355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Тулио Редже » Этюды о Вселенной » Текст книги (страница 10)
Этюды о Вселенной
  • Текст добавлен: 7 октября 2016, 16:30

Текст книги "Этюды о Вселенной"


Автор книги: Тулио Редже



сообщить о нарушении

Текущая страница: 10 (всего у книги 12 страниц)

До сих пор мы считали, что имеем дело с гелием, состоящим из бозонов, т.е. с He4. Существует, однако, изотоп гелия, He3, ядро которого содержит только один нейтрон и поэтому является фермионом. Следовательно, и атом He3 тоже представляет собой фермион, что вносит глубокие изменения в свойства жидкости при низкой температуре. Жидкий He3 не затвердевает по той же причине, что и He4. При температурах в тысячные доли градуса Кельвина два атома He3 объединяются, образуя так называемую «пару Купера», которая в некотором смысле играет ту же роль, что и атом He4; действительно, мы снова имеем бозон, и снова наблюдаются сложные явления сверхтекучести, на которых мы не можем более задерживаться. Физики считают, что в ядерном веществе нуклоны аналогичным образом собираются в куперовские пары, что также приводит к явлениям сверхтекучести.

9. Сверхпроводимость

Открытие сверхпроводимости

В начале века «столицей холода» был Лейден, приятный голландский городок, имеющий давнюю традицию научных исследований.

В криогенной лаборатории Лейдена, ставшей впоследствии знаменитой, пионер техники охлаждения Камерлинг-Оннес сумел в 1908 г. впервые получить жидкий гелий. в последующие годы он же продолжал исследовать влияние глубокого холода на различные материалы.

При очень низких температурах принято отсчитывать градусы Цельсия от абсолютного нуля (–273,13°С). Напомним, что при абсолютном нуле (наименьшая из возможных температур) вещество имеет минимальную энергию и тепловое движение прекращается.

Охлаждение медной проволоки приводит к уменьшению ее сопротивления, следовательно, медь, как, впрочем, и любой другой металл, может быть использована в качестве термометра, если известно, как именно меняется ее сопротивление с температурой.

В 1911 г. Камерлинг-Оннес как раз делал попытку использовать для таких целей проволоку из свинца, когда очередное охлаждение привело к полному исчезновению ее электрического сопротивления. Так была открыта сверхпроводимость, которая наблюдается во многих металлах и сплавах (но, как это ни парадоксально, не в меди и серебре, являющимися наилучшими проводниками при обычных температурах). Однако только в 1957 г. Бардин, Купер и Шрифер сумели дать удовлетворительное объяснение явлению сверхпроводимости, построив теорию, носящую их имя (теория БКШ).

Механизм проводимости

Прежде чем углубляться в теорию БКШ, следует разобраться в механизме обычной проводимости. Вспомним, что вещество состоит из атомов, содержащих тяжелое положительно заряженное центральное ядро, притягивающее отрицательно заряженные электроны.

Связанные ядро и электроны образуют единое нейтральное целое. Те электроны, которые последними пристраиваются к ядру, находят его в большой степени нейтрализованным теми, что прибыли раньше. Следовательно, внешние электроны слабее связаны с ядром, и поэтому два атома, оказавшись поблизости друг от друга, могут с легкостью обменяться ими; так возникают межатомные силы и химические валентности.

Межатомные силы в металле заставляют атомы выстраиваться в упорядоченные и компактные ряды, формируя решетку (называемую кристаллической). Такие решетки часто обладают поразительной симметрией.

В металле периферические электроны легко мигрируют от одного атома к другому. Эти электроны на самом деле не принадлежат больше определенному атому и образуют море отрицательных зарядов, способных свободно передвигаться через металл. Атомы образуют положительный фон, обеспечивающий нейтральность металла как целого.

Если приложить разность потенциалов к свинцовой проволоке, например присоединив ее к батарейке, то электроны (отрицательные) начнут двигаться в сторону положительного конца, к которому они будут притягиваться. Батарейка будет гнать их от отрицательного конца цепи к положительному, пока не истощится. в этом случае говорят, что батарейка создает ток в цепи. Таким образом, батарейка представляет собой «насос», качающий электроны вдоль проволоки – «трубы».

Почему же действие батарейки не приводит к непрерывному ускорению движения электронов? в действительности атомы в кристаллической решетке металла выстроены не идеально, и в металле имеются многочисленные дефекты, при соударениях с которыми электроны теряют свою энергию, передавая ее кристаллической решетке.

Колебания решетки проявляются в виде тепла; это как раз то тепло, которое создается электрическим током, заставляющим светиться нити лампочек,. и используемое во множестве технических приложений. в отличие от проводника электроны в изоляторе крепко связаны с атомами и не могут свободно перемещаться и переносить электричество.

Механизм сверхпроводимости

Что же происходит в сверхпроводнике? Полный ответ на этот вопрос длинен и сложен. Обычно два электрона в пустоте отталкиваются, но в металле положительные заряды ядер экранируют отрицательные заряды электронов, и отталкивание может почти полностью исчезнуть. Во многих случаях экранировка оказывается неполной, и тогда сверхпроводимость не наблюдается.

В некоторых случаях решетка сжимается вокруг электрона, создавая таким образом облако положительных зарядов, обволакивающее этот электрон и притягивающее другие электроны. Результатом является возникновение незначительного притяжения между электронами. Поскольку это притяжение слабое, оно приводит всего лишь к тому, что электроны передвигаются парами («куперовские пары», упомянутые выше); таким образом, возникает связь, подобная химической, но в тысячи раз слабее. Следовательно, куперовская пара подобна молекуле «двухэлектрона», а переход в состояние сверхпроводимости можно считать превращением электронного газа в газ, состоящий из таких «молекул». Аналогичное явление встречается в химии: так, если нагреть двухатомный кислород, он распадается на одиночные атомы, способные вновь объединиться при охлаждении.

Электронный газ, движущийся в металле, конденсируется в жидкость из куперовских пар, которую мы и будем называть «конденсатом». Радиус такой пары равен примерно 300 Ǻ (1000 Ǻ (ангстрем) = 1/100000 мм), что намного больше расстояния между соседними атомами (несколько ангстрем). в море, состоящем из куперовских пар, трудно представить себе рябь или волны, длина которых была бы меньше самих пар. Поэтому неоднородности решетки с размерами не больше десятка ангстрем не представляют собой препятствия для течения конденсата, и потери энергии не происходит. Такова основная причина возникновения сверхпроводимости.

Конденсация БКШ, однако, не исключает полностью взаимодействия между парами электронов и кристаллической решеткой; такое взаимодействие, естественно, требует выплаты «энергетического штрафа». Действительно, при сообщении электронной паре энергии, достаточной, чтобы ее разбить, электроны могут воспользоваться присутствием решетки и передать ей тепло. Такой эффект наблюдается при температурах выше температуры сверхпроводящего перехода (несколько градусов Кельвина), а подогреть проволоку можно, например увеличивая силу тока в ней. Конденсат обычно движется без столкновений, но при увеличении скорости его движения наступает момент, когда пара может всю свою энергию использовать, чтобы разорвать связь, и тут же почувствует, что существуют препятствия. Тогда сверхпроводимость исчезает.

По этой причине практическая польза сверхпроводимости всегда ограничивалась умеренной величиной максимального допустимого тока; только недавно были открыты сплавы на основе ниобия, проводящие очень высокие токи и позволяющие, следовательно, получить чрезвычайно высокие магнитные поля.

Эффекты Мейснера-Оксенфельда

Исключительная подвижность зарядов в сверхпроводнике приводит к поразительным явлениям. Металл, естественно, экранирует любое электрическое поле, поскольку заряды в нем располагаются так, чтобы сохранить общую нейтральность вещества.

Большего внимания заслуживает эффект Мейснера-Оксенфельда. Если поместить сверхпроводник во внешнее магнитное поле, то оно немедленно вызовет появление постоянных токов на поверхности металла, препятствующих проникновению самого магнитного поля внутрь этого металла, т.е. сверхпроводник служит идеальной «диамагнитной» средой – он идеально экранирует магнитное поле. Экранирование эффективно только до критического значения магнитного поля; при дальнейшем увеличении поля токи, вызванные им, оказываются слишком большими, поле проникает в вещество, разваливает куперовские пары и разрушает сверхпроводимость.

Этот диамагнетизм вызывает любопытные эффекты; если бы мы надели на руку сверхпроводящую перчатку, то могли бы «почувствовать» и «схватить» силовые линии магнитного поля так же, как пучок спагетти. с «точки зрения сверхпроводника» магнит – это твердый предмет, из которого торчит огромный пучок упругих силовых линий. Если магнит поместить, например, в сверхпроводящую чашу, то он будет висеть в воздухе, поддерживаемый своим собственным магнитным полем.

В сверхпроводящем кольце ток может циркулировать бесконечно; эксперименты позволяют сделать вывод, что даже в течение ста тысяч лет неоднократные повторные измерения тока с помощью какого-либо из наиболее чувствительных способов не обнаружили бы никаких изменении тока. Здесь мы имеем, следовательно, нечто подобное вечному двигателю, благодаря которому заряд может вращаться по кругу без необходимости получать энергию от какой-нибудь батареи. Конечно, должно быть ясно, что извлечение энергии из такого кольца свело бы ток в нем к нулю.

Легко представить себе возможности применения сверхпроводников в технике, если бы мы могли изготовлять их из материалов, не требующих для перехода в сверхпроводящее состояние слишком низких температур. Тогда открылись бы необозримые горизонты для различных применений, начиная с передачи энергии на далекие расстояния без потерь и кончая созданием сверхмагнитов, практически не потребляющих электрической энергии, и проектированием сверхпроводящих рельсов, по которым поезд-магнит скользил бы совсем без трения. в связи с этим можно вспомнить сверхмагниты (сверхпроводящие магниты), используемые в современных ускорителях частиц.

Материал, пригодный для создания высокотемпературной сверхпроводимости (если бы он был найден) немедленно обрел бы огромное значение не только для промышленности; исследования в этом направлении ведутся с использованием весьма внушительных средств, и результаты, возможно, не заставят себя долго ждать.

10. Энтропия

Энтропия играет фундаментальную роль для всей термодинамики и косвенно для всех ее практических применений (а их много), в которых происходят обмен теплом и преобразование его в энергию механическую или электрическую. Идеи, высказанные Ильей Пригожиным (бельгийский ученый, лауреат Нобелевской премии по химии) в книге «Великий союз» можно понять, только если предварительно постараться уяснить, что же такое энтропия.

Кроме того, занимаясь термодинамикой, мы сможем коснуться классической статистической механики, а о квантовой статистике мы уже получили некоторое представление при обсуждении сверхтекучести.

Начала термодинамики

Первое начало термодинамики утверждает, что теплота является формой энергии и что она должна учитываться как таковая в законе сохранения энергии. Когда включена электрическая печь, электрическая энергия источника питания превращается в теплоту. При ударе молота о наковальню механическая энергия движения молота превращается в теплоту. Наконец, при торможении автомобиля его энергия движения превращается в теплоту трения в тормозных колодках. Энергия ни при каких обстоятельствах не исчезает, она просто превращается в теплоту, чтобы затем рассеяться в окружающей среде. Энергия, естественно, и не возникает из ничего, вечное движение остается совершенно невозможным.

Но к этой теме мы вернемся в конце книги. Второе начало термодинамики накладывает дополнительные ограничения на взаимный обмен тепла и других форм энергии.

Каким же видом энергии является теплота? в прошлом веке бытовало мнение, что теплота– это жидкость, которая переливается из горячих тел в холодные. Правильное объяснение понятия теплоты было дано только на основе статистической механики. Материальное тело состоит из огромного количества атомов; газ можно представить как совокупность бесчисленных шариков, передвигающихся во все стороны и непрерывно сталкивающихся. Кусок кристалла горного хрусталя (кварца) кажется неподвижным и неизменным. Если бы мы могли заглянуть внутрь и увидеть там атомы, то обнаружили бы, что они расположены упорядоченно вдоль фигур, имеющих ту же симметрию, что кристалл, но они вовсе не неподвижны. Вся кристаллическая решетка непрерывно сотрясается от беспорядочных толчков атомов. Толчки усиливаются с увеличением температуры; при достижении некоторого предела они разрушают кристалл, и он распадается. Тепловая энергия представляет собой не что иное, как сумму энергий беспорядочного движения отдельных атомов; температура, в сущности, говорит нам о том, какая энергия в среднем приходится на один атом в среде.

Смысл энтропии

Примеры, которые мы только что привели, касались превращения энергии упорядоченного движения (электрических зарядов, кинетической энергии движения молота или автомобиля) в тепло, т.е. энергию беспорядочного движения частиц вещества. Во всех случаях мы имели дело с необратимыми процессами: никто еще не видел, чтобы электрическая печь начала вдруг передавать в электросеть свою энергию, охлаждаясь при этом; охлаждая тормоза автомобиля, мы не приведем его в движение и т.д. Все это подтверждает, что очень легко создать беспорядок и очень трудно (или, во всяком случае, требует определенных затрат) создать порядок.

Энтропия, по существу, представляет собой меру этого беспорядка, и, следовательно, при необратимых процессах она всегда растет. При перемешивании горячей воды и холодной ее температура усредняется. Вся энергия распределяется равномерно между молекулами воды. При этом энтропия увеличивается, и мы получаем энергию, более равномерно распределенную и в форме, менее удобной для использования. из таких примеров мы должны извлечь полезный урок. Недостаточно иметь энергию, нужно, чтобы она была в форме, удобной для использования, и, следовательно, не «беспорядочная». Вода в море обладает огромными запасами энергии, которая однако, соответствует беспорядочному движению и которую поэтому нельзя использовать.

Локальное уменьшение энтропии

Существует способ обойти это непрерывное увеличение энтропии, и на нем основана почти вся наша современная техника. Второе начало термодинамики устанавливает общее возрастание энтропии, но вовсе не исключает ее уменьшения в ограниченной области при еще большем увеличении в другом месте. в тепловой электростанции сжигается топливо и производится теплота, которая превращается затем в электрическую энергию, в высшей степени упорядоченную. на самом деле только третья или четвертая часть энергии горения превращается в электричество, в то время как остальная энергия по обыкновению идет на разогрев воды какой-нибудь реки. Итак, за возможность превращать тепло в электричество мы заплатили увеличением энтропии реки. Таким же образом в автомобильном двигателе внутреннего сгорания часть энергии бензина превращается в энергию движения, но гораздо больше ее рассеивается в окружающую среду через радиатор. Итак, общий беспорядок всегда усиливается.

Достаточно оглядеться, чтобы понять, насколько активно человек занимается увеличением энтропии. Почти вся наша деятельность приводит к превращению энергии в формы, все менее приспособленные для использования, и к распределению все более низкой температуры среди все возрастающего количества атомов. Как же мы выживаем в таких условиях?

Энергетическая проблема

Действительно, если вспомнить трудности с арабской нефтью, то возникают сомнения в нашей способности идти и дальше вперед. Человечество создавало развитую передовую технологию, широко и бесконтрольно используя ископаемое горючее и растрачивая при этом заложенную в нем химическую энергию. Эти ископаемые, так же как и ядерное горючее, будут исчерпаны, согласно самым благоприятным прогнозам, не позже чем через 200...300 лет.

Если мы окажемся достаточно везучими или способными, то до конца этого срока в наших лабораториях будет достигнут успех в использовании энергии термоядерного синтеза, при котором водород превращается в гелий. Такой успех позволил бы нам идти вперед практически бесконечно в сравнении с временем прошедшей эволюции человечества. При неудаче в осуществлении «управляемого синтеза» оставалось бы Солнце, в недрах которого широкомасштабный термоядерный синтез происходит естественным образом уже более 5 млрд. лет и, судя по всему, будет происходить еще столько же.

Итак, Солнце производит увеличение энтропии в гораздо более широких масштабах, чем человечество, несмотря на все несомненно успешные усилия, предпринимаемые человеком в деле разбазаривания средств. Так стоит ли нам впадать в уныние? Напротив, мы должны считать себя счастливцами. Ведь свет Солнца представляет собой относительно хорошо организованную форму энергии (она соответствует температуре, достигающей почти 6000°С), непрерывно падающей на Землю. Фотосинтез в растениях приводит к постоянному поглощению и накоплению этой энергии, которая затем частично излучается в пространство в виде инфракрасных лучей, имея гораздо большую энтропию, чем прежде. Таким способом земные организмы создают локальный порядок и продолжают процветать.

Гипотеза Пригожина

Согласно Пригожину, существование жизни на Земле является одним из многих примеров, когда наш враг энтропия может уменьшаться в ограниченной области ценой заметного ее увеличения в другом месте. в своей книге «Великий союз» Пригожин часто ссылается на пример нестабильности Бенара. Обычно, если слить вместе холодную и горячую воду, температура ее начнет выравниваться. Если же нагревать кастрюлю с водой, мы вызовем непрерывный подъем горячей жидкости, тогда как более тяжелая холодная вода будет опускаться вниз. Кроме того, однако, наблюдается выделенное движение конвекционных потоков, препятствующих встрече горячей воды с холодной. Таким образом, происходит разделение горячей и холодной воды и появление локальной упорядоченности. Это происходит за счет энергии газового пламени, которая рассеивается в окружающее пространство, проходя через кастрюлю и вызывая рост энтропии. Мы здесь снова наблюдаем увеличение локального порядка, связанное с увеличением беспорядка в других местах.

Заменив пламя Солнцем, а кастрюлю Землей с ее поразительной смесью химических соединений, мы получим фантастически организованные структуры, к которым как раз относятся живые существа. Согласно Пригожину, жизнь возникла не случайно, а является закономерным следствием, хотя и не единственно возможным, энтропического разбазаривания энергии Солнца или какой-нибудь другой звезды. Так ли это? Некоторые примеры, как, например, вышеприведенный пример с кастрюлей, поддаются строгому анализу. Другие связаны с некоторыми любопытными химическими реакциями Жаботинского. При общем желании понять причину создания столь сложных структур все остается пока на уровне захватывающих гипотез, еще не подвергавшихся сколько-нибудь серьезным проверкам. Поэтому такие гипотезы воспринимаются одобрительно людьми образованными, но не специалистами, в то время как физики относятся к ним с осторожностью.

Глава 4. К портретам ученых

1. Галилео Галилей

Итак, папа римский решил вновь открыть «дело» Галилея. Я предвижу волну полемических статей и экскурсов в историю. Исключениями из хора обычных политико-литературных стенаний должны стать выступления непосредственно заинтересованных кругов: физиков и представителей церкви.

Кем же был Галилей и какое значение должен иметь пересмотр его дела? За редкими исключениями, тщетными были бы поиски категорий людей, хуже физиков информированных в истории науки вообще и в истории Галилея в частности.

Такое положение в данном случае не должно нас удивлять. Мы говорим не о реальном человеке, а имеем дело с человеком-знаменем, с неким символом. Одни объявили Галилея героем движения против учения Аристотеля, знаменосцем науки в борьбе против темных сил религии, и в то же время другие пытались возвести его самого в ранг святого. Однако при ближайшем рассмотрении окажется, что Галилей был прежде всего гениальным человеком, величайшая заслуга которого состояла в открытии эры современной науки и преодолении старого, аристотелева, представления о Вселенной.

Хотя Галилей и стоял у истоков современной физики, он все же не был свободен от некоторых очень живучих предвзятых представлений. Так, он не придавал особого значения законам Кеплера и продолжал считать движение по окружности «совершенным», в чем следовал старым взглядам Аристотеля.

Галилей вовсе не был человеком непогрешимым и всегда корректным и во взаимоотношениях с другими учеными. Так, в своей полемике с иезуитами о происхождении комет он был совершенно не прав, когда с некоторым высокомерием настаивал на том, что речь идет всего лишь о процессах испарения, происходящих в верхних слоях атмосферы. Судя по всему, можно считать установленным, что за несколько месяцев до того, как Галилей официально объявил об обнаружении солнечных пятен, их наблюдал монах из Ингольштадта; поведение Галилея при этом только способствовало усилению ненависти к нему иезуитов.

Разумеется, черты характера Галилея ни в коей мере не оправдывают серьезной исторической ошибки, какой является процесс над ним; они могли лишь послужить поводом, побудившим нищих духом людей принять решения, оказавшие глубоко отрицательное влияние на все дальнейшее развитие культуры. Здесь мы сталкиваемся с другим аспектом процесса. Лично я не убежден в том, что суд над Галилеем нужно рассматривать только в рамках обычного противопоставления Веры Разуму, Прогресса Мракобесию и т.д.

Некоторые служители церкви тогда уже приняли систему Коперника и довольно непредвзято, хотя и с осторожностью относились к научным открытиям. в то же самое время эти люди сознавали, какую угрозу представляли новые идеи для господствовавшего порядка и мировоззрения, основанного на средневековой схоластике и канонизированном учении Аристотеля. Скорее всего, Галилей не сознавал революционное – причем не только и не столько с точки зрения культуры, сколько с точки зрения идеологии – значение своей научной деятельности. Но тот факт, что он решил опубликовать свои труды на общедоступном, понятном языке, а не на латыни, был воспринят церковью как провокационный жест, имевший целью распространение новой культуры в массах.

Таким образом, процесс над Галилеем представлял собой не только столкновение двух противоборствующих философий, но и акт мести. Вероятно, можно было бы избежать этого политического столкновения или смягчить его последствия, если бы Галилей поступал более осмотрительно. Во всяком случае я не вижу, как предложение церкви реабилитировать ученого может оказаться чем-нибудь иным, кроме как жестом чисто символическим.

Итак, какой же будет реакция ученых на пересмотр дела Галилея? Я не претендую на то, чтобы представлять своих коллег и высказываю только свое личное мнение. Откровенно говоря, мне кажется, что предложение пересмотреть дело явно запоздало. Если речь идет о попытке завоевать поддержку среди определенных кругов интеллигенции, то она обречена на провал и не устранит существующего недоверия к церкви. Во всяком случае, «антипроцесс» имеет четко выраженный политический оттенок, так же, как и сам процесс, на котором был осужден Галилей. Пересмотр дела Галилея мог бы еще иметь какой-то смысл не сейчас, а несколько десятилетий назад, в иной интеллектуальной и политической обстановке. Впрочем, может быть, лучше поздно, чем никогда.

2. Джеймс Кларк Максвелл

В 1879 г. скончался шотландец Дж.К. Максвелл, создатель электромагнитной теории света и один из основателей современной физики и техники. Физики считают Максвелла одним из «великих», самобытным мыслителем, внесшим фундаментальный вклад во все области физики.

Максвелл не пользовался особой известностью при жизни; его уравнения были написаны языком, непонятным для современников. в частности, Фарадей, будучи гением эксперимента, но несведущим в математике, никогда не придавал значения работам Максвелла. в чем же состоит вклад Максвелла в науку? в свое время Ньютон был убежден в том, что свет состоит из мельчайших частичек, скорость перемещения которых практически бесконечна. Его современник Гюйгенс, напротив, был сторонником волнового механизма распространения света, подобного процессу распространения звука в воздухе или в любой материальной среде. Непререкаемый авторитет Ньютона не допустил признания гипотезы Гюйгенса.

В 1700 г. Юнг, Френель и некоторые другие ученые приступили к исследованию оптических явлений, непонятных с точки зрения представлений Ньютона. Эти явления прямо указывали на волновую природу света. Как ни парадоксально, но среди этих явлений были и кольца Ньютона, хорошо известные фотографам и возникающие, когда диапозитив помещается между стеклянными пластинами. Яркая окраска некоторых насекомых также возникает в результате сложных процессов интерференции световых волн, происходящих в тонких слоях жидких кристаллов, расположенных на поверхности тела насекомых.

Можно сказать, что в 19 в. волновая природа света была окончательно установлена. Серия статей, опубликованных Максвеллом в середине столетия, ознаменовала собой начало большой и сложной работы по созданию математической теории электромагнитных явлений. По мнению Максвелла, должна была существовать бесконечно упругая и легкая среда, называемая эфиром, в которой свет распространяется подобно тому, как звук распространяется в воздухе. в своих заключительных расчетах Максвелл развил механистическую модель, согласно которой электрическое и магнитное поля представляют собой местное нарушение состояния эфира.

В настоящее время эфир уже вышел из моды (хотя и не совсем), и его слишком «материальный» образ практически забыт. Вместо него остались уравнения электромагнитного поля, объясняющие и предсказывающие поразительное множество разнообразных явлений, среди которых достойное место занимает распространение света, описываемое с удивительной точностью. Спустя несколько десятилетий после смерти Максвелла Герц экспериментально доказал существование радиоволн, отличающихся от, света только длиной волны (длины световых волн меньше одной тысячной миллиметра, в то время как радиоволны имеют длины от одного миллиметра и выше). Наконец, Рентген открыл лучи, названные его именем и имеющие чрезвычайно малую длину волны, сравнимую с размерами атомов. Можно идти и дальше к еще меньшим длинам волн, вспомнить, например, о γ-лучах, испускаемых ядрами.

Если бы не было уравнений Максвелла, то теория относительности увидела бы свет значительно позже. Эйнштейн преклонялся перед Максвеллом и считал открытие электромагнитной природы света одним из наиболее выдающихся событий современной физики.

Однако не только теорией электромагнетизма интересовался Максвелл. в молодости ученый серьезно занимался небесной механикой; как мы уже говорили ранее, используя методы, которые вызывали восхищение Лапласа, Максвелл показал, что кольца Сатурна не могли быть ни твердыми, ни жидкими и что, скорее всего, они должны иметь структуру, подобную пене, состоящей из частичек, вращающихся вокруг планеты. (Этот вывод подтвердился во время недавнего визита космического зонда к Сатурну.)

Очерк Максвелла на эту тему был отмечен авторитетной премией Адамса.

Но это еще не все. Техника цветной фотографии и цветного телевидения основана на теории смешивания трех цветов, разработанной Максвеллом, и, хотя эта теория подвергалась неизбежным усовершенствованиям, она и сейчас служит основой различных технических приложений.

К приведенному списку следует добавить фундаментальный вклад Максвелла в кинетическую теорию газов. Окончательное доказательство существования атомов было приведено в знаменитой работе Эйнштейна, посвященной броуновскому движению и опубликованной в 1905 г. Но в середине 19 в., несмотря на успехи химии, весьма авторитетные физики (среди которых Мах, Оствальд и Кельвин) считали гипотезу атома феноменологической выдумкой, лишенной реальных основ. Такие возражения против атомов не помешали Максвеллу получить результаты на самом высоком уровне, которые открывали новые направления в физике. Согласно его модели, газ состоит из бесконечного числа движущихся атомов или молекул, которые непрерывно сталкиваются между собой. Если в какой-то момент времени мы могли бы измерить скорости атомов, то обнаружили, что они группируются вокруг некоторого среднего наиболее вероятного значения. Затем мы увидели бы, как атом, имеющий слишком большую скорость, при столкновениях с другими замедляется, подстраиваясь под общее движение, а неподвижный атом приводится в движение за счет непрерывных толчков. Состояние газа может быть охарактеризовано посредством этой средней скорости, а еще лучше с помощью средней кинетической энергии (энергии движения) атомов.

Максвелл был первым, кто понял, что эта средняя энергия может служить для строгого определения температуры газа, будучи пропорциональной ей. Чем сильнее нагревается газ, тем быстрее начинают двигаться его атомы. Теплота представляет собой неупорядоченное, хаотическое движение атомов; она не является свойством одного или нескольких атомов, и, чтобы говорить о теплоте, бессмысленно рассматривать отдельный горячий атом, а нужно иметь огромное множество атомов (в одном литре число атомов выражается числом с 23 значащими цифрами). Непрерывно охлаждая газ, мы ограничиваем движение атомов, пока оно не прекращается совсем при абсолютном нуле температуры.

Кинетическая теория газов оказалась фундаментом, на котором была построена термодинамика; она также породила статистическую механику, в которую существенный вклад внесли Гиббс, Больцман и Эйнштейн.

В прошлом столетии Кельвин пользовался очень высоким авторитетом, сравнимым с авторитетом самого Ньютона, и, во всяком случае, он был гораздо более известен, чем Максвелл. Спустя сто лет они поменялись местами: физики редко ссылаются на Кельвина (разве только когда речь идет о температуре, отсчитываемой от абсолютного нуля и измеряемой в градусах Кельвина), в то время как исключительное положение Максвелла не вызывает сомнения.


    Ваша оценка произведения:

Популярные книги за неделю