355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Уолтер Айзексон » Эйнштейн. Его жизнь и его Вселенная » Текст книги (страница 11)
Эйнштейн. Его жизнь и его Вселенная
  • Текст добавлен: 6 октября 2016, 22:47

Текст книги "Эйнштейн. Его жизнь и его Вселенная"


Автор книги: Уолтер Айзексон



сообщить о нарушении

Текущая страница: 11 (всего у книги 58 страниц) [доступный отрывок для чтения: 21 страниц]

Докторская диссертация: размер молекул, апрель 1905 года

Эйнштейн уже написал статью, которая впоследствии перевернет фундаментальную физику, но ему так и не удалось защитить докторскую диссертацию. И он решил сделать еще одну попытку и написать такую диссертацию, которая была бы принята.

Он понял, что для этого нужно выбрать безопасную тему, и она точно не должна быть связана ни с квантами, ни с теорией относительности. И он выбрал в качестве темы вторую из тем, над которыми в то время работал, – “Новое определение размеров молекул”. Он закончил писать диссертацию 30 апреля, а в июле отправил ее в Цюрихский университет27.

Возможно, из предосторожности и уважения к консервативным взглядам своего научного руководителя Альфреда Кляйнера он не прибег к новаторским методам статистической физики, которые использовал в предыдущих работах (и в статье о броуновском движении, которую закончил спустя одиннадцать дней), а использовал в основном методы классической термодинамики28. Тем не менее он смог продемонстрировать, как поведение бесчисленных маленьких частиц (атомов, молекул) проявляется в наблюдаемых явлениях и что наблюдаемые явления могут рассказать нам о природе этих маленьких невидимых частиц.

Почти на сотню лет раньше итальянский ученый Амeдео Авогадро (1776–1856) выдвинул гипотезу, оказавшуюся впоследствии правильной, о том, что одинаковые объемы любого газа при одинаковой температуре содержат одинаковое количество молекул. И возникла сложная задача – выяснить, сколько именно молекул содержится в определенном объеме.

Обычно выбирается объем, занимаемый молем газа[19]19
  Масса газа, выраженная в граммах, численно равная его молекулярному весу, выраженному в атомных единицах.


[Закрыть]
, который составляет 22,4 литра при нормальных температуре и давлении. Количество молекул, находящееся в этом объеме при таких условиях, стали потом называть числом Авогадро. Точное определение этой величины было, да и остается, довольно сложным делом, сейчас она считается равной 6,02214 × 1023. (Это большое число: если рассыпать такое количество кукурузных зерен по территории Соединенных Штатов, они покроют всю площадь слоем толщиной примерно пятнадцать километров29).

Большая часть предыдущих измерений выполнялись в газах, и, как Эйнштейн отметил в первой фразе своей статьи, “физические явления, наблюдаемые в жидкостях, до сих пор не использовались для определения размеров молекул”. Эйнштейн стал первым, кто получил разумные результаты (после исправления в своей диссертации нескольких математических ошибок и внесения поправок в экспериментальные данные), используя жидкости.

В его методе использовались данные по вязкости, то есть по тому сопротивлению, которое оказывает жидкость движущемуся через нее телу. Например, смола и патока имеют очень большую вязкость. Если растворять сахар в воде, раствор будет тем более вязким, чем он слаще. Эйнштейн представил себе, что молекулы сахара постепенно протискиваются через маленькие молекулы воды и диффундируют в ее объем. Он вывел два уравнения с двумя неизвестными – размером молекул сахара и их количеством, – которые и нужно было решить. Он сумел это сделать и нашел два неизвестных. Таким образом он определил число Авогадро, которое оказалось у него равным 2,1 × 1023.

К сожалению, это число оказалось не слишком близким к правильному значению. Когда он сразу после того, как работа была принята Цюрихским университетом, в августе подал статью в Annalen der Physik, редактор Пауль Друде (к счастью, не ведавший, что Эйнштейн раньше собирался высмеять его) задержал публикацию статьи, поскольку знал о работе, в которой были получены более точные экспериментальные данные о свойствах раствора сахара. Используя эти новые данные, Эйнштейн получил результат, равный 4,15 × 1023, который гораздо ближе к правильному.

Через несколько лет один французский студент применил этот подход в своем эксперименте и обнаружил, что кое-что было упущено. Тогда Эйнштейн попросил ассистента в Цюрихе проверить результаты еще раз и обнаружил небольшую ошибку, подправил цифру, оказавшуюся теперь равной 6,5 × 1023, и это уже было вполне хорошим результатом30.

Позже Эйнштейн сказал, возможно полушутя, что, когда он подавал свою диссертацию, профессор Кляйнер сначала отклонил ее из-за того, что в ней слишком мало страниц. А когда он добавил в нее всего одно предложение, ее сразу приняли. Этому нет документального подтверждения31, но, так или иначе, эта диссертационная работа стала одной из его самых цитируемых и в практическом отношении ценных статей, и у метода появилось множество приложений в различных областях – от перемешивания цемента до производства молочных продуктов и аэрозолей. И хотя это и не помогло ему получить академическую ставку, зато теперь он мог называться доктором Эйнштейном.

Броуновское движение, май 1905 года

Через одиннадцать дней после завершения работы над диссертацией Эйнштейн закончил еще одну статью, посвященную поискам свидетельств существования невидимых частиц. Для того чтобы показать, как невидимые частицы проявляют себя в видимом мире, он воспользовался, как всегда делал после 1901 года, статистическим анализом случайных взаимодействий.

Применив такую методику, Эйнштейн объяснил явление, называемое броуновским движением, которое к тому времени поражало ученых почти восемьдесят лет. Действительно, удивительно, как маленькие частицы примеси в такой жидкости, как вода, все время беспорядочно скачут в разных направлениях. В качестве “побочного результата” этой работы в ней было раз и навсегда убедительно доказано, что атомы и молекулы в физических объектах действительно существуют.

Броуновское движение было так названо в честь шотландского ботаника Роберта Броуна, который в 1828 году опубликовал свои детальные наблюдения за тем, как рассматриваемые через сильный микроскоп очень мелкие частицы пыльцы, взвешенные в воде, качаются и блуждают. Изучение других частиц, в частности мельчайших крупинок, отшелушенных от древнеегипетского Сфинкса, дало похожие результаты. Было предложено множество объяснений, например наличие мелких течений в объеме воды или воздействие света. Но ни одна из теорий не казалась правдоподобной.

Когда в 1870 году была разработана кинетическая теория, в которой использовались случайные движения молекул для объяснения, например, поведения газов, многие пытались с ее помощью объяснить и броуновское движение. Но, поскольку частицы примеси были в 10 тысяч раз крупнее молекул воды, казалось, что у молекул не хватит сил сдвинуть с места частицу (как бейсбольный мяч не может сдвинуть предмет диаметром 800 метров)32.

Эйнштейн показал, что, хотя одна молекула за одно столкновение действительно не может сдвинуть частицу с места, миллионы случайных столкновений в секунду могут объяснить случайное блуждание частиц, которое и наблюдал Броун. “В этой статье – объявил он в первом предложении, – будет показано, что согласно молекулярно-кинетической теории теплоты взвешенные в жидкости объекты такого размера, что их можно увидеть с помощью микроскопа, должны в результате тепловых молекулярных движений совершать движения на такие расстояния, что их можно легко наблюдать в микроскоп”33.

Он продолжил, сказав на первый взгляд странную вещь: эта его работа написана совсем не для того, чтобы объяснить броуновское движение. И действительно, при построении своей теории он даже не был уверен, что законы движения, которые он получил с помощью своей теории, те же, что управляют движениями частиц, увиденных Броуном. “Возможно, что движения, которые обсуждаются в данной работе, идентичны так называемому броуновскому движению, но данные, которые оказались в моем распоряжении, настолько неточны, что я не могу на их основании сделать какое-либо заключение”. Позднее он еще больше дистанцировался от намерения объяснить в своей работе броуновское движение: “Не зная, что наблюдения над броуновским движением уже давно велись, я открыл, что атомистическая теория приводит к существованию доступного для наблюдения движения взвешенных микроскопических частиц”34.

На первый взгляд, отрицание Эйнштейном того, что его теория описывала броуновское движение, выглядит странным и даже лицемерным. В конце концов, не он ли писал Конраду Габихту за несколько месяцев до этого: “Такие движения взвешенных в жидкости частиц раньше наблюдали физиологи, назвавшие их броуновским молекулярным движением”? Но эта позиция Эйнштейна в таких вопросах была и правильна и важна, поскольку его работа не начиналась с описания экспериментального наблюдения броуновского движения и не завершалась объяснением этих результатов. Скорее, она была продолжением его более раннего подхода – использования статистического анализа для демонстрации видимых проявлений невидимых молекул.

Другими словами, Эйнштейн хотел убедить читателей, что он построил теорию, выведенную из основных принципов и постулатов, а не сконструировал ее на основе анализа экспериментальных данных (по этой же причине в своей статье про кванты света он дал ясно понять, что она возникла не как результат знакомства с экспериментами Филиппа Ленарда по фотоэффекту). Как мы вскоре увидим, это отличие он также подчеркнет, утверждая, что его теория относительности была построена не на основании рассмотрения результатов экспериментов по измерению скорости света и поискам эфира.

Эйнштейн показал, что удар одной молекулы воды не заставит взвешенную частичку пыльцы продвинуться на заметное расстояние. Однако в любой заданный момент времени частицу толкают со всех сторон тысячи молекул. В какой-то момент времени частица получит гораздо больше толчков с одной стороны, а в следующий момент залповые удары обрушатся на другую ее сторону.

В результате частицы будут двигаться, бросаясь из стороны в сторону, как говорят, случайно блуждая. Лучший способ представить себе это – вообразить пьяного, который оттолкнулся от фонарного столба и отправился в путь, но в следующую секунду его бросает в сторону, и он делает один шаг в случайном направлении, и так все время. Он может за два шага – один вперед, а другой назад – вернуться обратно к столбу, а может сделать два шага в одном и том же направлении и уйти от столба на два шага, а может сделать один шаг на запад, а следующий – на северо-восток. При построении графиков обнаруживается одно интересное свойство таких случайных блужданий: среднее квадратичное расстояние пьяницы от столба будет пропорционально корню квадратному из количества шагов или истекших секунд35.

Эйнштейн понял, что невозможно, да и не нужно измерять каждый зигзаг броуновского движения, равно как не нужно измерять и скорость частиц в каждый момент времени. Но расстояния, которые проходят случайно блуждающие частицы, измерить очень просто, поскольку они растут со временем.

Эйнштейн хотел сделать конкретные предсказания для этих расстояний, которые можно было измерить, и использовал и свои теоретические знания, и имеющиеся экспериментальные данные по вязкости и скорости диффузии, получив в результате зависимости средних расстояний, проходимых частицами, от их размера и температуры жидкости. В качестве примера он вычислил, что при температуре 17 °C для взвешенных в воде частиц диаметром в одну тысячную миллиметра “среднее смещение за одну минуту будет равно примерно 6 микронам”.

Это был конкретный результат, который можно было реально проверить, и из него вытекали очень важные следствия. “Если движение, которое здесь обсуждается, действительно можно наблюдать, – писал он – тогда классическую термодинамику уже нельзя считать в строгом смысле справедливой”. Поскольку он был сильнее в теоретических рассуждениях, чем в проведении экспериментов, закончил он призывом к экспериментаторам: “Если бы какому-либо исследователю удалось вскоре ответить на поднятые здесь вопросы, важные для теории теплоты!”[20]20
  Эйнштейн А. О движении взвешенных в покоящейся жидкости частиц, требуемом молекулярно-кинетической теорией теплоты // Собр. науч. трудов: в 4 т. Т. 3.


[Закрыть]
.

Через несколько месяцев немецкий экспериментатор Генри Зидентопф, используя микроскоп с сильным увеличением, подтвердил предсказания Эйнштейна. С практической точки зрения физическая реальность атомов и молекул этим была окончательно доказана. Позже физик-теоретик Макс Борн вспоминал: “В то время атомы и молекулы еще отнюдь не рассматривались в качестве реальных объектов. Я думаю, что эти работы Эйнштейна больше, чем любые другие работы, убедили физиков в реальности атомов и молекул”36.

В качестве маленького бонуса Эйнштейн в своей статье предложил альтернативный метод вычисления числа Авогадро. Абрахам Пайс сказал об этой статье: “Она изобилует идеями, а заключительный вывод о том, что число Авогадро можно определить из наблюдений с помощью обычного микроскопа, каждый раз вызывает чувство восхищения, даже если ты уже читал статью раньше и знаком с ходом рассуждений”.

Мощь интеллекта Эйнштейна была такова, что он мог обдумывать несколько разных идей одновременно. Даже когда он размышлял над пляшущими частицами в жидкости, он одновременно еще и бился над различными теориями, связанными с движением тел и скоростью света. Через пару дней после того, как он отослал в журнал свою статью по броуновскому движению, он устроил новый мозговой штурм в дискуссии со своим другом Мишелем Бессо. Как он и написал Габихту в том же месяце в своем знаменитом письме, из этого получится “модифицированная теория пространства и времени”.


Часовая башня в Берне


Глава шестая
Специальная теория относительности. 1905

История вопроса

Концепция теории относительности проста. Суть ее в том, что фундаментальные законы физики неизменны и не зависят от того, как вы движетесь.

В специальном случае, когда наблюдатель движется с постоянной скоростью, эта концепция представляется естественной. Вообразите себе мужчину, сидящего дома в кресле, и женщину, медленно проплывающую над ним в самолете. Каждый из них может налить чашку кофе, стукнуть по мячу, посветить фонариком, подогреть булочку в микроволновке, и для обоих законы физики будут одними и теми же.

В действительности нет способа определить, кто из них находится “в движении”, а кто “в покое”. Мужчина в кресле может считать, что он находится в покое, а самолет – в движении. И наоборот, женщина в самолете может считать, что она находится в состоянии покоя, а Земля проплывает мимо. Не существует эксперимента, с помощью которого можно установить, кто из них прав.

На самом деле установить точно, кто из них прав, невозможно. В данном случае можно только сказать, что каждый из них движется относительно другого и, естественно, что оба они очень быстро движутся относительно других планет, звезд и галактик[21]21
  Человек, находящийся в состоянии покоя на экваторе, в действительности вращается вместе с Землей со скоростью 1674 км/ч и одновременно с ней вращается вокруг Солнца со скоростью 109 000 км/ч. Когда я говорю, что наблюдатели движутся с постоянной скоростью, я не учитываю изменение их скоростей из-за того, что они находятся на вращающейся и движущейся по орбите планете, поскольку это не влияет на большинство экспериментов. См.: Miller 1999, 25. – Прим. авт.


[Закрыть]
.

Специальная теория относительности, которую Эйнштейн сформулировал в 1905 году, применима только к этому специальному случаю (отсюда и название), то есть к случаю, когда наблюдатели движутся друг относительно друга равномерно и по прямой, то есть с постоянной скоростью. Такие системы называются “инерциальными системами отсчета”1.

Труднее объяснить более общий случай, когда человек ускоряется или движется по криволинейной траектории – например, крутится, тормозит, вообще движется произвольным образом, то есть находится в некоторой форме неравномерного движения. В этом случае у него и кофе наливается не так, и мяч отскакивает по-другому, чем у людей, совершающих эти действия в равномерно и плавно движущемся поезде, самолете или просто на Земле. И как мы увидим, Эйнштейну потребовалось еще десятилетие, чтобы прийти к так называемой общей теории относительности, включившей в теорию гравитации ускоренное движение, и попытаться применить к ней концепцию относительности2.

История теории относительности началась в 1632 году, когда Галилей провозгласил принцип, согласно которому все законы движения и механики (законы электромагнетизма еще не были открыты) остаются одними и теми же во всех системах координат, движущихся с постоянной скоростью друг относительно друга. В своем “Диалоге о двух главнейших системах мира” Галилей хотел защитить идею Коперника о том, что представление о Земле, расположенной в центре Вселенной и находящейся в состоянии покоя, и вращающихся вокруг нее всех остальных телах неправильно. Скептики оспаривали эту точку зрения и говорили, что, если бы Земля двигалась так, как утверждал Коперник, мы бы это почувствовали. Галилей опроверг их доводы, предложив в качестве доказательства провести кристально ясный мысленный эксперимент в каюте плавно плывущего корабля: “Давайте представим себе, что вы с другом заперлись в каюте, расположенной под палубами большого корабля, и вместе с вами там оказалось несколько мух, бабочек и еще каких-нибудь маленьких летающих насекомых. Кроме того, там находится большой сосуд с водой, в котором плавают рыбки. Подвесим бутылку, из которой жидкость капля за каплей вытекает в расположенный под бутылкой широкий сосуд. Когда корабль неподвижен, понаблюдайте внимательно, как маленькие насекомые летают по каюте в разных направлениях с одинаковыми скоростями. Рыбки тоже плавают в разных направлениях с равными скоростями, капли падают прямо в сосуд под бутылкой. И когда вы кидаете какую-либо вещь своему другу, стоящему то по одну, то по другую сторону от вас на одинаковом расстоянии, вам нужно приложить одинаковые усилия, чтобы она долетела до него. Если же вы будете прыгать, отталкиваясь двумя ногами, вы выпрыгнете на одинаковое расстояние в любом направлении. И если вы убедились во всем этом, теперь сделайте так, чтобы корабль плыл с любой заданной вами скоростью, но только равномерно, без качки и рывков. И вы не обнаружите ни малейшей разницы во всех перечисленных явлениях, и ни по одному из этих явлений вы не сможете определить, движется ли корабль или стоит на месте”3.

Лучше принцип относительности нельзя описать – или по крайней мере объяснить, как его применять к системам, движущимся друг относительно друга с постоянной скоростью.

Внутри корабля Галилея можно с легкостью беседовать, поскольку воздух, в котором распространяются звуковые волны, движется плавно вместе с людьми в каюте. Подобным же образом, если один из пассажиров корабля Галилея бросит камешек в сосуд с водой, от места его падения пойдут такие же волны, как если бы этот сосуд стоял на берегу. Это происходит потому, что вода, на поверхности которой распространяются эти волны, плавно движется вместе с сосудом и всем остальным в каюте.

Природа как звуковых волн, так и волн, расходящихся на поверхности воды, легко объясняется с помощью классической механики: это просто перемещающееся колебание некоторой среды. Вот почему звук не может распространяться в вакууме, но может проходить через воздух, воду или металл. Например, в воздухе при комнатной температуре звуковые волны – колебательные возбуждения сжатия-разрежения воздуха – распространяются со скоростью примерно 1260 км/ч.

Внутри корабля Галилея воздух и вода ведут себя так же, как на берегу, потому что воздух в каюте и вода в сосуде движутся с той же скоростью, что и пассажиры. А теперь вообразите, что вы выходите на палубу и рассматриваете волны в океане или же измеряете скорость звуковых волн другого корабля, издающего гудок. Скорость, с которой эти волны приходят к вам, зависит от скорости вашего движения относительно среды (воды или воздуха), в которой они распространяются.

Другими словами, скорость, с которой волны в океане приходят к вам, зависит от того, насколько быстро вы движетесь в направлении источника этих волн или удаляетесь от него. Аналогично, скорость звуковых волн относительно вас зависит от вашего движения относительно воздуха, в котором распространяется эта звуковая волна.

Относительные скорости – ваша и источника – суммируются. Представьте себе, что вы в океане, волны движутся к вам со скоростью 16 км/ч. Если вы вскочите на гидроцикл и направите его на скорости 83 км/ч навстречу волнам, то увидите, что они приближаются к вам и проносятся мимо со скоростью (относительно вас) 99 км/ч. Аналогично, представьте себе, что звук идет к вам из рупора на борту далекого корабля, и в неподвижном воздухе в направлении берега он распространяется со скоростью 1260 км/ч. А если вы вскочите на гидроцикл и помчитесь в направлении этого корабля со скоростью 66 км/ч, звуковые волны будут проноситься мимо вас со скоростью 1326 км/час.

И тогда напрашивается вопрос, который мучил Эйнштейна уже с шестнадцати лет, когда он воображал себя скользящим рядом с лучом света: ведет ли себя свет аналогично?

Ньютон считал, что свет – прежде всего поток частиц, испущенных источником. Но во времена Эйнштейна большинство ученых приняли альтернативную теорию, разработанную современником Ньютона Христианом Гюйгенсом, согласно которой свет нужно считать волной.

К концу XIX века большое количество экспериментов подтвердили правоту волновой теории. Например, Томас Юнг поставил знаменитый эксперимент, который сейчас воспроизводят ученики средней школы и который демонстрирует, что свет, проходящий через две щели, формирует интерференционную картину, напоминающую картину, образованную волнами на поверхности воды, прошедшими через две щели. В обоих случаях горбы и впадины волн, исходящих из каждой щели, встречаясь, в некоторых местах усиливают друг друга, а в других – друг друга гасят.

Джеймс Клерк Максвелл содействовал упрочению этой волновой теории, установив связь между светом, электрическим и магнитным полями. Он вывел уравнения, которые описывали поведение электрических и магнитных полей. Максвелл показал, что эти электромагнитные волны должны распространяться с определенной скоростью – примерно 300 000 км/с [22]22
  Точнее – 299 792 458 м/с в вакууме. Если не оговорено специально что-то иное, под скоростью света понимается скорость света в вакууме, и это относится ко всем электромагнитным волнам, видимым и невидимым. Эта величина, как обнаружил Максвелл, является также и скоростью распространения электрического поля в проводящей проволоке – Прим. авт.


[Закрыть]
. Это совпало со значением, которое ученые уже получили в экспериментах для скорости света, и они поняли, что это не простое совпадение4.

Стало ясно, что свет – это та часть электромагнитного спектра, которая воспринимается нашим зрением. А весь спектр включает радиоволны, которые мы сейчас называем AM[23]23
  На самом деле это обозначение не диапазона длин волн, а способа модуляции – амплитудной (АМ) и частотной (FM). Раньше радиоволны обычно делили по длинам волн на длинные – ДВ (1-10 км), средние – СВ (100 м – 1 км), короткие – КВ (10-100 м) и ультракороткие – УКВ (10 мм – 10 м).


[Закрыть]
(средние и длинные волны радиоволны с длиной волны порядка километра), FM (короткие радиоволны, длина волны порядка метра) и микроволновое излучение (длина волны порядка сантиметра). При уменьшении длины волны (увеличении ее частоты) электромагнитные волны переходят в видимый диапазон, простирающийся от красного (примерно 700 нм) до фиолетового (примерно 400 нм). Еще более короткие волны попадают в диапазон ультрафиолетовых, рентгеновских волн и гамма-лучей. Когда мы говорим о “свете” или “скорости света”, мы имеем в виду не только видимые глазом, а вообще все электромагнитные волны.

И тут возникают важные вопросы. Что это за среда, в которой эти волны распространяются? А их скорость 300 000 км/с – это скорость относительно чего?

Ответ вроде бы напрашивался сам собой: световые волны – это возмущение невидимой среды, которая называется эфиром, и скорость света – это скорость его движения относительно эфира. Другими словами, эфир для света должен играть примерно ту же роль, что и воздух для звуковых волн. Позже Эйнштейн заметил: “Предположение о том, что свет можно представить себе как колебательный процесс в упругой инертной среде, заполняющей все пространство, казалось неоспоримым”5.

К сожалению, этому гипотетическому эфиру пришлось приписать многие странные свойства. Поскольку свет даже от очень удаленных звезд может доходить до Земли, эфир должен был бы заполнять всю известную Вселенную. Он должен был бы накрывать все как паутиной и, образно говоря, быть настолько эфемерным, чтобы не оказывать влияния на движение не только планет, но даже легких пушинок и в то же время быть достаточно упругим, чтобы в нем могли возникать колебания огромной частоты.

Все эти странности привели к тому, что на эфир в конце XIX века была устроена настоящая охота. Если бы свет был действительно рябью в эфире, мы бы увидели, что волны проходят мимо нас с большей скоростью, когда мы двигаемся сквозь эфир в направлении источника излучения. Ученые изобрели всевозможные гениальные устройства и придумали хитроумные схемы экспериментов, позволяющие уловить эту разницу. Они выдвинули массу гипотез того, что может представлять собой эфир. Они искали эфир в виде неподвижной субстанции, через которую движется Земля. Они считали, что часть эфира увлекается Землей и образует что-то вроде пузыря, наподобие того как это происходит с ее атмосферой. Они даже рассмотрели невероятную гипотезу о том, что Земля представляет собой единственный неподвижный относительно эфира объект, а все остальные космические тела, включая другие планеты, Солнце и звезды, вращаются вокруг нее, что, вероятно, заставило Коперника перевернуться в гробу.

Один из экспериментов, про который Эйнштейн позже сказал, что тот “был чрезвычайно важным для специальной теории относительности”6, проделал французский физик Ипполит Физо, попытавшийся измерить скорость света в движущейся среде. Он расщепил луч на два с помощью полупрозрачного посеребренного углового зеркала, которое направляло один из лучей на поток воды в направлении его движения, а другой – в противоположном направлении. Оба луча потом встречались. Если бы свет проходил один из путей за большее время, чем другой, горбы и впадины обеих волн при их встрече уже не должны были совпасть. Экспериментатор, если такое случилось бы, мог бы это заметить по возникшей в этом месте интерференционной картине.

Другой и гораздо более знаменитый эксперимент поставили в 1887 году Альберт Майкельсон и Эдвард Морли. Они сконструировали хитроумную установку, в которой, как и у Физо, световой луч расщеплялся на два, один из лучей направлялся на зеркало в плечо, ориентированное вдоль скорости движения Земли, и там претерпевал несколько отражений, двигаясь по направлению движения Земли и против него, а второй луч – в перпендикулярное плечо, И после того, как оба луча встречались, полученную интерференционную картину (или ее отсутствие) анализировали, чтобы понять, возникает ли разность фаз, то есть больше ли времени требовалось лучу, пролетающему часть пути против предполагаемого эфирного ветра, чем второму лучу, двигавшемуся в перпендикулярном направлении, чтобы долететь до детектора.

Но вне зависимости от того, кто проводил эксперимент, как смотрели и какие делались предположения относительно поведения эфира, никто так и не смог увидеть неуловимую субстанцию. Вне зависимости от того, как и что в эксперименте двигалось, наблюдалась всегда одна и та же скорость света.

И ученые, хотя и не без колебаний, направили свои усилия на разрешение дилеммы: почему, если эфир существует, ни в одном эксперименте его не удается обнаружить. Наиболее известная гипотеза возникла в начале 1890-х годов и принадлежала двум ученым: гениальному космополиту Хендрику Лоренцу, голландскому мэтру теоретической физики, и ирландскому физику Джорджу Фитцджеральду, – независимо друг от друга предположившим, что все твердые тела при движении через эфир слегка сжимаются. Согласно этой гипотезе, сокращение Фитцджеральда – Лоренца укорачивает все, включая длину плеч в опыте Майкельсона – Морли, причем ровно настолько, чтобы влияние эфира на свет невозможно было увидеть.

Эйнштейн чувствовал, что ситуация “стала очень депрессивной”. Как он считал, сами ученые не были в состоянии объяснить электромагнетизм, используя ньютоновский “механистический взгляд на природу”, и это “привело к фундаментальному дуализму, который долго выносить было невозможно”7.


    Ваша оценка произведения:

Популярные книги за неделю