355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Тулио Редже » Этюды о Вселенной » Текст книги (страница 3)
Этюды о Вселенной
  • Текст добавлен: 7 октября 2016, 16:30

Текст книги "Этюды о Вселенной"


Автор книги: Тулио Редже



сообщить о нарушении

Текущая страница: 3 (всего у книги 12 страниц)

До сих пор никто еще не видел этих черных сверхдыр, необъятных и ненасытных, способных разом проглатывать целые солнечные системы; масса их может изменяться в пределах от нескольких миллионов до миллиардов солнечных масс. Одну из галактик скопления в Деве-М87 – отличает неправильное распределение звезд в центральной ее части, что, возможно, связано с необычайно сильным гравитационным притяжением какой-то черной дыры. Да и в центре нашей Галактики находится странный радиоисточник диаметром примерно в один миллиард километров (несколько больше, чем орбита Юпитера), который почти наверняка не является пульсаром, т.е. остатком взрыва сверхновой. Из-за отсутствия оптической видимости нам недостает очень важной информации об этом объекте. Тем не менее одна из наиболее захватывающих гипотез состоит в том, что мы здесь имеем дело с черной дырой, масса которой не превышает пяти миллионов солнечных масс.

Черные дыры превращают массу в энергию

Чтобы вдохнуть жизнь в свои предположения, астрофизики пытаются выяснить, каким образом черные дыры могут себя обнаружить. Оставленные в одиночестве, они даже не излучают свет, поэтому трудно что-либо узнать о них. Однако черная дыра, по-видимому, иногда может быть окружена облаками газа или множеством звезд, которые непрерывно ею захватываются; эти умирающие солнца должны двигаться со скоростями, сравнимыми со скоростью света, они должны быть подвержены сильнейшим приливам и отливам и в конце концов будут раздавлены. Все это выглядит как гигантский фейерверк, равных которому нет в космосе, если, конечно, не считать «большой взрыв». Более того, черная дыра должна очень эффективно превращать вещество в энергию в соответствии со знаменитой формулой E = mc2. в термоядерных реакциях удается превратить в энергию не более 0,8% всей массы; в черной дыре эта цифра могла бы достичь 30...40%. Этим необыкновенно большим энерговыделением можно объяснить поразительные явления, происходящие в галактиках, а также мощнейшее излучение некоторых квазаров. Несколько миллионов лет назад упомянутая выше галактика М87 выбросила в четко определенном направлении большое количество вещества, что могло быть вызвано наличием в ее центре черной дыры. Радиоисточник ЗС236 имеет две гигантские лопасти общей длиной, достигающей почти 20 млн. световых лет, что делает его самым протяженным объектом, который когда-либо наблюдал человек. Для таких колоссальных выбросов вещества необходимо также невообразимое количество энергии, какое не способны обеспечить обычные термоядерные реакции.

Другой объект, названный АО 0235+164 (это название придумано вовсе не Итало Кальвино, как может показаться), за несколько недель стал в десять тысяч раз ярче всей нашей Галактики.

Разумеется, такое разбазаривание энергии не может продолжаться долго. Разглядывая с помощью наших телескопов миры на расстояниях в миллиарды световых лет, мы находим множество сверхъярких объектов-квазаров, хотя столь же удаленные от нас галактики мы увидеть не можем, так как они светятся слишком слабо. Излучение квазаров исходит из очень маленькой (по космическим масштабам) центральной зоны и имеет характеристики, которые непрерывно меняются, как, например, в случае уже рассмотренного источника АО 0235+164. Общепринятое объяснение этого состоит как раз в том, что мы имеем дело с галактическими ядрами, содержащими черные дыры в активной стадии. Продолжительность жизни этих объектов невелика: меньше чем за 100 млн. лет они угасают, и жизнь галактики вновь возвращается в нормальное русло.

Это происходит, когда черная дыра «съедает» все окружающее ее вещество, создавая тем самым пустоту вокруг себя. в ближайшие годы ожидается такое накопление сведений о квазарах, что мы сможем описать их жизнь, а следовательно, и жизнь галактик во всех деталях. Новые данные, полученные с помощью телескопа «Эйнштейн», чувствительного к рентгеновскому излучению, говорят о том, что это «жизнеописание» находится еще только в начальной стадии. на современном уровне знаний о галактиках мы не можем пока ответить на все более настойчивые вопросы, касающиеся происхождения и структуры Вселенной.

6. Гравитационные линзы

Масштабы космоса действительно грандиозны по сравнению с масштабами человеческими: достаточно оглянуться, чтобы увидеть рассыпанные на расстояниях в несколько миллиардов световых лет друг от друга совершенно необычные объекты. Конечно, выбор объекта исследования зависит от личного вкуса, но надо признать, что квазары представляют исключительный интерес. Ниже мы подробно расскажем еще об одном явлении, известном с 1929 г.: все галактики летят прочь от нас со скоростями, пропорциональными расстояниям до них (закон Хаббла), т.е. Вселенная расширяется.

Квазары

Ученые обнаружили такие космические объекты, которые разлетаются с громадными скоростями, достигающими девяти десятых скорости света. Согласно закону Хаббла, это должны быть объекты, удаленные на десяток миллиардов световых лет и, следовательно, чрезвычайно яркие, раз их можно наблюдать с Земли. Эти источники энергии должны иметь ограниченные размеры, небольшие по сравнению с размерами галактик (отсюда и название «квазар» – квазизвездный объект), поскольку наблюдаются очень быстрые (в течение нескольких недель) изменения интенсивности их излучения. Широко распространено мнение, что мы здесь имеем дело с различными стадиями эволюции нормальной галактики; появление черной дыры в ее центральной части привело бы к превращению вещества в энергию с чрезвычайно высокой эффективностью по сравнению с обычными термоядерными реакциями, происходящими в звездах.

Результатом этого было бы появление космической вспышки малой длительности (меньше 100 млн. лет), но огромной интенсивности и, следовательно, видимой на очень далеких расстояниях. Некоторые астрофизики, в том числе Арп, не согласны с таким подходом и считают, что можно поставить под сомнение само соотношение Хаббла, связывающее скорости разлетания космических объектов с расстояниями между ними. Правда, такая точка зрения не является общепринятой.

Эффект линзы

На этом сюрпризы, связанные с квазарами, не кончаются. в 1979 г. Уолш, Карсуэлл и Вейманн, изучая двойной квазар 0957+561 с двумя составляющими а и В, обнаружили, что их спектры излучения и скорости удаления одинаковы. Таким образом, речь шла не о случайном выстраивании в одну линию изображений двух объектов. Согласно одной захватывающей гипотезе, мы здесь имеем дело с двойным, а может быть, и с тройным изображением одного и того же объекта. Раздвоение изображения, по-видимому, вызвано тем, что между нами и квазаром расположена галактика большой массы. Действительно, как уже говорилось ранее, в 1919 г. английские ученые обнаружили, что свет звезд, проходя рядом с Солнцем, слегка отклоняется за счет притяжения светила. Гравитационное поле Солнца ведет себя как гигантская линза диаметром в несколько миллионов километров. Именно этот эффект, предсказанный общей теорией относительности Эйнштейна, принес ученому всеобщую известность и в течение длительного времени представлял собой единственное экспериментальное подтверждение теории. Наш квазар 0957+561 выявил существование гравитационных линз космических масштабов. Согласно Юнгу, Гунну Кристиану, Оке и Вестфалу, на пути между нами и квазаром находится скопление галактик, которое ведет себя как гравитационная линза; аберрация этой линзы и приводит к раздвоению изображения. в настоящее время осуществляются очень сложные и точные эксперименты, результаты которых позволят прояснить детали двойного изображения, а следовательно, и формы галактической линзы.

Другие наблюдательные данные о галактических линзах

Впоследствии в подтверждение описанных результатов было получено известие об открытии еще одной галактической линзы, расположенной на пути к квазару 1115+080 и со всей очевидностью приводящей к наличию тройного изображения этого квазара.

Объекты такого рода представляют дальнейшее подтверждение теории относительности, если вообще в этом существует необходимость. Теория предсказывает, что количество изображений должно быть нечетным; и действительно, третье изображение, хотя и очень слабое, появляется на некоторых снимках квазара 0957+561, полученных с помощью большого радиотелескопа в Нью-Мексико. Более того, изображение квазара 1115+080, по всей видимости, является пятикратным. Согласно исследованиям группы Юнга, наличие многократных изображений может позволить провести новое измерение хаббловской константы расширения Вселенной, величина которой неоднократно пересматривалась и в настоящее время все еще является предметом дискуссий и полемики.

Если наши представления соответствуют действительности, то галактическая линза должна иметь колоссальные размеры, ее диаметр должен превышать миллионы световых лет, а в образование такой линзы должны давать вклад гравитационные поля целого скопления галактик. Мы находимся в преддверии новой эпохи в астрофизике, когда сведения о далеких галактиках будут получены путем исследования влияния их гравитации на свет, идущий от еще более далеких объектов, расположенных на одной с ними линии. Примерно десять миллиардов галактик можно наблюдать (во всяком случае, в принципе) в космосе; любой очень далеко расположенный квазар так или иначе оказывается на одной прямой с какой-нибудь более близкой к нам галактикой, которая искажает его изображение. до сих пор мы имели дело только с двумя крайними случаями таких искажений; наверняка существуют и другие искажения, которые еще не распознаны. Присутствие галактик искажает изображения далеких объектов, и наиболее удаленные области Вселенной выглядят деформированными, как дно горного потока. Относительность неизменно готовит нам все новые и новые сюрпризы.

7. Введение в космологию

Глубина и богатство содержания общей теории относительности проявляются в наибольшей мере, когда теория гравитации Эйнштейна используется для изучения явлений космических масштабов. в этом смысле общая теория относительности в громадной степени стимулировала развитие космологии.

Космические масштабы

Сколь велика Вселенная? на этот вопрос, который мне задают очень часто, трудно дать удовлетворительный ответ в нескольких словах. Ведь невозможно подступиться к важным темам современной космологии, не имея четкого представления хотя бы в общих чертах о размерах Вселенной и тех объектов, которые ее заполняют. Иногда удается объясниться, используя так называемую десятитысячную шкалу. Речь идет о последовательности объектов или расстояний, каждый из которых в десять тысяч раз больше предыдущего, причем отсчет начинается с размеров привычных, человеческих, и доходит до размеров Вселенной.

Итак, для начала возьмем характерный размер – высоту потолка, которую положим равной четырем метрам; затем умножим ее на десять тысяч и выйдем при этом в стратосферу (40 км). Следующий шаг приведет нас на Луну (400000 км), а умножив еще один раз на десять тысяч, мы попадем на границу Солнечной системы, удаленную на 4 млрд. км, т.е. на расстояние, которое свет пройдет за четыре часа. Мы уже находимся на четвертой ступени, соответствующей пределу, которого достигали автоматические станции, посланные с Земли. Следующий шаг катапультирует нас прямо к Альфе Центавра – ближайшей к нам звезде, удаленной на расстояние в 40000 млрд. км. Теперь уже один километр оказывается смехотворно маленьким, и в качестве единицы измерения используется световой год, который, как мы говорили выше, немногим меньше 10000 млрд. км, Альфа Центавра находится как раз на расстоянии 4,3 светового года, и таково типичное расстояние между звездами, расположенными вблизи Солнца.

Шестая ступенька приведет нас в недра Галактики – громадной линзообразной массы, заполненной сотнями миллиардов звезд. Солнце, которое находится на периферии, отдалено от центра Галактики чуть меньше чем на 40000 световых лет. Следующий шаг отнесет нас на расстояние в 400 млн. световых лет; при этом звезды уже заведомо слишком малы, чтобы быть видимыми с Земли, и Вселенная кажется нам равномерно заполненной миллиардами галактик, расстояния между которыми в среднем равны нескольким миллионам световых лет. Дальше продвигаться мы не можем: согласно представлениям современной космологии и имеющимся наблюдательным данным, невозможно увидеть объекты, отдаленные на расстояния, большие, чем примерно 12 млрд. световых лет. Таким образом, нам не хватило до последней ступеньки всего лишь множителя, равного 30.

В своей исчерпывающей, но, к сожалению, адресованной лишь специалистам книге, посвященной гравитации и космологии, известный физик Стив Вайнберг отмечает, что современная наука берет начало с открытия того, что Земля не является центром Вселенной. После проведенного здесь обсуждения, даже если философы и специалисты по истории науки будут нам возражать, мы сможем без труда согласиться с этим по причинам, о которых я не решаюсь говорить раньше времени. Во всяком случае развенчание нашей планеты явилось и началом современной космологии: оно породило космологический принцип.

Космологический принцип

Этот принцип утверждает, что в среднем Вселенная выглядит одинаково, в каком бы месте она ни рассматривалась.

Слова «в среднем» означают, что мы должны исследовать область Вселенной с диаметром порядка нескольких миллионов световых лет, что соответствует последнему отсчету нашей шкалы. Насколько можно судить, все имеющиеся наблюдательные данные согласуются с такой рабочей гипотезой. Космологический принцип необходим также и по менее благородным причинам: без него было бы почти невозможно решить сложнейшие уравнения поля Эйнштейна, которые описывают эволюцию Вселенной.

Биография космологического принципа поучительна, и ее стоит рассказать. в 1744 г. швейцарский астроном де Шезо и независимо от него в 1826 г. Ольберс сформулировали следующий парадокс, который привел к кризису тогдашних наивных космологических моделей. Представим себе, что пространство вокруг Земли бесконечно, вечно и неизменно и что оно равномерно заполнено звездами, причем их плотность в среднем постоянна. с помощью несложных вычислений Шезо и Ольберс показали, что полное количество света, посылаемое на Землю звездами, должно быть бесконечным, из-за чего ночное небо будет не черным, а, мягко говоря, залито светом. Чтобы избавиться от своего парадокса, они предположили существование в космосе обширных блуждающих непрозрачных туманностей, заслоняющих наиболее отдаленные звезды. на самом деле так выйти из положения нельзя: поглощая свет от звезд, туманности поневоле нагревались бы и сами излучали свет так же, как и звезды.

Итак, если справедлив космологический принцип, то мы не можем принять идею Аристотеля о вечной и не изменяющейся Вселенной. Здесь, как и в случае относительности, природа, похоже, предпочитает в своем развитии симметрию, а не мнимое аристотелево совершенство.

Возведение американским астрономом-меценатом Хейлом больших телескопов в обсерваториях Маунт-Вилсон и Паломар привело к целой серии ключевых с точки зрения современной космологии открытий. Прежде всего выяснилось, что при обсуждении парадокса Ольберса речь должна идти о галактиках, а не об отдельных звездах; кроме того, была установлена шкала расстояний в пространстве, о которой я уже рассказывал в несколько свободном стиле. Столь же важным оказалось признание того, что Вселенная непрерывно изменяется, являясь ареной внушительных эволюционных явлений, а также введение правильной шкалы времени для процессов, там происходящих.

Было установлено, что звезды обретают свою энергию, превращая водород в более тяжелые элементы с помощью серии сложных термоядерных реакций. Это не может происходить бесконечно; когда горючего не остается, каждая звезда гаснет, переживая по-своему более или менее бурный конец. Такая звезда, как наше Солнце, живет в среднем около десятка миллиардов лет.

Расширение Вселенной

Длинная цепь открытий увенчалась в высшей степени важным событием в 1929 г., когда Хаббл обнаружил, что в космосе «все разбегается». Согласно Хабблу да и большинству современных астрофизиков, галактики разбегаются со скоростями, пропорциональными расстояниям до них. Галактика, находящаяся на расстоянии 100 млн. световых лет, удаляется от нас со скоростью порядка 2000 км/с; если расстояние до галактики в два раза больше, то и скорость удаления удваивается, и т.д. Вселенная расширяется, следовательно, она не является неизменной. Речь идет о глобальном космическом явлении, имеющем огромные масштабы, такие, что сами галактики уже кажутся всего лишь пылинками.

Прокручивая ретроспективно киноленту о жизни Вселенной, мы могли бы увидеть, что было время, а именно около 15...20 млрд. лет тому назад, когда все галактики были собраны вместе в одной точке. Разумеется, к такой оценке нужно относиться с осторожностью и представлять, что она справедлива только по порядку величины. Во-первых, гравитационное притяжение непрерывно замедляет движение галактик; во-вторых, почти наверняка галактики сами образовались лишь примерно через миллиард другой лет после начала расширения. Но остается фактом, что Вселенная когда-то начинала свое развитие, будучи намного более плотной и занимая область намного меньшую, чем в настоящее время; ее эволюцию можно сравнить разве что с гигантским взрывом глобального масштаба – с так называемым «большим взрывом». Примечательно, что указанный масштаб времени в общем согласуется с результатами, полученными при исследовании эволюции звезд.

Как уже говорилось, чем дальше находятся участки Вселенной, тем быстрее они от нас удаляются; галактики представляются нам такими, какими они были в далеком прошлом, поскольку свету, идущему от них, требуется время, чтобы до нас дойти. Таким образом, большие телескопы совершают, кроме всего прочего, путешествие в прошлое. Наблюдая все более далекие объекты, мы видим, как они разлетаются со скоростями, которые все ближе и ближе к непреодолимому барьеру – скорости света. Существуют квазары – объекты, крайне яркие и видимые на громадных расстояниях, – которые удаляются со скоростями в 285000 км/с, что лишь немного меньше скорости света, равной 300000 км/с.

Если бы мы могли увидеть какие-нибудь объекты, «приставленные к стенке скорости света», то они бы выглядели так же, как у истоков Вселенной. Но не все объекты, содержащиеся во Вселенной, можно будет когда-нибудь увидеть (вот выход из парадокса Ольберса!); свет от объектов, расположенных дальше определенного расстояния, так и не успевает дойти до нас, и они навсегда остаются скрытыми от наших взоров, так же как слишком далекое здание на поверхности Земли скрыто за горизонтом.

Но, если все галактики удаляются от нашей, не означает ли это, что Земля – центр Вселенной?

Ответ по-прежнему отрицательный. Расстояния между любыми галактиками увеличиваются со скоростями, пропорциональными самим расстояниям, и человек, оказавшийся случайно в пределах другой галактики, обнаружит справедливость того же закона Хаббла. При этом его горизонт окажется смещенным, и он сможет увидеть то, что скрыто от нас, в то время как другие объекты, видимые с Земли, будут скрыты от него.

Искривление Вселенной

Общая теория относительности, созданная Эйнштейном в 1916 г., просто и естественно учитывает механизм «большого взрыва». в этой теории присутствие вещества приводит к изменению геометрии пространства на космическом уровне. до сих пор из-за нехватки наблюдательных данных эти изменения не могут быть оценены в полной мере; в частности, пока нет достаточно точных данных о полном количестве вещества во Вселенной. Согласно модели (называемой моделью Фридмана), которую предпочитал Эйнштейн, Вселенная содержит достаточно вещества, чтобы быть искривленной настолько, что она замыкается на саму себя, как, например, воздушный шарик. Если надувать такой шарик, то любая картинка, нарисованная на его поверхности, увеличивается в размере, сохраняя при этом те же пропорции между своими частями. Каким-нибудь муравьям, живущим в таком мире, покажется, что они друг от друга удаляются, но ни один из них не будет иметь достаточного основания считать себя центром Вселенной. Согласно представлениям этой модели, расширение Вселенной должно прекратиться примерно через 40 млрд. лет, после чего должно начаться сжатие, в результате чего еще через 100 млрд. лет Вселенная снова окажется в состоянии большой плотности.

Основная трудность, которая встречается при объяснении модели Фридмана, возникает при определении того, что собой представляет внутренний объем воздушного шарика. в нашем мире можно передвигаться вдоль трех направлений: север – юг, запад – восток, вверх – вниз; в мире, который расположен на поверхности воздушного шарика, остаются только первые два. Третье направление (измерение) используется здесь для обозначения кривизны и носит, таким образом, лишь методический характер. Поэтому, хотя наша Вселенная также имеет кривизну, но необходимость введения каких-либо измерений, кроме привычных трех, существует лишь с методической или математической точек зрения; как учили Гаусс и Риман, нет смысла покидать наш мир, чтобы познавать его свойства.

Вслед за началом

Какой же была Вселенная в момент своего рождения? Наш вопрос имеет смысл, только если он относится к мгновению, следующему непосредственно за началом, т.е. к моменту времени, когда применение физических законов становится уже разумным. Спустя всего одну сотую секунды после начала космос занимал гораздо меньший объем, чем теперь, и был заполнен сжатым веществом при температуре в миллиарды градусов с плотностью в триллионы раз выше, чем плотность воды. в этих условиях не могли существовать ни ядра, ни тем более атомы, которые были бы разрушены бурным тепловым движением. Расширение Вселенной происходило с очень большой скоростью.

Через несколько минут расширение Вселенной и ее охлаждение достигли такой степени, что стало возможным образование атомных ядер. Спустя еще миллион лет температура упала ниже трех тысяч градусов, и началось образование атомов. Бросив взгляд вокруг себя в ту эпоху, мы увидели бы пространство, заполненное облаком из раскаленных газов и ослепляющим светом. Еще через миллиард лет началось образование галактик, звезд и стабильного вещества в современном виде.

Свет, излученный первоначальным газовым облаком, все еще бродит во Вселенной; претерпев сильные изменения при расширении Хаббла, он сейчас заметен только в виде микроволнового фона (так называемого «реликтового излучения»). Это самое древнее из всех известных свидетельств истории нашей Вселенной. Оно было обнаружено двумя астрофизиками из лаборатории фирмы «Белл телефон» Пензиасом и Уилсоном, удостоенными за свое открытие Нобелевской премии в 1978 г.

Мы подошли к последнему вопросу: какова научная достоверность теории «большого взрыва»? Разумеется, не может быть полной уверенности в выводах, сделанных на границе человеческих знаний и основанных на рискованных экстраполяциях. Но в самых общих чертах теория «большого взрыва» кажется вполне справедливой, и уж наверняка она представляет собой наилучшую из имеющихся в настоящее время рабочих гипотез. Во всяком случае, панорама, которую открывает нам эта теория, грандиозна и поистине захватывающа.

8. Большой взрыв

Сейчас мы снова, но уже более углубленно обсудим ряд вопросов, которые были затронуты ранее, в частности теорию «большого взрыва».

Парадокс Ольберса

Мы уже говорили о том возражении, которое выдвинули де Шезо и Ольберс против представлений начинавшей зарождаться космологии. в то время считалось, что космическое пространство бесконечно, равномерно заполнено звездами и в таком состоянии пребывает вечно. Де Шезо и Ольберс исходили из всем известного факта, что небо темнеет, когда заходит солнце.

Логика их рассуждений не меняется, если допустить, что все звезды имеют одинаковую светимость. Представим теперь, что окружающее нас пространство разделено на концентрические сферические слои одинаковой толщины. Объем одного такого слоя равен произведению его толщины на площадь его поверхности, и, следовательно, количество звезд, находящихся в одном слое, в среднем пропорционально площади его поверхности, т.е. квадрату его радиуса. Поэтому если мы удвоим радиус какого-либо сферического слоя, то обнаружим в нем вчетверо больше звезд, каждая из которых, находясь уже на расстоянии вдвое большем, чем прежде, светится вчетверо слабее. Таким образом, яркость света, дошедшего до нас, останется прежней. Более того, существует бесконечное число таких сферических слоев, и от каждого до нас доходит свет одинаковой яркости. Если продолжить наши рассуждения, придется сделать вывод, что мы можем получать сколь угодно большое количество света, и небо должно нам казаться бесконечно ярким! Даже при наличии в космосе непрозрачной пыли положение не изменится: поглощая свет от звезд, пыль нагревалась бы и сама излучала свет.

Таким образом, либо Вселенная не является бесконечной, либо она не вечна и изменяется со временем, либо, наконец, несправедлив космологический принцип, т.е. звезды распределены неравномерно. Утверждение, что Вселенная не изменяется во времени, во всяком случае, заведомо неверно: любая звезда получает свою энергию от термоядерного источника, который хотя и очень мощный, но все же не является неисчерпаемым; так, Солнце светит в течение более 5 млрд. лет и будет еще светить не более 10 млрд. лет. Мы еще не знаем, бесконечна ли Вселенная; ответ на этот вопрос зависит от результатов очень тонких наблюдений за галактиками. Тем не менее общепринятое мнение таково: в какой-то степени пересмотренный космологический принцип (место звезд займут галактики) должен быть сохранен.

Закон Хаббла

Самый серьезный удар незыблемости Вселенной был нанесен не теорией эволюции звезд, а результатами измерений скоростей удаления галактик, полученными Хабблом. Чтобы по достоинству оценить результат Хаббла, нужно помнить, что звезды не рассеяны во Вселенной равномерно: они, наоборот, сгруппированы в отдельные «острова» – галактики, каждая из которых включает в себя в среднем более 100 млрд. звезд, а также межзвездный газ и межзвездную пыль; галактики в большинстве своем имеют «правильную» форму спирали или эллипса, при этом диаметр галактики может достигать и даже превосходить 100000 световых лет. Млечный путь как раз представляет собой одну такую галактику, ту самую «Галактику», которая включает в себя в качестве незначительной периферийной звезды и наше Солнце.

В действительно космическом масштабе мы имеем дело уже не со звездами, а с галактиками как отдельными объектами, расстояния до которых измеряются миллионами световых лет.

Итак, Хаббл в результате целой серии кропотливых измерений обнаружил, что любая галактика удаляется от нас в среднем со скоростью, пропорциональной расстоянию до нее, с коэффициентом пропорциональности, равным примерно 20 км/с на миллион световых лет. Например, галактика, находящаяся на расстоянии в 100 млн. световых лет, удаляется от нас со скоростью 2000 км/с. Как уже говорилось, обнаружены квазары, которые удаляются от нас со скоростью 285000 км/с и которые, следовательно, находятся на расстояниях порядка 10 млрд. световых лет.

Открытие Хаббла окончательно разрушило существовавшее со времен Аристотеля представление о статичной, незыблемой Вселенной, уже, впрочем, ранее получившее сильный удар при открытии эволюции звезд. Значит, галактики вовсе не являются космическими фонарями, подвешенными на одинаковых расстояниях друг от друга для утверждения сил небесных, и, более того, раз они удаляются, то когда-то в прошлом они должны были быть ближе к нам.

Удаляясь со скоростью 20 км/с, галактика проходит примерно 600 млн. км за год, или 60 световых лет за миллион лет; на то, чтобы преодолеть (при постоянной скорости) тот миллион световых лет, который нас разделяет, ей, по-видимому, понадобилось несколько меньше, чем 20 млрд. лет. Следовательно, около 20 млрд. лет тому назад все галактики, судя по всему, были сосредоточены в одной точке, поскольку (согласно закону Хаббла) галактики, которые находятся на расстояниях в десять раз больше других, имеют в десять же раз большую скорость; следовательно, время удаления одинаково для всех галактик.

Интуитивные модели расширения Вселенной

Можно подойти к вопросу о хаббловском расширении космоса, используя более привычные, интуитивные образы. Например, представим себе солдат, выстроенных на какой-нибудь площади с интервалом 1 м. Пусть затем подается команда раздвинуть за одну минуту ряды так, чтобы этот интервал увеличился до 2 м. Каким бы образом команда ни выполнялась, относительная скорость двух рядом стоявших солдат будет равна 1 м/мин, а относительная скорость двух солдат, стоявших друг от друга на расстоянии 100 м, будет 100 м/мин, если учесть, что расстояние между ними увеличится от 100 до 200 м. Таким образом, скорость взаимного удаления пропорциональна расстоянию. Отметим, что после расширения рядов остается справедливым космологический принцип: «галактики-солдаты» по-прежнему распределены равномерно, и сохраняются те же пропорции между различными взаимными расстояниями.

Единственный недостаток нашего сравнения заключается в том, что на практике один из солдат все время стоит неподвижно в центре площади, в то время как остальные разбегаются со скоростями тем большими, чем больше расстояния от них до центра. в космосе же нет верстовых столбов, относительно которых можно было бы провести абсолютные измерения скорости; такой возможности мы лишены теорией относительности: каждый может сравнивать свое движение только с движением рядом идущих, и при этом ему будет казаться, что они от него убегают.

Мы видим, таким образом, что закон Хаббла обеспечивает неизменность космологического принципа во все времена, и это утверждает нас в мнении, что как закон, так и сам принцип действительно справедливы.

Другим примером интуитивного образа может служить взрыв бомбы; в этом случае чем быстрее летит осколок, тем дальше он улетит. Спустя мгновение после самого взрыва мы видим, что осколки распределены в соответствии с законом Хаббла, т.е. их скорости пропорциональны расстояниям до них. Здесь, однако, нарушается космологический принцип, поскольку если мы отойдем достаточно далеко от места взрыва, то никаких осколков не увидим. Этим образом подсказан самый знаменитый в современной космологии термин «большой взрыв» (the big bang). Согласно этим представлениям, около 20 млрд. лет тому назад все вещество Вселенной было собрано в одной точке, из которой началось стремительное расширение Вселенной до современных размеров.


    Ваша оценка произведения:

Популярные книги за неделю