. Первые две цифры обозначают номер серии, а вторые – уровень тяги в тысячах фунтов (PW.2037, т. е. серия 2000, тяга —37 тыс. фунтов, PW.4084H т. п.). Как уже, наверное, заметил читатель, количество разрабатываемых новых типов реактивных двигателей было очень велико. Это и неудивительно в первой фазе бурного роста инновационной волны. К1970 г. ситуация изменится: многие игроки сойдут со сцены, произойдет удорожание разработок, потребуется кооперация в разработке инноваций в отдельных узлах. Сегодня разработка каждого нового двигателя – это событие.
Американские двигатели военного назначения с начала 1970-х гг. стали обозначаться однотипно индексом «F», начиная от F100 (для самолета F-15 «Eagle» – «Орел») и далее по порядку. Сегодня самый современный двигатель, стоящий на самолете Р-22(«Рэптор»), имеет индекс F119-PW. В общем, несмотря на попытки упорядочить классификацию разрабатываемых в США двигателей, полной прозрачности добиться не удалось – при смене поколения бюрократов система обозначений менялась тоже. Как известно, придумывать название – самый приятный и легкий процесс.
Количество разработанных в мире турбореактивных двигателей и их модификаций необозримо. Описывать все это многообразие – задача архивиста или музейщика авиационной техники. Можно бесконечно бродить по лабиринту двигателей и их модификаций, составляя из них причудливые «пазлы». Автор не ставит перед собой такой задачи, выше кратко демонстрируя только свое знакомство с предметом. Мы выберем только те несколько, можно сказать знаменитых, двигателей, которые определили вехи развития турбореактивной техники и, что важно, реально либо готовились принять участие, либо участвовали в «войне моторов» по обе стороны противостояния.
Главной проблемой выживания для КБ в Советском Союзе всегда являлся недостаточный объем серийного производства. Поскольку любой серийный завод министерством (тогдашнее министерство, – по сути, огромный концерн по современной терминологии) всегда загружался полностью, то недостаточная серия грозила вытеснением будущих разработок КБ с завода и в перспективе вообще закрытием КБ. Так временно произошло, например, с Омским КБ, созданным в войну на базе эвакуированного Запорожского (сего двигателем М-88), ставшим в одно время филиалом Пермского в эпоху поршневой техники, затем получившим самостоятельность, а позже закрытым. В новейшее время после окончания «холодной» войны такая же судьба постигла некогда знаменитое «микулинское» ОКБ-300.
Битва за серийные заводы была главной целью разработчиков и самолетов, и двигателей в СССР. То есть «война моторов» происходила не только между геополитическими соперниками в лице США и СССР, но и внутри Министерства авиационной промышленности СССР. А на войне – как на войне: все средства хороши. Именно победа в этой битве обеспечивала конкурентные преимущества: проигравший для возможного реванша должен был ждать окончания жизненного цикла какого-либо двигателя без гарантии выигрыша. Если учесть, что в моторном 3-м Главке числилось шесть основных, наиболее крупных моторных заводов (Тушино, Рыбинск, Казань, Пермь, Уфа, Запорожье), а конструкторских бюро было в два раза больше, то конкуренция между КБ за заказы была очень высокая. Директора заводов тоже придирчиво высматривали наиболее выгодные заказы: чем больше серия, тем лучше, военные заказы считались лучше гражданских (дороже и меньше последствий в случае авиационных катастроф) и тем самым могли влиять на выбор двигателя для постановки его на серийное производство.
Для устойчивой работы моторного КБ необходимо иметь рынок применения своих разработок на 4–5 типах объектов. Дело в том, что цикл разработки двигателя составляет 5–7 лет, а жизненный цикл – 25 лет. Следовательно, для непрерывной деятельности КБ, которая позволяет развиваться и сохранять конкурентоспособность, и нужны те самые 4–5 типов.
В СССР оригинальным разработчиком первого работающего советского турбореактивного двигателя был Архип Михайлович Люлька (1908–1983). Его творческая траектория была отличной от пути остальных известных конструкторов авиадвигателей. Он не занимался поршневой тематикой, а вышел из турбинного направления. Окончив Киевский политехнический институт, Люлька начал работать в Харькове, где сильна была турбинная инженерная школа. Затем его поддержал известный турбинист профессор МВТУ В. В. Уваров, одновременно преподававший в ВВИА им. Жуковского. В 1930-е гг. существовала идея применения паровых турбин на тяжелых бомбардировщиках КБ Туполева.
А. М. Люлька является автором патента СССР на двухконтурный двигатель (1937 г.), но до 1970-х гг. скептически относился к применению этой схемы на двигателях для сверхзвуковой авиации. Он еще до Великой Отечественной войны начал разрабатывать проект турбореактивного двигателя, не имея информации об уже развернутых работах в этом направлении в Англии и Германии. Поскольку авиационные КБ были заняты поршневой тематикой, то скромную конструкторскую базу под проект будущего первого турбореактивного двигателя С-18 (С-«самолетный») выделили в СКБ-1 Кировского завода в Ленинграде. После начала войны всех эвакуировали на Урал (Свердловск и Челябинск) вместе с Кировским заводом. На Урале, в Билимбае под Свердловском, А. М. Люльку «пригрел» профессор Болховитинов, разработчик первого отечественного ракетного истребителя БИ-1 (Болховитинов – Исаев) и руководитель НИИ-3, бывшего РНИИ, ставшего позднее (1944 г.) НИИ-1 и, наконец, сегодня знаменитого НТЦ им. Келдыша. А. М. Исаев был конструктором ракетного двигателя для этого самолета, а позже стал руководителем успешного КБ, разрабатывавшего тормозные двигательные установки для космических ракет Королева.
После возвращения из эвакуации в 1944 г. под руководством Люльки создается отдел главного конструктора в ЦИАМе, вся документация и частично персонал КБ кочует вместе с главным конструктором. Но и здесь закрепиться не удается: в ЦИАМе газотурбинную тематику курирует В. В. Уваров со своим собственным проектом турбовинтового двигателя, и конкурент ему не нужен. Люлька со своим КБ перебазируется в уже знакомый ему по эвакуации и позднее ставший знаменитым в области ракетных исследований, а тогда только что образованный (точнее, восстановленный после репрессий 1937 г. РНИИ) научно-исследовательский институт реактивной техники НИИ-1.
Наконец, после долгих мытарств в эвакуации на площадке номерного завода № 165 вблизи Московской окружной железной дороги (недалеко от ВДНХ) обосновалось в Москве и ОКБ Люльки, ставшее ОКБ-165. Используя широкую производственную и научную кооперацию, Люльке удается весной 1945 г. собрать первый оригинальный отечественный турбореактивный двигатель С-18. Этот завод и станет в дальнейшем базой для люльковского ОКБ-165, позднее НПО «Сатурн».
Вот как описывает первый запуск первого отечественного турбореактивного двигателя участник этого события:
«Настал день первого запуска. Блестящий новым металлом сигарообразный двигатель установлен в специальном станке на качающейся раме, его реактивное сопло направлено в среднее окно. Наконец все готово к пуску. Раскрутить двигатель проектировали паром перекиси водорода. Генератор установили на улице, трубопровод с краном провели в помещение. Когда все было готово, налажены все приборы и все, кому положено, расставлены по своим местам, главный конструктор дал команду включить генератор пара. Генератор зашипел, пошел пар с водой, но двигатель не запускался. Тогда Э. Э. Лусс (один из ближайших сподвижников Люльки, будущий главный конструктор ОКБ на заводе № 45) предложил использовать 20-киловаттный мотор…Часам к семи вечера закончили всю подготовку. Включили рубильник на щитке направо от двери, и двигатель стал вращаться на малых оборотах. Включили следующую скорость, подали топливо и зажгли его паклей, намотанной на металлический прут. Скорость вращения увеличилась. Электромотор выключили, но двигатель с шумом продолжал набирать обороты. Из-за вырывающихся языков пламени защитный кожух электромотора накалился докрасна. А из временного сопла диаметром около метра, как из жерла гигантской паяльной лампы, с сильным гудящим звуком вылетала голубовато-оранжевая струя пламени. Все смотрели как зачарованные на этот раскаленный вихрь. Вдруг потоком сорвало защитный кожух и обмотка электромотора загорелась. Двигатель остановили, выключив топливо. Горящую изоляцию быстро погасили – огнетушителей было приготовлено много… Впоследствии испытания С-18, а потом и ТР-1 проводились почти ежедневно. От рева двигателя звенели стекла в окрестных домах, иногда по неизвестной причине происходил взрыв, оставляя от компрессора груду искореженного железа – «салат из лопаток», а то и выстреливая отлетевшей деталью далеко за пределы «испыталки» (этот «салат» из лопаток будет часто повторяться при создании новых двигателей, в частности в 1967 г. при доводке двигателя Д-30КУ разработки КБ Соловьева в Перми. – А.В.). В обиход вошло новое слово «помпаж». От невыносимого оглушающего грохота страдали в первую очередь те, кто обслуживал испытания, – персонал стенда и прибористы. Даже занавесили окно принесенным из дома одеялом, но это мало помогало. Но А. М. Люлька жестко ответил: «Лучше сейчас терпите грохот, чем потом в вас стрелять будут» (Комаров Е.). Однако до шедевра, каким, несомненно, является двигатель АЛ-31Ф для Су-27 тогда было еще очень далеко.