412 000 произведений, 108 200 авторов.

Электронная библиотека книг » Сергей Киселев » Человек редактированный, или Биомедицина будущего » Текст книги (страница 7)
Человек редактированный, или Биомедицина будущего
  • Текст добавлен: 16 июля 2025, 19:21

Текст книги "Человек редактированный, или Биомедицина будущего"


Автор книги: Сергей Киселев


Жанры:

   

Биология

,

сообщить о нарушении

Текущая страница: 7 (всего у книги 12 страниц)

Оттачиваем инструменты

После того как были открыты первые виды микроорганизмов, имеющих адаптивный иммунитет к бактериофагам, ученые стали искать и другие виды бактерий, тоже имеющих подобную систему защиты, и обнаружили их достаточно много. Отчасти эта активность была обусловлена стремлением запатентовать новые типы нуклеаз или принципы функционирования направляющей РНК для последующей возможной коммерциализации, но, как мы видели на примере йогуртов Danone, даже тот интерес, за который платят деньги, быстро приводит к новым научным открытиям и технологическим прорывам.

Системы CRISPR и ферменты, сходные с Cas9-нуклеазой, были обнаружены у очень многих видов бактерий. Оказалось, что они обладают несколько различающимися свойствами в плане распознавания коротких нуклеотидных последовательностей. Это важно, потому что, как мы помним, у человека в геноме три миллиарда букв, и если мы хотим как-то отредактировать генетический текст, резать надо очень точно и в строго определенном месте, то есть необходима специфичность разрезания. Например, если в случае использования CRISPR стрептококка для распознавания посредством направляющей РНК особенно важны только первые три нуклеотида, то в случае стафилококка уже требуется последовательность, в которой особенно важны первые шесть нуклеотидов. Среди трех миллиардов букв генома человека комбинация из трех нуклеотидов еще может найтись, но найти вторую такую же комбинацию из шести нуклеотидов направляющая РНК и фермент Cas9-нуклеаза едва ли сумеют, поэтому специфичность распознавания и точность разрезания будут намного выше.

Помимо поиска новых CRISPR-систем и Cas9-нуклеаз в различных бактериальных штаммах, люди, овладевшие навыками генной инженерии, сами пытаются тем или иным способом изменить, усовершенствовать эти ферменты под собственные нужды. И это на самом деле возможно, потому что если мы имеем какой-то фермент – скажем, нуклеазу, – то знаем, конечно, его структуру и можем постараться внести туда те или иные модификации, чтобы получить фермент с другими свойствами.

Например, первоначально Cas9-нуклеазы обладали такой активностью, что происходило разрезание обеих цепей ДНК. Это очень ценное качество, но исследователи решили попробовать сделать по-другому, и были получены модифицированные варианты этих ферментов, которые могли разрезать только одну нить ДНК. Почему это хорошо? Опять-таки, для повышения точности! Если мы в одной цепи ДНК делаем разрыв в одном месте, а в другой цепи – со сдвигом, скажем, на десять нуклеотидов в сторону, то направленность и точность распознавания сильно повышается, и единственный на весь геном разрез будет именно в этом месте. Бывают случаи, когда это совершенно необходимо.

Возможны и другие модификации. В частности, варьируя нуклеазную активность фермента, мы можем даже просто ее «убить», чтобы этот фермент совсем не имел нуклеазной активности. Тогда в клетке будет происходить высокоспецифичное распознавание, но никакого разрезания ДНК не произойдет вообще.

Конечно, надо честно признаться, что не все в обсуждаемом нами методе так идеально. Хотя исследователи исходят из того, что направляющая РНК осуществляет строго направленное воздействие и способна распознавать конкретные буквы генетического текста, всегда остается опасение, что случайным образом молекула ДНК может быть где-то разрезана еще и будет нарушена целостность генома. Это явление называется off-target, или внемишенный эффект. Поэтому для биомедицинских целей все усилия исследователей в использовании данного метода направлены на то, чтобы максимально повысить специфичность распознавания.

Это объясняет, зачем нужны модифицированные нуклеазы, которые распознают одну цепь. Чтобы с их помощью произвести двухцепочечный разрез, надо использовать две направляющие РНК к двум фрагментам генетического текста, и это повышает точность, а значит, уменьшает внемишенный эффект. Избегать таких эффектов – очень важная составляющая работы в области биологии и медицины, потому что главное – это все-таки безопасность для человека.

С тех пор как основным инструментом геномного редактирования стала система CRISPR/Cas9, в мире наблюдается взрывной интерес к ее применению в фундаментальной науке и множестве практических приложений. Создан целый ряд компаний, занятых редактированием геномов растений и модификацией животных. Существуют компании, работающие в области биомедицины, чтобы использовать эти же технологии в здравоохранении.

Во многих отношениях применение CRISPR/Cas9 сталкивается с теми же трудностями, что и другие сконструированные нуклеазы: это не всегда высокая эффективность разрезания ДНК, недостаточная специфичность есть проблемы с доставкой фермента в нужные клетки, а также возможность иммунной реакции (поскольку все нуклеазы содержат элементы, полученные от бактерий) и сложность оценки конечного результата. Но есть и одно громадное преимущество – простота использования по сравнению со всеми предшествующими инструментами редактирования генома.

Многие ученые внесли свой вклад в замечательные открытия, о которых мы говорили в этой главе. Но высшая награда, Нобелевская премия по химии за 2020 год, была присуждена двум выдающимся женщинам-исследователям – Дженнифер Дудна и Эмманюэль Шарпантье, которые сначала участвовали в открытии адаптивного иммунитета бактерий, а потом вместе с коллегами занимались разработкой технологии CRISPR/ Cas9.

Почему открытие системы CRISPR/Cas9 заслуживает Нобелевской премии?

Союз науки и бизнеса

Не секрет, что в современном мире открытия редко совершаются учеными-одиночками. Обычно над любой серьезной проблемой работают коллективы исследователей, порой одновременно в разных странах, и всякий раз Нобелевский комитет сталкивается с весьма сложной задачей – как выбрать наиболее достойных. Здесь действует принцип, четко обозначенный в завещании самого Альфреда Нобеля. Суть его в том, что Нобелевская премия дается не за научное открытие как таковое, а присуждается тем ученым, кто «в течение предыдущего года сделал научные открытия, которые принесут наибольшую пользу человечеству».

Лауреаты Нобелевской премии 2020 года по химии Дженнифер Дудна и Эмманюэль Шарпантье как раз и оказались теми учеными, которые за минувший год внесли наибольший вклад не только в открытие иммунной системы бактерий, но и в применение этого открытия, на основе которого была разработана технология для улучшения жизни и здоровья человека. К тому же новая технология, получившая название «система CRISPR/Cas9», позволяет сделать точное побуквенное геномное редактирование за считаные дни и недели, а не за месяцы и годы, как это было в ранее созданных системах геномного редактирования, что существенно экономит время и деньги для новых исследований.

Однако никакие открытия ученых сами по себе не могут принести заметную пользу человечеству – на их основе надо создать технологии, которые будут востребованы. Если научные исследования обычно финансируются государством, то технологиями чаще всего владеет бизнес, который может быть заинтересован в их внедрении. И он же получает от этого внедрения основной доход. Каждое небольшое научное достижение, даже каждый, грубо говоря, «научный чих» можно каким-то образом попытаться превратить в товар. А система CRISPR/Cas9 бактерий – это действительно выдающееся научное открытие, на основе которого можно теперь создать технологию и получить конечные продукты. Но для того чтобы не было конкурентов, необходимо получить исключительные права на использование системы CRISPR/Cas9 для разработок, прежде всего путем патентования тех возможных областей, где ее можно использовать. Какие это области – уже понятно, поскольку новый инструмент генной инженерии позволяет работать с генами не в пробирке, как это было с середины 1970-х годов, а непосредственно в живой клетке.

Сразу скажу, что почти всеми патентами на применение системы CRISPR/Cas9 владеют нобелевские лауреаты Дженнифер Дудна и Эмманюэль Шарпантье, кто-то из их ближайших коллег и те компании, в которые они входят. А владение всеми патентами на использование системы означает, что за любое коммерческое применение геномного редактирования с помощью CRISPR/Cas9 необходимо платить владельцам патентов или их компаниям. К счастью для мировой науки, патент закрывает только возможность коммерческого использования научного достижения, но никак не ограничивает его дальнейшее применение в научных изысканиях.

Научные исследования могут проводиться без всяких ограничений.

Важнейшие области коммерческого применения системы CRISPR/Cas9 владельцы патентов видят в сельском хозяйстве (растениеводстве и животноводстве) и в индустриальной биологии, направленной на получение более высокоэффективных источников биотоплива и создание новых типов микроорганизмов, способных уничтожать те или иные отходы. Это исключительно важное направление, потому что запасы органических веществ, используемых нами сегодня (и прежде всего нефти и газа), имеют очень длительный цикл восстановления, измеряемый миллионами лет. Человечеству нужно органическое топливо, которое бы очень быстро восстанавливалось. При этом население Земли производит сегодня немыслимое количество различных отходов, которые могут даже без каких-либо аварий, просто в результате скученности, в которой живут миллиарды людей, привести к экологической катастрофе. Поэтому получение каких-то микроорганизмов, которые могут исключительно быстро, а главное, безопасно уничтожать те или иные продукты жизнедеятельности человека, тоже представляет для нас огромную важность.

Однако существует гораздо более обширная сфера применения системы CRISPR/Cas9, которая сегодня составляет семьдесят—восемьдесят процентов рынка как по своей направленности, так и по финансовым вложениям. Это медицина.

Возможное биомедицинское применение быстрой и эффективной технологии геномного редактирования изменило отношение к части редких, но смертельных заболеваний. Люди и не предполагали, что от некоторых недугов в принципе можно избавиться.

Есть неизлечимые болезни, с летальным исходом, вызванные врожденной заменой всего лишь одной буквы генетического текста в определенном гене. К ним относятся бета-гемо-талассемия – очень тяжелое заболевание крови, мелкоклеточная анемия, муковисцидоз, мышечная дистрофия Дюшенна и т. д.

Теперь появилась возможность обратить внимание на редкие генетические заболевания и попытаться лечить те из них, которые до появления революционной системы CRISPR/Cas9 были неизлечимы. Это реальный переворот в медицине, однако права на использование системы принадлежат всего лишь нескольким компаниям. Основные финансовые рынки потребления биомедицинских продуктов находятся в США и объединенной Европе, поэтому, скорее всего, коммерческое использование CRISPR/Cas9 в странах третьего мира не будет преследоваться правообладателями из-за невысоких прибылей. Но для быстро развивающихся стран с практически неограниченным рынком потребления, таких как Китай, эти ограничения могут представлять реальную угрозу, что заставляет страны действовать на опережение.

Однако, как я уже сказал, помимо коммерческого применения CRISPR/Cas9, возможно и другое использование системы геномного редактирования – в научных целях. За него не надо платить правообладателям, но оно тоже открывает совершенно фантастические перспективы.

Заглянем в «кухню»

Чтобы понять, как работает система CRISPR/Cas9 и каким образом ее можно использовать в научных целях, давайте вспомним, что мы уже знаем о ней. Это система распознавания, в которой одноцепочечная направляющая РНК, попадая внутрь клеточного ядра, очень точно распознает короткий фрагмент ДНК (примерно полтора десятка букв генетического текста) по принципу комплементарности. Эта направляющая РНК ассоциирована с белковым комплексом, который называется Cas9 и обладает нуклеазной активностью (нуклеаза – это белок, который может вносить разрывы в цепи ДНК). Направляющая РНК подводит этот белок к совершенно определенной, уникальной последовательности длиной около полутора десятков нуклеотидов, и белок Cas9 вносит в этом месте двухцепочечный разрыв, разделяя таким образом ДНК на два фрагмента.

А если мы попытаемся изменить свойства комплекса? Ученые предложили еще один вариант: хорошо, пусть распознавание происходит с помощью распознающей РНК и комплекса Cas9, но мы внесем в этот белок-нуклеазу определенные мутации, которые полностью устранят нуклеазную активность. Значит, распознавание будет, а разрезания не будет! Зато получится очень точная система позиционирования – не хуже, чем современный смартфон, который, находясь в любой точке мира, определяет свое положение с точностью до двух-трех метров.

Зачем все это нужно? Давайте опять вспомним «наши» биотехнологические достижения и генно-инженерные конструкции. Мы уже синтезировали эту направляющую РНК и умеем делать так, чтобы к ней был прикреплен вот этот мутантный белок Cas9, лишенный нуклеазной активности. А теперь, лиха беда начало, прикрепим к белку Cas9 генно-инженерными методами (один лишний день работы!) известный белок, который либо подавляет работу генов, либо активирует.

Я уже писал, что в геноме есть гены, которые кодируют определенные белки – «кирпичики» для построения клеток, и регуляторная часть – участок, который контролирует работу гена. Но имеются также особые белковые молекулы, например транскрипционные факторы, которые могут активировать работу гена, связываясь с определенными последовательностями генетического текста. Есть и другой тип ДНК-взаимодействующих белков, которые могут совершать обратное действие – снижать уровень экспрессии (проявления работы) гена, репрессировать его. Такие молекулы получили общее название активаторные, или репрессорные, белки. И если мы к нашей сложной конструкции, состоящей из направляющей РНК и мутантного фермента Cas9 без нуклеазной активности, «пришьем» с помощью генной инженерии некий активатор транскрипции гена, то вся конструкция, проникнув в клетку, исключительно точно распознает определенный район именно того гена, который необходимо активировать. А если вместо активаторного белка мы вставим репрессорный, то конструкция подавит работу данного гена. Это исключительно точное направленное воздействие, дающее эффект, с которым сегодня не сравнятся никакие химические молекулы, обладающие сходным действием. К тому же любая синтезированная химическая молекула из-за значительных побочных эффектов будет дополнительно изменять работу многих генов. Правда, надо признать, что у малых химических молекул есть преимущество: они легче проникают в клетку, чем CRISPR/Cas9.

Для чего можно использовать активационную или репрессорную конструкции? Вот реальный пример. В опухолевых клетках активирован целый ряд генов, которые в норме работать в них не должны. Но мы можем постараться подавить их работу за счет того, что доставим в опухолевые клетки конструкцию, которая будет состоять из системы распознавания – направляющей РНК – и инактивированного мутантного фермента Cas9, а также репрессора (подавителя) транскрипции данного конкретного гена. Это один из вариантов инактивации (выключения) ненужных генов, который дает шансы вылечить заболевание, вызванное слишком высоким уровнем экспрессии генов (как это обычно бывает в опухолевых клетках).

Часто случаются и противоположные ситуации, когда в организме отсутствует или недостаточна экспрессия какого-то гена, и это приводит к патологии. В таком случае для регуляции конкретного гена можно подобрать направляющую РНК, которая распознает последовательность именно этого гена, добавить белок Cas9 без нуклеазной активности, генно-инженерным путем присоединить активаторный белок, и тогда мы сможем очень точно и целенаправленно активировать нужный ген.

Серьезно говорить об использовании этих подходов для лечения людей пока еще преждевременно, но вне организма, in vitro, на модельных системах такая возможность сейчас активно изучается.

Наверняка каждый читающий эту книгу слышал о стволовых клетках, но не все знают, что они бывают разными. Они есть и во взрослом организме, и нужны для естественных процессов восстановления тканей, поэтому их называют тканеспецифичными, из них получаются (или, по-научному, дифференцируются) только специализированные клетки определенной ткани, например костной. А поскольку каждый человек развивается из одной-единственной клетки, то стволовые клетки, которые появились в зародыше в самом начале его развития, порождают все многообразие клеток взрослого организма, в том числе и тканеспецифичные стволовые клетки.

Эти ранние зародышевые стволовые клетки называют эмбриональными – по месту их нахождения или плюрипотентными – по их функциональным возможностям. Плюрипотентность (от лат. pluri – много) означает способность дифференцироваться в большое количество разнообразных клеточных типов. Эти клетки уникальны своим потенциалом: из них можно получить клетки и крови, и мозга, и кишечника, и печени, и... еще пару сотен других. Но откуда их взять для взрослого человека, организм которого уже прошел этап эмбрионального развития?

А что, если попробовать использовать для этого обычную соматическую клетку? Ведь в конце концов, геном и у одноклеточного эмбриона, и у стоклеточного зародыша, и у взрослого организма одинаков. Просто для развития и жизнедеятельности организма не нужна работа всех генов во всех клетках одновременно. На ранних стадиях развития сначала работают одни комбинации генов, через пару дней некоторые гены выключаются и включаются другие, еще через неделю возникает новая комбинация и т. д. Если же мы возьмем взрослый организм, то в каждой определенной его клетке на протяжении всей жизни должна работать стабильная комбинация некоторых генов, причем в разных специализированных клетках потребуется активность разных генов, а остальные будут выключены (репрессированы).

Тонким балансом между активностью одних и репрессией других генов как раз и достигается клеточное совершенство – гомеостаз, то есть саморегуляция, направленная на поддержание стабильного состояния. Но что произойдет, если в специализированной клетке взрослого организма активировать те гены, которые нужны на стадии стоклеточного эмбриона, то есть репрограммировать ее – заставить выполнять программу эмбриональной клетки? Для этого можно провести генную терапию. Мы используем вирус, в котором находится нужный ген, по каким-то причинам не работающий в клетке, затем вводим нашу конструкцию в ДНК клетки, и вот – извольте! – в ней начинает работать ген, привнесенный вирусом.

Именно так поступили японские исследователи под руководством Синъя Яманака с клетками мыши, а чуть позже и человека. В 2006 году были опубликованы результаты этого исследования. Ученые применили к клеткам, полученным из взрослого организма, генную терапию четырьмя транскрипционными факторами, которые активно работают на стадии эмбрионального развития. И – о чудо! – эти клетки репрограммировались в эмбриональное состояние плюрипотентности, а эту четверку транскрипционных факторов назвали «магическая четверка» (magic four).

Это значит, что любую клетку нашего организма в лабораторных условиях можно перевести в плюрипотентную стволовую! Представьте, ведь потом из них можно получить любую клетку организма – и это действительно может оказаться прорывом в регенеративной медицине. Я не буду вдаваться в подробности технологии и ее научные основы, скажу лишь, что всего через шесть лет после появления первой статьи Синъя Яманака получил за эту технологию Нобелевскую премию. Такой короткий срок повторяет рекорд Вильгельма Рентгена – первого в мире лауреата Нобелевской премии по физике, который в 1895 году впервые применил свои лучи и получил изображение металлического кольца на ладони, а в 1901 году ему была вручена Нобелевская премия. Только эти два открытия, две технологии, два человека – Вильгельм Рентген и Синъя Яманака – не попали под действие известного правила номинантов: чтобы получить премию, надо жить долго.

Итак, применяя генную терапию для клетки, мы можем изменять ее судьбу, но, к сожалению, не всегда бесследно. Введенные вирусы, гены, дополнительные последовательности ДНК представляют потенциальную, хотя и не очевидную опасность. Однако если точечно активировать «магическую четверку» генов с помощью направленного действия активаторной CRISPR/Cas9-системы, клетка репрограммируется до состояния плюрипотентной стволовой без всякого генетического следа от проведенного воздействия.

При использовании CRISPR/Cas9 исследователи вводят свою генно-инженерную конструкцию прицельно, направляя ее на каждый конкретный ген. Конечно, выбрать его весьма непросто – необходимы большая работа и хорошее понимание процесса. Но зато если мы поймем, какой ген в каждом патологическом процессе является ключевым, и сможем с помощью этой системы на него воздействовать, то подобный подход позволит решить многие медицинские и биологические проблемы. В частности, CRISPR/Cas9 позволяет углубить наши знания об устройстве живой клетки и о тех сложнейших процессах реализации (проявления) генетической информации, которые в ней происходят.

Многие помнят изображение хромосом в школьных учебниках в виде буквы X. Оно очень распространено, хотя надо понимать, что такой вид хромосомы имеют только в момент, когда клетка начинает переходить к процессу деления – митоза. Именно своим перекрестьем они прикрепляются к определенным структурам во время метафазы (стадия митоза) и расходятся по разным клеткам. Они так и называются – метафазные хромосомы. В этот момент они сильно конденсированы, то есть генетический материал в них очень плотно упакован, ведь хромосомы содержат нить ДНК длиной несколько десятков сантиметров, генетическую информацию которой надо поделить между двумя дочерними клетками без потерь.

Сам процесс деления клетки продолжается недолго. Большую часть времени клетка пребывает в интерфазе – состоянии между делениями, когда занимается своей «профессиональной» деятельностью. Длительность интерфазы у клеток разной специализации сильно различается. Например, нейроны находятся в стадии интерфазы практически на протяжении всей жизни организма; можно считать, что они не делятся. А вот активированные лимфоциты будут делиться примерно один раз за промежуток времени от двух до двадцати четырех часов, в зависимости от степени их активации. Им же надо бороться с инфекцией! Именно после встречи с инфекцией они становятся активированными и начинают делиться. В любом случае клетка уделяет значительное время выполнению своих специальных функций, то есть определенная часть генетической информации должна быть постоянно доступна для считывания.

Как вы понимаете, с ДНК, плотно упакованной в крошечных «червячках» метафазных хромосом, сложно считывать информацию. Поэтому хромосомы деконденсируются – молекула ДНК раскручивается и заполняет собой все ядро. Если окрасить каждую хромосому в свой цвет, ядро в этот момент по раскраске будет напоминать трехмерный пазл или очень сложную головоломку – 3D-шар. Различные фрагменты одной хромосомы соседствуют с фрагментами другой, переплетаясь, а некоторые очень отдалены. И это не хаос а стабильно сохраняющееся состояние генетического материала в интерфазе – фазе «профессиональной» деятельности клетки.

На этом этапе клеточного цикла хромосомы занимают хромосомные территории в пространстве ядра. Расположение соседних территорий и определяет закрытость или открытость генетических файлов, то есть комбинаций тех генов, которые должны работать в специализированной клетке, ведь они раскиданы по разным хромосомам (и это правильно: «не клади все яйца в одну корзину»), но работать должны скоординированно. Для этого считывающие транскрипционные комплексы (помните наши ленточные магнитофоны XX века и современные стримеры?) собираются в определенных местах ядра, и необходимые гены располагаются там же, даже если они на разных хромосомах и работают под воздействием одного транскрипционного комплекса, так как находятся в одном определенном месте. Для понимания работы всего генетического аппарата обнаружение активных генов с разных хромосом, находящихся физически в одном месте, имеет огромное значение. Это уже не изучение одного-единственного гена в пробирке, а исследование синхронизированной работы генов в клетке.

Технологии секвенирования нового поколения и современные информационные технологии позволили предсказать такие возможные генетические комплексы. Но, увы, только теоретически. С определенной вероятностью, довольно высокой – девяносто пять, девяносто, восемьдесят пять, восемьдесят процентов, – можно сказать, что эти два, три, четыре, пять... генов действительно находятся рядом и используют одну и ту же транскрипционную машину. Но как это подтвердить на сто процентов? Вот если бы можно было увидеть своими глазами! Оказалось, что можно, и в решении этой проблемы ученым помогли... медузы.

МЕДУЗЫ И ГЕНЕТИКА

Как ни странно, в глубинах океана, куда вообще не проникает свет, тоже есть жизнь – богатая и разнообразная. Обитающие там организмы, никогда не видевшие света, обладают множеством диковинных свойств, предназначение которых зачастую бывает для нас непонятным. Одно из них обнаружили еще в 1960-х годах. Вытащенные на поверхность глубоководные организмы, потерявшие при солнечном освещении всю свою красоту, случайно были освещены ультрафиолетовым светом определенной длины волны. И вдруг полупрозрачные, почти бесцветные медузы и другие подводные жители «загорелись» зеленым, синим, красным, оранжевым цветами!

Оказывается, ультрафиолетовый свет этой длины волны, невидимый для наших глаз, приводит к возбуждению электронов в молекулах определенных белков, и клетки, содержащие эти белки, начинают светиться. Это качество, для глубоководных существ абсолютно ненужное и бессмысленное, так как вода прекрасно поглощает ультрафиолет, для нас оказалось чрезвычайно полезным. На данный момент открыто много различных флуоресцентных белков, одна часть которых выделена напрямую из тех или иных видов медуз, кораллов и других подводных жителей, а другая часть получена генно-инженерными способами. Сегодня флуоресцентные цветные белки активно применяются в научных исследованиях.

Именно флуоресцентные белки стали использоваться для создания так называемой репортерной системы на основе мутантной системы CRISPR/Cas9. Репортерная система – это, конечно, научный жаргон экспериментальных исследователей. Сегодня у нас слово «репортер» ассоциируется только со средствами массовой информации. В привычном понимании это кто-то, передающий информацию с места событий. Такое же значение это слово приобрело и в современной экспериментальной биологии. Биологическая репортерная система связана со светящимися белками, благодаря которым появляется возможность своими глазами видеть микроскопические события, происходящие внутри клетки. За использование свойств зеленого флуоресцентного белка – GFP (green fluorescent protein), выделенного из медуз, в 2008 году была вручена

Нобелевская премия. Надо отметить, что в справке Нобелевского комитета ни разу не прозвучало сочетание «репортерная система», зато неоднократно использовались такие слова, как «освещает» (illuminate) и «маяк», «бакен», «сигнальный огонь» (beacon). Действительно, если с помощью генной инженерии сделать синтетическую конструкцию, в которой какой-то клеточный белок, например инсулин, составляет единое целое с GFP, то введя ее в клетки или даже в целый организм, мы сможем визуально проследить, как инсулин секретируется клетками и путешествует по организму.

При создании репортерной системы на основе CRISPR/Cas9 используется следующий подход. Берется направляющая РНК, с помощью генной инженерии соединенная с мутантным белком Cas9, который лишен нуклеазной активности (способности разрезать ДНК), к нему «пришивается», как говорят генные инженеры, репортерный флуоресцентный белок. Посветив ультрафиолетом на клетку, в которую введена такая репортерная конструкция, мы увидим ее свет именно там, где направляющая РНК нашла определенный фрагмент ДНК, с которым она связалась. Теперь надо ввести в клетку генетические конструкции с направляющими РНК к тем генам, которые предположительно находятся все вместе в одном районе ядра (колокализуются), причем каждая из генетических конструкций содержит мутантный Cas9 своего цвета. И тогда мы получим возможность своими глазами увидеть в живой клетке, не разрушая ее, в каком именно месте находятся наши гены, использующие один и тот же транскрипционный комплекс. И это не просто игрушка ученых, а важный технологический шаг, потому что очень многие болезни характеризуются как раз нарушением работы генов, но далеко не всегда ясно, какие механизмы при этом задействованы и, соответственно, какие требуются методы для лечения.

Репортерные конструкции предоставляют ученым еще одну необыкновенную возможность: увидеть живую клетку в процессе ее жизнедеятельности. Сегодня получило удивительное развитие такое направление, как прижизненное клеточное кино. Существующая микроскопическая техника позволяет наблюдать живую клетку на протяжении дней и даже недель, но если при этом в нее ввести наши репортерные конструкции, то с их помощью ученые смогут четко определять, каким образом те или иные фрагменты ДНК становятся активными, связываясь с транскрипционными факторами. Система на основе CRISPR и модифицированного Cas позволяет делать это очень эффективно, расширяя наши познания о том, как живет клетка.

В принципе, легко себе представить, что все описанные выше возможности – подавление гена, активация гена, репортерная система, позволяющая определить, как этот ген заработал, и другие – могут быть применены совместно в одной клетке, в одной пробирке, и можно будет наблюдать в режиме реального времени, что при этом происходит, добиваясь нужных результатов. А это значит, что система распознавания на основе направляющей РНК CRISPR и мутантного фермента Cas9 дает огромные дополнительные возможности в науке, причем без значительных временных затрат.


    Ваша оценка произведения:

Популярные книги за неделю