355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Сергей Ионин » Русская артиллерия (От Московской Руси до наших дней) » Текст книги (страница 8)
Русская артиллерия (От Московской Руси до наших дней)
  • Текст добавлен: 4 августа 2018, 16:30

Текст книги "Русская артиллерия (От Московской Руси до наших дней)"


Автор книги: Сергей Ионин


Жанр:

   

История


сообщить о нарушении

Текущая страница: 8 (всего у книги 29 страниц)

Идея изготовления нарезных орудий возникла много веков назад. Западные историки приоритет в изобретении нарезных орудий приписывают офицеру сардинской армии де Кавалли, шведскому заводчику Варендорфу и немцу Рейхенбаху. Факты же говорят иное. В Артиллерийском историческом музее хранятся нарезные орудия, изготовленные русскими мастерами еще в XVI и XVII вв. Некоторые из этих орудий заряжались не с дульной, а с казенной части. Для запирания канала ствола от прорыва пороховых газов назад у них были сделаны особые устройства – затворы. У нарезной пищали был сделан винтовой затвор, а у пищали 1615 г., имеющей 10 полукруглых спиральных нарезов, – клиновой. Следовательно, русские пушкари знали о выгодах нарезных орудий намного раньше «изобретения» их иностранцами.

Теоретическое обоснование преимуществ нарезных орудий было сделано в России профессором Петербургской Академии наук Лейтманом еще в 1728–1729 гг., задолго до работ Кавалли, Варендорфа и Рейхенбаха. Однако внедрение нарезной артиллерии в то время было непосильно даже наиболее передовым странам вследствие низкого уровня производства. Первые нарезные орудия во всех странах представляли собой бронзовые стволы со спиральными нарезами и глухим дном. Заряжались они с дула.

На вооружение русской армии нарезное орудие впервые было принято в 1860 г. Это была 4-фунтовая бронзовая пушка, имевшая шесть спиральных нарезов. Заряжалась она с дула продолговатым снарядом, на поверхности которого были сделаны шесть пар продолговатых выступов. При заряжании орудия эти выступы попарно (передний и задний) входили в соответствующие нарезы ствола. При выстреле, перемещаясь по спирали, выступы заставляли снаряд вращаться вокруг своей оси.

Дульнозарядные нарезные орудия были как бы переходной ступенью от гладкоствольной артиллерии к современной нарезной артиллерии. Они обладали тем серьезным недостатком, что снаряд входил в канал ствола с некоторым зазором. Через зазор при выстреле прорывались пороховые газы. Скорострельность дульнозарядных орудий была очень низкой.

В 1867 г. в русской армии были приняты на вооружение 4– и 9-фунтовые казнозарядные полевые пушки.

Ствол каждой из этих пушек представлял собой бронзовую трубу, открытую с обеих сторон. Внутри трубы имелись зарядная камора для помещения снаряда и заряда и спиральные канавки – нарезы, имевшие некоторое сужение от казенной части к дульной. Снаружи на стволе были сделаны цапфы, которыми он крепился на лафете, и прицельное приспособление (прицел и мушка). В казенной части ствола было сделано поперечное отверстие для клина, которым запирался ствол.

Стреляли из таких орудий продолговатыми чугунными снарядами со свинцовой оболочкой, благодаря чему канал ствола разрушался медленно. На свинцовой оболочке были сделаны кольцевые пояски, имевшие диаметр несколько больший, чем калибр орудия.

Поскольку свинцовая оболочка плотно прилегала к стенкам канала ствола, пороховые газы уже не могли прорываться между снарядом и стенками канала. Этому способствовала и клинообразная (суживающаяся) форма нарезов.

Чтобы не было прорыва пороховых газов назад, отверстие с казенной части ствола плотно запиралось особым обтюрирующим устройством (обтюрация – это значит запирание), состоящим из камерного кольца и плитки, подпираемых клином.

Боевые ракеты в России

История создания и применения ракет в России имеет более чем трехсотлетнюю давность. Сигнальные, осветительные и зажигательные ракеты, предназначенные для военных целей, были в России в конце XVI – начале XVII в. Несколько позднее, в 1680 г., в Москве было основано «Ракетное заведение», в котором сначала изготовлялись фейерверочные, а затем и сигнальные ракеты для освещения местности в бою.

При Петре I, в 1717 г., на вооружение русской армии была принята осветительная 25-мм ракета высотой подъема более 1 км. Эта ракета была очень удачной, поэтому не случайно она состояла на вооружении русской армии более 150 лет.

Первые образцы боевых ракет были разработаны в России после Отечественной войны 1812 г., однако на вооружение армии ракеты приняты не были из-за большого их разброса при стрельбе.

Впервые они поступили на вооружение в конце первой четверти XIX в. Их создателем является талантливый артиллерист, участник Отечественной войны 1812 г. генерал-майор А.Д. Засядко. Он основал (на собственные средства) в 1815 г. лабораторию и через два года изготовил опытные образцы ракет 2, 2,5 и 4-дюймового калибра с дальностью стрельбы 1600 и 2700 м и станки, с помощью которых направлялась ракета.

Вскоре первые боевые ракеты А.Д. Засядко получили боевое крещение в 1825 г. в боях на Кавказе и в Русско-турецкой войне 1828–1829 гг. Результаты своих многолетних исследований и опытов в области ракет А.Д. Засядко изложил в книге «О деле ракет зажигательных и рикошетных», которой положил начало теоретической разработке полевой реактивной артиллерии.

Колоссальную работу по совершенствованию боевых ракет и расширению сферы их боевого применения проделал известный военный инженер русской армии генерал А.А. Шильдер. Так, в 30-х гг. XIX в. им были сконструированы и испытаны специальные ракеты для обороны своих крепостей и осады крепостей противника. Шильдеру принадлежит первенство в использовании ракет в контрминной борьбе при обороне крепостей. Используя достижения своих соотечественников в области электричества (В.В. Петрова, Э.Х. Ленца, Б.С. Якоби и др.), Шильдер впервые в истории ракетной техники осуществил пуск боевой ракеты с помощью электричества. А.А. Шильдер сконструировал бронированную подводную лодку с ракетными станками, которая в 1834 г. была испытана на реке Неве. Конструкция станков и ракетных снарядов позволяла применять боевые ракеты из-под воды и над водой.

Одновременно с подводной лодкой по проекту генерала Шильдера был построен плот, служивший пристанью для подводной лодки и, кроме того, огневой единицей, вооруженной в носовой части ракетными станками. За ракетными станками была оборудована деревянная перегородка, за которой укрывалась прислуга во время стрельбы.

Неоценимые заслуги в конструировании и внедрении боевых ракет принадлежат ученику А.Д. Засядко выдающемуся ученому-артиллеристу и конструктору генералу К.И. Константинову. Деятельность Константинова в области развития отечественного ракетного оружия началась в 40-х гг. прошлого столетия. После окончания Михайловского артиллерийского училища Константинов, способности и талант которого были замечены, был назначен в 1845 г. начальником Петербургской пиротехнической школы, а в 1847 г. – начальником «Ракетного заведения».

К.И. Константинов значительно усовершенствовал производство ракет, сконструировав для этого несколько современных по тому времени машин и станков. Им были также созданы приборы, с помощью которых аналитическим путем исследовались процессы, происходящие в ракетной камере, и ряд вопросов внешней баллистики. В 1847–1850 гг. Константинов изобрел ракетный электробаллистический маятник, который дал возможность с высокой точностью измерять и исследовать движущую силу ракет и действие этой силы в различные моменты сгорания пороховой массы. Изобретения Константинова значительно обогатили теорию полета ракет.

В начале 50-х гг. Константинов, предварительно произведя большое количество опытов с использованием своих приборов над различными русскими и иностранными ракетами, создал новые боевые ракеты 2, 2,5 и 4-дюймовые (соответственно 51, 64 и 102-мм), которые были приняты на вооружение русской армии. Ему удалось найти наиболее выгодное сочетание размеров, формы, веса ракет и порохового заряда. Так, например, 4-дюймовые ракеты, снаряженные 10-фунтовыми (4 кг) гранатами, имели максимальную дальность стрельбы 4150 м, а 4-дюймовые зажигательные ракеты – 4260 м. Таким образом, дальность стрельбы ракет Константинова примерно в 2 раза превзошла дальность стрельбы из единорогов.

Благодаря усилиям К.И. Константинова русская армия перед Крымской войной получила грозное артиллерийское оружие, которое успешно было применено при героической обороне Севастополя в 1854–1855 гг.

Ракеты, имея легкие станки и вдвое большую, чем у гладкоствольных орудий, дальность стрельбы, размещались в домах и, будучи недосягаемыми для орудий неприятеля, наносили ему значительное поражение, особенно пехоте.

О большом значении полевых ракет в будущем Константинов писал в труде «О боевых ракетах», что ракеты есть оружие, могущее быть полезным в военном деле даже в своем нынешнем состоянии и сверх того надлежащее усовершенствованиям. которые призовут его оказать высокие заслуги военной силе нашего отечества.

После смерти Константинова (1871 г.) «Ракетное заведение» возглавил его ученик генерал В.В. Нечаев. Однако в 60-х гг. XIX в. на вооружение артиллерии стали поступать нарезные орудия, заряжающиеся с казенной части. После изобретения нарезных орудий ракеты были сняты с вооружения. Косность, рутина и преклонение перед Западом высших чиновников военного министерства взяли верх над идеями К.И. Константинова, В.В. Нечаева, А.А. Шильдера и многих других представителей передовой военной мысли России.

Идея ракетного оружия, получившая в России такое широкое распространение, не была забыта. В самом начале Великой Отечественной войны на полях сражений появилось новое грозное ракетное оружие, которое наносило гитлеровским захватчикам огромные потери. Это были знаменитые советские «катюши», огонь которых много раз обращал в бегство даже самые отборные гитлеровские войска.

Говоря о появлении и развитии русского ракетного оружия и его изобретателях, следует указать, что к числу ученых-энтузиастов, работавших в ракетной области, относится и известный революционер-демократ, народоволец Н.И. Кибальчич. Его научная работа «Проект воздухоплавательного прибора» была закончена в Петропавловской крепости накануне казни.

По расчетам Кибальчича, сила тяги порохового двигателя должна была помочь аппарату преодолеть силу земного притяжения и выйти за пределы атмосферы. Вытекающая струя пороховых газов должна использоваться не только для движения, но и для управления полетом. Эти положения были новыми в научной мысли. Воздухоплавательный прибор Кибальчича должен был действовать по принципу ракеты.

«Бомбист» Н.И. Кибальчич не может не вызывать восхищения своей преданностью науке, своей силой воли, позволившей ему совместить пребывание в камере приговоренных к смерти (за изготовление бомб для террористов) со сложнейшими математическими и физико-химическими расчетами. Находясь в застенках, он писал: «Я верю в осуществимость моей идеи, и эта вера поддерживает меня в моем ужасном положении. Если… моя идея после тщательного обсуждения учеными специалистами будет признана исполнимой, то я буду счастлив тем, что окажу громадную услугу родине и человечеству. Я спокойно тогда встречу смерть, зная, что моя идея не погибнет вместе со мной, а будет существовать среди человечества, для которого я готов был пожертвовать своей жизнью». Но мечте Кибальчича не суждено было сбыться. Оригинальный по замыслу проект талантливого изобретателя не был «обсужден учеными специалистами», а пролежал в Департаменте полиции 37 лет и впервые был опубликован в 1918 г.

Роль науки в развитии артиллерии

Честь открытия взрывчатого вещества пироксилина, на базе которого изготовлялся и бездымный порох, принадлежит питомцу Михайловской артиллерийской академии полковнику А.А. Фадееву. В последующем технологию изготовления пироксилинового бездымного пороха усовершенствовал и упростил великий русский ученый Д.И. Менделеев.

Заслуга в применении другого вещества для изготовления бездымных порохов (нитроглицерина) также принадлежит русским ученым – В.Ф. Петрушевскому и Н.Н. Зинину. В.Ф. Петрушевский первым получил из нитроглицерина динамит и использовал его в разрывных снарядах и подводных минах.

До появления казнозарядных нарезных пушек развитие артиллерии базировалось в основном на опыте. Во второй половине XIX в. техника достигла такого уровня, что без глубокой научной основы дальнейшее сколько-нибудь значительное развитие артиллерии стало немыслимым.

В самом деле, дальность стрельбы полевых орудий возросла до 4000–4500 м. Чтобы добиться меткой стрельбы на такую дальность, нужно было теоретически исследовать законы движения снаряда в воздухе. Чтобы еще больше увеличить дальность стрельбы, требовалось увеличить скорость полета снарядов, а этого можно было достигнуть в основном путем увеличения зарядов. Однако литые медные и чугунные стволы не выдерживали высокого давления пороховых газов, следовательно, требовалось найти более прочный материал для изготовления стволов.

Нельзя также было без глубоких научных изысканий создать надежно действующие трубки и взрыватели для снарядов, более мощные снаряды. Чугунные снаряды имели толстостенные корпуса. Длина их не превышала 2–2,5 калибра.

В такой снаряд нельзя было вложить большой разрывной заряд или большее количество пуль (шрапнели), а значит, трудно было сколько-нибудь заметно увеличить его мощность.

Проблемы, стоявшие перед артиллерией, были успешно разрешены русскими учеными-артиллеристами во второй половине XIX в.

На помощь военной науке пришли ученые, казалось бы, не имевшие отношения к армии. Так, например, всемирно известные русские ученые-математики Н.И. Лобачевский, П.Л. Чебышев, М.В. Остроградский и А.М. Ляпунов своими исследованиями помогли разработать многие очень важные вопросы таких специально артиллерийских наук, как внутренняя баллистика, внешняя баллистика и стрельба; великий химик Д.И. Менделеев сделал исключительно ценный вклад в дело создания новых, более совершенных артиллерийских порохов.

С давних пор русские ученые вели работы по изысканию стали, пригодной для изготовления орудийных стволов. Наилучших результатов добился инженер П.М. Обухов. Созданная им тигельная сталь благодаря удачному подбору чугуна и магнитного железняка оказалась лучше крупповской стали, которая ввозилась в Россию из-за границы. В 1860 г. впервые в мире, опережая на много лет Круппа, из стали Обухова было изготовлено орудие, из которого на испытаниях было сделано 4000 выстрелов. Заметного понижения точности стрельбы при этом не наблюдалось, и орудие из строя не вышло.

Примером мастерства оружейников является пушка, которую несколько лет тому назад водрузили на пьедестал на Мотовилихинском заводе. Пермская «царь-пушка» была создана в 1868 г. во времена «битвы железных канцлеров» – Александра Михайловича Горчакова и Отто фон Бисмарка.

Россия должна была обезопасить себя от неожиданного вторжения. Тогда-то в 1868 г. уральские металлурги и оружейники и отлили из слитка весом 4000 пудов огромную пушку. Предназначалась она для защиты Петербурга со стороны моря и должна была занять свое место в Кронштадте, на форту Константин.

Во время заводских испытаний пороховой заряд последовательно увеличивали до 120 килограммов. Пушка произвела при испытаниях 314 выстрелов ядрами и бомбами разных систем, при постоянном угле возвышения, на дальность до 8 километров. Окончательные испытания намечалось провести в Кронштадте по морским целям.

Заряжение пушки осуществлялось с дульной части ствола строго последовательно. Сначала закладывали пороховой заряд, затем ядро или бомбу весом 480 килограммов. Эта операция производилась при помощи системы полиспастов, подвешиваемых на особые крюки, встроенные в обрез ствола. Бомбу клали в специальную люльку или «корзину» и по команде дружно поднимали к жерлу орудия, затем «корзина» опрокидывалась и бомба сама вкатывалась в канал ствола.

Во время испытаний на месте падения ядер и бомб начисто срезались или разносились в щепу 300-летние сосны. Здесь же специалисты определяли кучность стрельбы, рассеивание и другие параметры баллистики.

Уникальное орудие было отлито из закаленного чугуна очень высокого качества по «уральскому методу». Плавка велась из лучших местных руд – магнитного железняка с рек Чусовой и Косьвы, а также «железного блеска» с реки Вишеры. Уголь шел древесный, от углежогов Добрянского завода, он придавал металлу свойство сопротивления ржавчине, потому что в «железном блеске» практически не было серы.

На Мотовилихинском заводе действовал 50-тонный паровой молот, превосходивший по своей мощности агрегаты этого типа на заводах Круппа. Когда ствол пушки окончательно обработали, его вес оказался равным 2800 пудов (45,9 т) при калибре 20 дюймов (508 мм). Напомним для сравнения данные Царь-пушки, отлитой знаменитым мастером Андреем Чеховым в 1586 г. в Москве по приказу царя Федора Иоанновича. Вес пушки 2400 пудов (39 312 кг). Дульная часть ствола внутри имеет диаметр 92 см. Длина ствола этого огромного орудия 5 метров 34 сантиметра. Однако московская Царь-пушка в отличие от уральской предназначалась для стрельбы только картечью (дробом), а не ядрами. По этой причине ее называли «дробовиком Российским». Долгое время она стояла на специальном деревянном лафете в Китай-городе и в случае нашествия кочевников должна была обстреливать переправу через Москву-реку и охранять главные ворота Кремля.

Уральская «царь-пушка» была много больше, стреляла ядрами и на большую дальность.

Однако этому «суперорудию» не суждено было попасть в Кронштадт. В Златоусте начал варить превосходную пушечную сталь инженер-изобретатель Павел Матвеевич Обухов, надобность в пушке отпала. Однако императором Александром II было принято решение ее сохранить как историческую реликвию для потомства.

Так и простояла пушка за проходной завода более 120 лет.

В 1863 г. под Петербургом был пущен специальный завод по изготовлению крупных орудийных стволов по методике, разработанной Обуховым. Этот завод стал называться Обуховским (ныне завод «Большевик»).

Стальной орудийный ствол крупного калибра в то время было очень трудно изготовить. Сталь варили в тиглях – специальных сосудах из огнеупорного материала, вмещавших всего по несколько десятков килограммов стали. Для ствола же нужна была болванка весом в несколько сот, а то и более тысячи килограммов. Поэтому требовалось варить для одного ствола совершенно одинаковую сталь сразу во многих тиглях. Это представляло большую трудность для литейщиков и требовало от них особого мастерства.

Обуховский сталелитейный завод по тому времени был весьма совершенным. На нем работали прекрасные сталевары, приглашенные Обуховым из Златоуста. Отливаемая на заводе сталь по своему химическому составу была безукоризненной. Однако вскоре обнаружилось, что некоторые стволы, изготовленные из этой стали, при стрельбе разрывались. Выяснением причин этого явления занялись многие специалисты, в том числе молодой инженер Дмитрий Константинович Чернов (1839–1921), снискавший впоследствии всемирную известность как основатель науки о металле. Тщательно анализируя процессы горячей обработки стали и ее структуру (внутреннее строение), он открыл, что при нагревании сталь не остается неизменной, при определенной температуре она претерпевает особые структурные превращения. Ее внутреннее строение (кристаллизация) меняется. Вместе с тем меняются и ее свойства.

Если сталь нагреть до высокой температуры, а затем быстро охладить (в воде или масле), то она закалится. Твердость ее повысится. Д.К. Чернов научно обосновал процессы, происходящие в стали при ее нагреве и охлаждении, и установил температурные пределы, при которых происходят структурные преобразования, резко сказывающиеся на качестве стали.

Чернов установил, что при 700 °C сталь приобретает способность принимать закалку. При 800–850 °C она сохраняет мелкозернистое строение и обладает наилучшими механическими свойствами. Затем сталь становится все более крупнозернистой и при температуре примерно в 1200 °C приобретает наибольшую пластичность. Эти температурные пределы получили в металлургии название «точек Чернова».

После научных открытий Д.К. Чернова ковку стальных стволов начинали при температуре 120 °C, когда сталь особенно хорошо поддается ковке, а заканчивали ее при 850°, когда сталь имеет наиболее выгодную структуру; затем ствол подвергали закалке, в результате чего случаи разрывов стволов прекратились.

Поскольку стальные стволы намного прочнее чугунных и бронзовых, их можно было заряжать более мощными зарядами, что позволяло стрелять на большие дальности. Однако дальнейшее увеличение зарядов вызвало необходимость увеличения толщины стенок стволов, что делало стволы тяжелыми.

Профессор Артиллерийской академии А.В. Гадолин (1828–1892) установил, что после определенного предела дальнейшее увеличение толщины стенок ствола оказывается бесполезным вследствие того, что прочность ствола увеличивается весьма незначительно, а вес его резко возрастает. А.В. Гадолин выяснил, что у толстостенного ствола наружные слои металла почти не участвуют в общем сопротивлении ствола разрыву. Он теоретически обосновал и доказал на опытах, что прочность орудийных стволов можно повысить путем их скрепления стальными кольцами.

Если на трубу, т. е. на ствол, надеть стальные обручи-кольца, предварительно нагретые до высокой температуры, то, остывая, они сожмут стенки трубы. При выстреле кольца будут удерживать трубу от расширения, увеличивая ее сопротивление разрыву. Надевая на ствол несколько слоев колец, можно добиться того, что орудие будет выдерживать давление 3000–3500 атмосфер.

Это открытие А. В. Гадолина позволило значительно увеличить мощность и дальнобойность орудий без повышения их общего веса. Руководствуясь научной теорией А. В. Гадолина, русские ученые и конструкторы стали создавать стальные орудия со скрепленными стволами. Так были созданы в русской армии орудия образца 1877 г. Из этих орудий стали стрелять дальше, чем из прежних, не скрепленных.

Труды А.В. Гадолина по теории скрепленных стволов, созданные им в начале 60-х гг., нашли широкое применение и не потеряли своего значения в наши дни. Гадолин по праву считается основоположником современной теории сопротивления скрепленных стволов, лежащей в основе проектирования орудий во всех странах.

Неоценимый вклад в науку внес заслуженный профессор генерал Н.В. Маиевский (1823–1892), плодотворно трудившийся во многих областях артиллерийского дела.

В 1855 г. Н.В. Маиевский, еще будучи поручиком, получил задание спроектировать 60-фунтовую пушку. Эту работу он начал с исследования характера изменения давления пороховых газов в канале ствола по мере передвижения снаряда. Ему удалось найти способ определения давления в различных сечениях ствола. Определив эти давления, он рассчитал толщину стенок ствола в каждом сечении, в результате чего спроектированная им пушка прекрасно выдержала конкурсные испытания. Аналогичные пушки разрывались после 500–700 выстрелов, пушка же Маиевского осталась невредимой и после 1000 выстрелов.

Но ценность работы Маиевского состояла главным образом в том, что он положил начало рациональному проектированию орудий. Его идея проектирования ствола с равным запасом прочности во всех его сечениях прочно вошла в практику артиллерийского дела и не потеряла своего значения до сих пор.

Деятельность Н.В. Маиевского как конструктора проявилась и в последующие годы. На него было возложено проектирование нарезных казнозарядных орудий системы 1877 г., сначала 4– и 9-фунтовых, а затем и более крупных калибров, вплоть до тяжелых пушек береговой обороны.

Применив все новейшие достижения науки, в том числе и теорию А.В. Гадолина о скрепленных стволах, Маиевский создал целую серию прекрасных для того времени артиллерийских орудий. Некоторые из них служили русской армии в Русско-японскую войну 1904–1905 гг. и даже в Первую империалистическую войну.

Заказы на тяжелые орудия выполнялись на заводах Круппа в Пруссии, поэтому и прусская артиллерия ввела у себя на вооружение береговые орудия системы Маиевского. Вскоре Пруссия стала продавать такие пушки и другим странам.

Наряду с проектированием орудий Н.В. Маиевский вместе с А.В. Гадолиным очень многое сделали по усовершенствованию формы зерен артиллерийского пороха. Оказывается, что от формы и размеров пороховых зерен сильно зависят скорость их горения, характер кривой давления пороховых газов при выстреле, величина заряда и в конечном итоге – начальная скорость снаряда. Для тяжелых орудий наиболее выгодным порохом являлся порох с призматическими зернами. Впервые он был введен в России. Затем его стали применять в других странах.

Большую ценность представляли собой труды Маиевского по внутренней и внешней баллистике.

Точно стрелять из орудия, особенно на большие дальности, можно лишь тогда, когда известен путь полета снаряда, а также силы, действующие на снаряд в полете. Маиевский занимался изучением полета шаровых снарядов и составил таблицы стрельбы для гладкоствольных орудий. С появлением нарезных орудий изучение характера движения в воздухе продолговатых снарядов приобрело особо важное значение.

Нужно было определить меткость стрельбы продолговатыми снарядами, подыскать наивыгоднейшую длину хода нарезов и составить таблицы стрельбы для нарезных орудий. Все эти задачи успешно решил Маиевский. На основании множества проделанных опытов и глубокого их исследования он вывел формулы для точного определения силы сопротивления воздуха полету продолговатых снарядов и объяснил явления, происходящие при движении снаряда в воздухе. Эти работы Н.В. Маиевского относятся к числу классических работ по баллистике. Без них не могли быть решены никакие вопросы о движении продолговатых вращающихся снарядов.

Вслед за Маиевским разработкой, совершенствованием и углублением теории и практики артиллерии по вопросам проектирования орудий, внутренней и внешней баллистики и стрельбы занимался его талантливый ученик и крупный ученый-артиллерист профессор Н.А. Забудский (1853–1917).

Русским ученым было чуждо чувство монополии. Свои труды они печатали и в русских, и в иностранных журналах. Их имена были широко известны. Д.К. Чернов, А.В. Гадолин, Н.В. Маиевский и Н.А. Забудский состояли членами различных иностранных академий наук, принимали участие в работе всевозможных международных научных обществ, конференций, совещаний. Их труды имели огромное значение для развития артиллерии во всех дружественных России странах.

Дальнобойная артиллерия

Методика горячей обработки и закалки стальных стволов, разработанная Д.К. Черновым, метод рационального проектирования стволов Н.В. Маиевского и теория скрепленных стволов А.В. Гадолина явились базой для изготовления более легких и в то же время более прочных стальных орудий, способных выдерживать большие давления пороховых газов. Работы Н.В. Маиевского, а затем и Н.А. Забудского в области внутренней и внешней баллистики позволили создать более совершенные и мощные снаряды и заряды, правильно рассчитать форму и крутизну нарезки ствола, обеспечивающую устойчивость снаряда на всем пути его полета, и точно высчитать траекторию снаряда. Все это имело решающее значение в совершенствовании артиллерийской техники, в развитии способов стрельбы и в повышении дальности и меткости артиллерийского огня.

В 1877 г. в России на вооружение были приняты нарезные орудия новой конструкции, разработанной Маиевским и Гадолиным. Стволы этих орудий были стальные, скрепленные кожухами (у малых калибров) или кольцами в один, два и даже три слоя (у больших калибров). В каналах стволов этих орудий было сделано по две каморы – снарядная и зарядная, соединявшиеся коническим скатом. Запирание стволов осуществлялось цилиндро-призматическими клиновыми затворами.

Снаряды для орудий образца 1877 г. были модернизированы: длина их стала достигать 4,5 калибра и делались они не только из чугуна, но и из стали. Вместо свинцовых оболочек на снарядах стали делать медные.

Стальные снаряды изготовлялись с более тонкими стенками и длиннее чугунных. Это позволило вкладывать в снаряды большие разрывные заряды.

Снаряды к орудиям 1877 г. снаряжались не порохом, а пироксилином, затем нитроглицерином и другими дробящими взрывчатыми веществами, которые были изобретены к этому времени. Новые взрывчатые вещества в несколько раз усилили мощность снарядов при взрыве.

Заряды к орудиям 1877 г. стали изготовлять из пороха с крупными полированными зернами правильной призматической формы. Такой порох горел медленнее. Поэтому газы после воспламенения заряда образовывались не в мгновение. Наибольшее давление их было не велико, среднее же давление газов по всей длине ствола возрастало. Это имело большое значение для повышения начальной скорости, а следовательно, и дальности полета снарядов.

Перечисленные изменения привели к тому, что при стрельбе из пушек системы 1877 г. более тяжелые снаряды получали значительно большую начальную скорость и летели вдвое дальше прежних (легких). В этот период полевая артиллерия стала стрелять на дальность до 6500, а осадная и береговая – до 8500–9000 м.

Именно поэтому орудия системы 1877 г. получили название дальнобойных.

У пушек 1877 г. были значительно улучшены лафеты. В этом огромная заслуга офицеров русской армии – воспитанников Артиллерийской академии С.С. Семенова, Л.П. Энгельгардта.

Сконструированные ими лафеты сделаны из листового котельного железа. Чтобы облегчить работу ходовой части орудия, в лафетах был введен каучуковый буфер. При выстреле он смягчал удар, передаваемый от станка на боевую ось.

На хоботовой части лафета был предусмотрен небольшой сошник. Врезаясь в грунт, он тормозил откат орудия при выстреле, сокращая его длину в несколько раз.

Был усовершенствован подъемный механизм. Его стали делать в виде двойного винта. При вращении рукоятки наружный винт ввинчивался в специальную гайку (матку), укрепленную на лафете, а внутренний – внутрь наружного винта. Новый подъемный механизм позволил быстрее осуществлять наводку орудия в цель.

На храповике подъемного механизма были нанесены деления, соответствующие каждое одному делению прицела. Это также ускоряло и облегчало наведение орудия.

Благодаря указанным нововведениям и усовершенствованиям ствола и лафета меткость огня из орудий образца 1877 г. и скорострельность значительно возросли. Это были прекрасные по тому времени пушки. Не случайно они состояли на вооружении русской армии даже в период Первой мировой войны 1914–1918 гг.

По своему техническому совершенству и боевым свойствам русские орудия системы 1877 г. намного опередили свою эпоху. С небольшими улучшениями они прослужили русской армии 40 лет. Только скорострельные орудия, еще более совершенные, совсем вытеснили орудия 1877 г.


    Ваша оценка произведения:

Популярные книги за неделю