355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Терри Дэвид Джон Пратчетт » Наука Плоского Мира III: Часы Дарвина (ЛП) » Текст книги (страница 6)
Наука Плоского Мира III: Часы Дарвина (ЛП)
  • Текст добавлен: 24 сентября 2016, 03:57

Текст книги "Наука Плоского Мира III: Часы Дарвина (ЛП)"


Автор книги: Терри Дэвид Джон Пратчетт


Соавторы: Йен Стюарт,Джек Коэн
сообщить о нарушении

Текущая страница: 6 (всего у книги 23 страниц) [доступный отрывок для чтения: 9 страниц]

Возможно, именно Хинтон познакомил Уэллса с повествовательными возможностями, которые открывает идея времени как четвертого измерения. В пользу этого говорят лишь косвенные факты, но звучат они вполне убедительно. Нькомб точно был знаком с Хинтоном, потому что однажды помог ему устроиться на работу. Мы не знаем, встречал ли Уэллс Хинтона, но определенные обстоятельства указывают на их близкое знакомство. К примеру, Уэллс, описывая свои рассказы, использует термин «научный роман», которые ранее был придуман Хинтоном и использовался им в качестве собирательного названия его фантастических эссе, написанных между 1884 и 1886 годами. Кроме того, Уэллс был регулярным читателем журнала «Nature», который в 1885 году опубликовал рецензию (положительную) на первую часть «Научных романов»Хинтона вместе с кратким изложением некоторых из его идей насчет четвертого измерения.

Хинтон, по всей вероятности, приложил руку и к другой межпространственной саге викторианской эпохи – роману Эдвина Э. Эбботта «Флатландия» (1884). Эта история повествует о Квадрате с Евклидовой плоскости, двумерного общества треугольников, шестиугольников и окружностей, который не верил в существование третьего измерения, пока не попал туда, благодаря пролетающей мимо сфере. Сюжет романа указывает на ограниченность людей викторианской эпохи, которые точно так же не верили в четвертое измерение. Помимо прочего, «Флатландия» содержит в себе скрытую сатиру, отражающую роль женщин и малоимущих в викторианском обществе. Многие из приемов, используемых Эбботтом, обнаруживают близкое сходством с элементами рассказов Хинтона [41]41
  См. также издание «Флатландии с комментариями» под редакцией Й. Стюарта («The Annotated Flatland», 2002).


[Закрыть]
.

Большая часть физики путешествий во времени представляет собой теорию относительности с примесью квантовой механики. Впрочем, с точки зрения волшебников Незримого Университета, все эти вопросы связаны с «квантами» – универсальной отговоркой, дающей полную интеллектуальную свободу, то есть возможность объяснить практически что угодно, каким бы странным оно ни казалось. Собственно говоря, чем больше странностей, тем лучше. Приличную порцию квантовой физики вы получите в восьмой главе. Здесь же мы подготовим почву, совершив небольшой экскурс в теорию относительности Эйнштейна: специальную и общую.

В первой части «Науки Плоского Мира»мы уже объясняли, что название «теория относительности» звучит нелепо. Его следовало бы заменить на «теорию абсолютности». Основной смысл специальной теории относительности состоит не в том, что «все относительно», а в том, что одна величина – а именно скорость света – неожиданно оказывается абсолютной. Попробуйте зажечь фонарик в движущейся машине, – говорит нам Эйнштейн, – скорость машины никак не повлияет на скорость света. Этот результат существенно отличается от классической физики Ньютона, согласно которой свет от движущегося фонарика увеличит свою изначальную скорость за счет скорости движения машины. Именно это происходит с мячом, когда вы бросаете его, находясь в движущемся автомобиле. Со светом должно происходить то же самое, но в действительности это не так. Для нашей интуиции теория относительности – настоящее потрясение, и все же, как показывают эксперименты, она действительно соответствует реальному положению дел в Круглом Мире. Разница между физикой Ньютона и Эйнштейна остается для нас незаметной, потому что заметить ее можно только при скоростях, близких к скорости света.

Появление специальной теории относительности было неизбежным; рано или поздно ученые должны были до нее додуматься. Ее первые семена были посеяны еще в 1873 году, когда Джеймс Кларк Максвелл вывел уравнения электромагнитного поля. В «движущейся системе отсчета», то есть со стороны движущегося наблюдателя, эти уравнения приобретают физический смысла только при условии, что скорость света абсолютна.Некоторые математики – в том числе Анри Пуанкаре и Герман Минковский – обратили внимание на этот факт, опередив тем самым Эйнштейна – правда, только на уровне математической теории, поскольку именно Эйнштейн впервые нашел этим идеям применение в физике. Их физические последствия, – как он сам отметил в 1905 году, выглядят довольно странно. По мере приближения к скорости света предметы сокращаются в размере, ход времени практически останавливается, а масса становится бесконечной. Ничто (точнее, ничто материальное) не может двигаться быстрее света, а масса способна превращаться в энергию.

В 1908 году Минковский нашел простое и наглядное представление релятивистской физики, которое теперь называется пространством-временем Минковского. В ньютоновской физике пространство включает в себя три фиксированных координаты: влево/вправо, вперед/назад, вверх/вниз. При этом пространство и время считаются независимыми. В применении же к теории относительности Минковский рассматривал время в качестве дополнительной координаты. Четвертая координата, четвертое независимое направление. четвертое измерение.Трехмерное пространство превратилось в четырехмерное пространство-время. А старые идеи Д’Аламбера и Лагранжа, благодаря подходу Минковского, приобрели новый смысл. Теперь время и пространство можно было в некоторой степени менять местами. Время, как и пространство, стало предметом геометрии.

Это видно на примере релятивистского описания движущейся частицы. С точки зрения ньютоновской физики, частица занимает место в пространстве и перемещается с течением времени. Иначе говоря, в физике Ньютона движение частицы напоминает просмотр фильма. В то время как теория относительности воспринимает движение частицы в виде последовательности отдельных кадров. Этот факт наглядно отражает ее детерминистский дух. Прошлое, настоящее и будущее существует прямо сейчас.С течением времени – по ходу действия фильма – мы сталкиваемся с собственной судьбой, которая в действительности неотвратимаи неизбежна. Конечно, отдельные кадры фильма, вероятно, могли бы воплощаться в реальность друг за другом, и тогда самый последний кадр стал бы отражением настоящего времени. Вот только нельзя составить последовательность кадров, которая была бы общей для всех наблюдателей.

Релятивистское пространство-время – это рассказий в геометрическом воплощении.

С точки зрения геометрии, движущаяся частица оставляет за собой след в виде некоторой кривой.Представьте, что частица – это кончик карандаша, а пространство-время – лист бумаги, на котором пространство расположено горизонтально, а время – вертикально. Движущийся карандаш вычерчивает на бумаге линию. Точно так же частица, движущаяся в пространстве времени, перемещается вдоль кривой, которая называется ее мировой линией. Если скорость частицы постоянна, ее мировая линия представляет собой прямую. Частицы, которые движутся с очень маленькой скоростью, преодолевают небольшое расстояние за большой промежуток времени, поэтому их мировые линии расположены вблизи вертикали; частицы, обладающие очень большой скоростью, напротив, покрывают большие расстояния за короткое время, и их мировые линии практически сливаются с горизонталью. Проходящая между ними диагональная мировая линия соответствуют частицам, которые преодолевают заданное расстояние за равный ему временной интервал – при подходящем выборе единиц измерения. Это означает, что единицы измерения соотносятся посредством скорости света: если, к примеру, время измеряется в годах, то расстояние – в световых годах. А что может преодолеть расстояние в один световой год за один год? Конечно же, свет. Таким образом, диагональные мировые линии описывают движение световых частиц, или фотонов,а также любых других объектов, способных двигаться со скоростью света.

Теория относительности запрещает движение материальных тел со сверхсветовой скоростью. Мировые линии таких тел называются времениподобными кривыми. Каждое событие обладает собственным «световым конусом», который образуется проходящими через него времениподобными линиями. По сути это два конуса, соединенных вершинами, причем один из них направлен вперед, а другой – назад. Конус, направленный вперед, описывает будущее исходного события, то есть все точки пространства-времени, на которые оно способно повлиять. Противоположный конус аналогичным образом описывает прошлое и содержит все события, которые могли повлиять на исходное.За пределами конуса лежит запретная территория – те места и моменты времени, которые не несут в себе причинно-следственной связи с исходным событием.

Пространство Минковского называется «плоским» – оно описывает движение частиц, на которые не действуют внешние силы. Силы изменяют характер движения, а самая важная из них – это сила гравитации. Эйнштейн разработал общую теорию относительности, чтобы объединить специальную теорию с гравитацией. В физике Ньютона гравитация считается силой: она отклоняет частицы от прямых траекторий, по которым они бы двигались в отсутствие внешних воздействий. В общей теории относительности гравитация стала геометрическим свойством Вселенной – разновидностью кривизны пространства-времени.

Точка в пространстве-времени Минковского описывает событие, привязанное к определенному месту и времени. Поэтому «расстояние» между двумя событиями должно учитывать не только их удаленность в пространстве, но еще иразницу во времени. Оказывается, что можно добиться подходящего результата, если (грубо говоря) взять расстояние в пространстве и вычестьиз него длину промежутка во времени. Получившаяся величина называется интерваломмежду двумя событиями. Если бы мы заменили вычитание на более очевидную операцию сложения, то с физической точки зрения пространство и время оказались бы совершенно равноправными. Тем не менее, между ними есть явные отличия: мы можем легко перемещаться в любом пространственном направлении при том, что свободное перемещение во времени связано с заметными трудностями. Вычитая длину временного промежутка, мы отражаем разницу между пространством и временем. Математически это означает, что мы считаем время мнимымпространством – то есть пространством, помноженным на квадратный корень из минус единицы. У этого факта есть одно замечательное следствие: если частица движется со скоростью света, то вдоль ее мировой линии интервал между любыми двумя событиями равен нулю.

Представьте себе частицу света, фотон. Он, понятное дело, движется со скоростью света. За промежуток времени в один год он проходит расстояние, равное одному световому году. 1 + 1 = 2, но интервал вычисляется не так. Интервал определяется разностью 1 – 1, которая равна нулю. Величина интервала влияет на восприятие времени со стороны движущегося наблюдателя. Чем быстрее движется объект, тем медленнее – с его точки зрения – движется время. Этот эффект называется релятивистским замедлением времени.По мере приближения к скорости света ход времени в вашем понимании будет замедляться все сильнее. И если бы вы достиглискорости света, ваше время бы просто замерло. С точки зрения фотона, время стоит на месте.

Частицы, которые не испытывают на себе действие внешних сил, в ньютоновской физике движутся вдоль прямых линий. Прямая – это кратчайший путь между двумя точками. В теории относительности свободные частицы выбирают путь с наименьшим интервалом, двигаясь вдоль геодезических линий.Наконец, гравитация в этой теории проявляется не в качестве дополнительной силы, а в виде искажения пространственновременной структуры, которое изменяет величины интервалов и форму геодезических кривых. Такой переменный интервал между близлежащими событиями называется метрикойпространства-времени.

Обычно в таком случае говорят об «искривлении» пространства-времени, но это выражение может легко ввести в заблуждение. Например, пространство-время не обязательно должно что-либо огибать.Физической интерпретацией кривизны служит сила тяготения, которая деформирует световые конусы событий.

Одним из проявлений этой деформации является эффект «гравитационной линзы» – искривление света под действием массивных объектов, которое было открыто Эйнштейном в 1911 и опубликовано в 1915. Он предсказал, что гравитационное искривление света должно вдвое превышать величину, полученную на основании законов Ньютона. Этот прогноз был подтвержден в 1919 году, когда сэр Артур Стэнли Эддингтон возглавил экспедицию для наблюдения полного солнечного затмения в западной Африке. Другая экспедиция под руководством Эндрю Кроммелина из Гринвичской лаборатории отправилась в Бразилию. Во время затмения обе экспедиции произвели наблюдение звезд, расположенных вблизи края солнечного диска – в обычных условиях эти звезды не видны, так как их заслоняет более яркий свет Солнца. Они обнаружили в видимом расположении звезд небольшие отклонения, подтверждающие предсказание Эйнштейна. Обрадованный Эйнштейн послал своей маме открытку со словами: «Дорогая мама, сегодня у меня хорошие новости… английские экспедиции подтвердили, что свет действительно отклоняется от Солнца». Заголовок очередного выпуска Timesгласил: «ПЕРЕВОРОТ В НАУКЕ. НОВАЯ ТЕОРИЯ ВСЕЛЕННОЙ. СВЕРЖЕНИЕ ИДЕЙ НЬЮТОНА». А в середине второй колонки был помещен подзаголовок: ««ИСКРИВЛЕННОЕ» ПРОСТРАНСТВО». За одну ночь Эйнштейн стал знаменитостью.

Было бы невежливо упомянуть тот факт, что в настоящее время результаты упомянутых наблюдений выглядят весьма сомнительно – возможно, свет действительно следовал по искривленному пути, а, возможно, и нет. Так что на этот счет мы промолчим. К тому же, более поздние и точные эксперименты все-таки подтвердили предсказание Эйнштейна. Некоторые отдаленные квазары создают множественные изображения наподобие космического миража, когда их свет искривляется под действием галактики, оказавшейся на его пути.

Пространство-время обладает искривленной метрикой.

Вблизи звезды пространство-время перестает быть плоским и принимает форму искривленной поверхности, окружающей звезду наподобие круглой «ямы». Свет, который на этой поверхности движется вдоль геодезических линий, «затягивается» в яму, поскольку такой маршрут ведет к более короткому пути. Частицы, движущиеся в пространстве-времени с досветовыми скоростями, ведут себя аналогичным образом; они отклоняются от прямолинейных траекторий и притягиваются к звезде – отсюда и возникает ньютоновское представление о силе тяготения.

На большом расстоянии от звезды пространство-время в действительности мало чем отличается от пространства-времени Минковского; иначе говоря, влияние гравитации в нем быстро уменьшается и вскоре становится пренебрежимо малым. Пространство-время, которое на больших расстояниях подобно пространству-времени Минковского, называется «асимптотически плоским». Запомните этот термин: в вопросах создания машины времени он играет важную роль. Наша Вселенная по большей части является асимптотически плоской, так как массивные объекты – например, звезды – расположены на большом расстоянии друг от друга.

Мы не можем придать пространству-времени какую-то произвольную форму. Его метрика должна соответствовать уравнениям Эйнштейна, которые связывают движение свободных частиц с величиной отклонения от плоского пространства-времени.

Мы уже довольно долго обсуждаем поведение пространства и времени, но что они собой представляют? Честно говоря, мы не имеем ни малейшего понятия. Единственное, в чем можно быть уверенным, так это в том, что внешность бывает обманчивой.

Тик.

Некоторые ученые доводят этот принцип до крайности. Джулиан Барбур в книге «Конец времени» («The End of Time»)утверждает, что с точки зрения квантовой механики время просто не существует.

Ти…

В 1999 году в журнале «New Scientist»он привел примерно следующее объяснение своей идеи. В любой момент времени состояние каждой частицы во Вселенной можно представить в виде точки гигантского фазового пространства, которое Барбур называет Платонией. Вместе со своим коллегой Бруно Бертотти он сумел перевести на язык Платонии традиционную физику. Ход времени, с точки зрения Платонии, представляет собой перемещение точки, описывающей конфигурацию всех частиц во Вселенной – то есть некую траекторию, похожую на релятивистскую мировую линию. Платонианское божество могло бы последовательно воплощать в реальность точки этой траектории – в результате частицы пришли бы в движение и возникло бы видимое течение времени.

Однако квантовая Платония устроена куда более странно. Здесь, говоря словами Барбура, «время стало жертвой квантовой механики». Квантовая частица – это не точка, а размытое вероятностное облако. А квантовое состояние всей Вселенной – это размытое облако в Платонии. «Размер» такого облака по отношению к размеру самой Платонии описывает вероятность того, что Вселенная окажется в одном из состояний, составляющих облако. Таким образом, мы вынуждены ввести в Платонию некий «вероятностный туман», который в зависимости от конкретной области может менять свою плотность, указывая тем самым на вероятность того, что облако окажется именно там.

Но, – отмечает Барбур, – «вероятности не могут зависеть от времени, поскольку понятия времени в Платонии просто не существует. Можно лишь задать один-единственный набор вероятностей, соответствующих всем возможным конфигурациям». Есть только один вероятностный туман, и он никогда не меняется. В такой интерпретации время оказывается иллюзией. Будущее не предопределено настоящим, но вовсе не из-за случайности, а просто потому что никакого настоящего или будущего не существует.

В качестве аналогии представьте себе детскую игру «змеи и лестницы». Участники, бросая кости, передвигают свои фигурки с одного квадрата на другой; традиционное игровое поле состоит из ста квадратов. Некоторые квадраты соединены лестницами – тогда, заняв нижний квадрат, вы моментально поднимаетесь наверх; другие соединены змеями, и, оказавшись наверху, вы сразу же опускаетесь вниз. Выигрывает тот, кто первым достигнет последнего квадрата.

Чтобы не усложнять ситуацию, представьте себе, что в «змеи и лестницы» играет один человек, то есть на игровом поле находится только одна фигурка. Тогда состояние игры в любой момент времени зависит от одного квадрата – от того, на котором в данный момент находится фигурка. Если следовать этой аналогии, само игровое поле становится фазовым пространством, отражением Платонии. А фигурка – отражением целой Вселенной. Когда фигурка перепрыгивает с квадрата на квадрат, подчиняясь правилам игры, состояние «вселенной» меняется. Маршрут, по которому следует фигурка, – то есть перечень последовательно занимаемых квадратов – представляет собой аналогию вселенской мировой линии. В этой интерпретации время существует, поскольку каждый последующий ход фигурки соответствует одному тику космических часов.

Квантовая игра в «змеи и лестницы» устроена совсем иначе. В ней используется точно такая же доска, но значение имеет лишь вероятность того, что фигурка окажется на конкретном квадрате – не на текущем этапе, а по отношению к игре в целом. Например, на определенном этапе игры фигурка занимает первый квадрат с вероятностью 1, потому что игра всегда начинается с первого квадрата. Второй квадрат фигурка занимает с вероятностью 1/6, потому что единственный способ туда попасть – выбросить единицу на первом ходе. И так далее. Как только все эти вероятности будут подсчитаны, можно забыть и о правилах игры, и о самом понятии «хода». Не остается ничего, кроме вероятностей. Так выглядит квантовая версия игры, в которой нет явных ходов, а есть лишь вероятности. В отсутствие ходов понятие «следующего» хода, как и понятие времени, теряет смысл.

По словам Барбура, наша Вселенная является квантовой, поэтому в ней, как и в квантовой игре «змеи и лестницы», говорить о «времени» просто бессмысленно. Так откуда же берется наивное человеческое представление о течении времени? Почему нам кажется, что Вселенная (или, по крайней мере, та ее часть, которая находится рядом с нами) движется сквозь линейную последовательность изменений?

С точки зрения Барбура, видимое течение время – всего лишь иллюзия. Он предполагает, что Платонианские конфигурации, обладающие высокой вероятностью, скорее всего, содержат в себе «некую видимость истории». Они выглядят так, будтоу них есть прошлое. Это напоминает одну старую философскую проблему: быть может, в каждый момент времени Вселенная создается заново (как в романе «Вор времени»),но при этом сохраняет видимость продолжительной истории прошедших моментов. В терминах Платонии облака, обладающие видимостью истории, называются капсулами времени. Так вот, к таким высоковероятным конфигурациям относится и нейронная структура мозга, наделенного сознанием. Другими словами, Вселенная сама по себе существует вне времени, но наш мозг, будучи капсулой времени, или высоковероятной конфигурацией, автоматически создает иллюзиюсобственного прошлого.

Это довольно изящная идея – если, конечно, вам нравится такой подход. Но в его основе лежит заявление Барбура о том, что вневременная природа Платонии связана с «единственно возможным набором вероятностей, заданных для каждой возможной конфигурации». Это утверждение удивительно напоминает один из парадоксов Зенона из Плоского – ой, простите, Круглого – Мира, а именно «Парадокс стрелы». Как вы помните, этот парадокс утверждает, что стрела не может двигаться, поскольку в каждый момент времени занимает какое-то конкретное положение. Барбур же аналогичным образом утверждает, что в каждый момент времени (если, конечно, эти моменты вообще существуют), вероятностный туман Платонии находится в определенном состоянии, и делает вывод: этот туман не может меняться (а значит, остается неизменным).

Мы однако же не собираемся заменить «вечный» вероятностный туман Барбура на туман, способный меняться с течением времени. Это вызвало бы определенные сложности из-за неньютоновской взаимосвязи между пространством и временем; в зависимости от наблюдателя разные области тумана соответствовали бы разным моментам времени. Вовсе нет – на самом деле мы хотели предложить математическое решение парадокса стрелы с помощью гамильтоновой механики. Состояние тела определяется двумявеличинами – не только положением в пространстве, но еще и импульсом. Импульс – это «скрытая переменная», которую можно наблюдать только благодаря ее влиянию на последующее положение объекта, в то время как само положение мы можем наблюдать непосредственно. Выше мы уже писали: «тело, которое, находясь в определенном месте, обладает нулевым импульсом, в данный момент остается неподвижным, в то время как тело с ненулевым импульсом продолжает движение,даже если в данный момент находится в том же самом месте». Импульс отражает очередное изменение положения – в настоящий момент.Его текущее значение недоступно для наблюдения прямо сейчас, но в принципе наблюдаемо (или же станет таковым в будущем). Чтобы его увидеть, нужно просто подождать. Импульс – «скрытая переменная», которая отражает переходымежду двумя положениями в пространстве.

Есть ли в квантовых «змеях и лестницах» аналог импульса? Да. Это общеигровая вероятность перехода между двумя конкретными квадратами. Такая «переходная вероятность» зависит только от соответствующей пары квадратов, но не от момента времени, в которой совершается ход, а значит, – с точки зрения Барбура, – существует «вне времени». Тем не менее, когда мы находимся на каком-то конкретном квадрате, переходные вероятности указывают на возможные варианты следующегохода – это позволяет нам воссоздать вероятную последовательность ходов и снова сделать время частью физики.

По той же самой причине единожды заданный и неизменный вероятностный туман – это вовсе неединственная статистическая структура, которую мы могли бы приписать Платонии. Другой вариант – вероятности переходов, соответствующие всевозможным парамсостояний. В результате Платония – говоря языком статистики – принимает вид «марковской цепи», которая представляет собой более общий вариант списка переходных вероятностей. Превратив Платонию в марковскую цепь, мы тем самым приписываем собственную вероятность каждой последовательностиконфигураций. Наиболее вероятными окажутся последовательности, состоящие из большого числа высоковероятных состояний, которые удивительно похожи на временные капсулы Барбура. В итоге мир одиночных состояний Платонии сменяется миром последовательностных состояний Марковии, в которой Вселенная совершает переходы по целым последовательностям конфигураций, а наибольшей вероятностью обладают переходы, сохраняющие связность истории – то есть рассказий.

Описанный марковский подход дает возможность вернуть время в Платонианский мир. Кстати говоря, похожим образом в романе «Вор времени»действовали Сьюзан Сто Гелитская и Ронни Соха – они проскальзывали между моментами времени.

Тик.


    Ваша оценка произведения:

Популярные книги за неделю