412 000 произведений, 108 200 авторов.

Электронная библиотека книг » Сергей Киселев » Человек редактированный, или Биомедицина будущего » Текст книги (страница 12)
Человек редактированный, или Биомедицина будущего
  • Текст добавлен: 16 июля 2025, 19:21

Текст книги "Человек редактированный, или Биомедицина будущего"


Автор книги: Сергей Киселев


Жанры:

   

Биология

,

сообщить о нарушении

Текущая страница: 12 (всего у книги 12 страниц)

Самый смелый из «тысячи талантов»

История первого в мире наследуемого редактирования генома человека на долгое время оказалась в центре внимания биологии и регенеративной медицины. И это понятно, потому что очень велики надежды на биомедицину – на то, что человечество сможет более эффективно управлять такой сложной биологической системой, как человек, внося необходимые поправки на генном или клеточном уровне.

Хэ Цзянькуй родился в 1984 году в Китае, после окончания университета уехал в США учиться в аспирантуре, в 2010 году защитил диссертацию на соискание ученой степени (PhD, соответствует кандидату наук) по биофизике, а в 2012 году вернулся в Китай по программе «Тысяча талантов». Это специальная программа, принятая китайским правительством, по возвращению на родину талантливых соотечественников, чтобы они занимались научными исследованиями не за границей, а у себя в Китае.

Программа «Тысяча талантов» сначала была действительно рассчитана на тысячу человек, но потом расширена и продолжает осуществляться. Хэ Цзянькуй получил лабораторию в университете города Шэньчжэнь. Среди тех людей, которых правительство Китая привлекло для работы на родине, он считался одним из самых талантливых. Его называли китайским Эйнштейном, восходящей звездой и т. д. И хотя Хэ Цзянькуй защищал диссертацию по биофизике, после возвращения в Китай он очень плотно занялся редактированием генома. Мы уже знаем, что именно в этот период, с 2012 до 2013 год, стало очень активно развиваться редактирование генома, особенно с помощью системы CR1SPR/Cas9, позволявшей сократить время редактирования до нескольких недель.

Работая по гранту «Тысяча талантов», Хэ Цзянькуй как молодой ученый в 2018 году получил еще дополнительный грант от китайского правительства. Ему предоставили все условия для работы. Помимо научных изысканий, он, как сейчас принято во всем мире, основал семь различных коммерческих компаний как раз в области геномного редактирования, общая стоимость которых оценивается примерно в полмиллиарда долларов. Однако поначалу об эмбрионах человека речи не шло.

По словам ученого, его увлечение редактированием генома человека началось только в последние годы, но никаких публикаций у него на эту тему не было. В основном Хэ Цзянькуй пытался проводить геномное редактирование на мышах, но ни на обезьянах, ни на эмбрионах человека он не работал – по крайней мере, никто не знал его как исследователя в этой области.

Тем более поразительной для всех была новость, появившаяся за сутки до открытия международного симпозиума, о том, что Хэ Цзянькуй не только провел геномное редактирование эмбрионов человека, но и трансплантировал их и что уже родились два ребенка с отредактированным геномом. Новость облетела весь мир: сначала она была опубликована одним журналистом в твиттере, потом перепечатана в журнале Массачусетского института технологии (MIT). Этот еженедельный внутренний журнал публикует обзорные статьи по последним достижениям науки, поэтому новость об уникальном эксперименте стала очень быстро тиражироваться другими СМИ.

Однако пока это был лишь ничем не подтвержденный слух. И вот за день до начала симпозиума, в неофициальной обстановке Хэ Цзянькуя встретила Дженнифер Дудна (одна из первооткрывателей технологии CRISPR/Cas9) и как бы невзначай спросила, будет ли он рассказывать на конференции о своих экспериментах с геномом человека. Он сказал, что сообщать об этом не планировал и собирается делать доклад, посвященный каким-то другим своим работам. Дудна была поражена: как можно эксперимент, о котором уже говорит весь мир, не обсудить на этой конференции? В тот же вечер члены оргкомитета пригласили Хэ Цзянькуя в ресторан поужинать и пообщаться. Все они выразили некоторое удивление тем, что ученый решился на подобный эксперимент, хотя он объяснил, что эта работа была одобрена китайским госпиталем, где проводится экстракорпоральное оплодотворение, однако институт, где работает Хэ Цзянькуй, его эксперимент не одобрил, поэтому рассказывать об этой работе он не собирается. Тем не менее члены оргкомитета выудили из него некоторые подробности и, несмотря на свое осуждение эксперимента в принципе, дружно стали уговаривать китайского ученого сделать о нем доклад на конференции.

И на второй день конференции Хэ Цзянькуй сделал доклад о том, как его усилиями две девочки, которых он называл Нана и Лулу, появились на свет в октябре 2018 года – более чем за месяц до конференции, на которой прозвучал его доклад. Родились они с помощью кесарева сечения, но по медицинским показаниям – без всякой связи с исследованиями ученого.

Подробности уникального эксперимента Хэ Цзянькуя

В своем докладе Хэ Цзянькуй рассказал о некоторых подробностях того, что и как делал. Ученый отобрал в клинике экстракорпорального оплодотворения несколько супружеских пар, которые были инфицированы ВИЧ. Геномное редактирование, то есть введение системы CRISPR/Cas9 в клетки будущего эмбриона, происходило как раз в этой клинике. Были взяты единственная женская яйцеклетка и один сперматозоид, потому что нужно было хорошо отмыть сперматозоид от возможного присутствия вируса иммунодефицита человека в сперме при ее массовом отборе – это было необходимо из клинических соображений. Затем единственным сперматозоидом оплодотворяли яйцеклетку и к этим двум слившимся клеткам сразу же добавляли систему CRISPR/Cas9 на основе рибонуклеиновой кислоты для проведения редактирования генома.

Дальше оплодотворенную яйцеклетку (зиготу) с СRISPR/Cas9помещали на несколько дней в лабораторный инкубатор, чтобы по существующей технологии, разработанной задолго до Хэ Цзянькуя, провести генетический анализ. Обычно он проводится, когда у людей есть подозрение на какое-то генетическое заболевание плода, например болезнь Дауна или еще что-то. По этой технологии на третий-четвертый-пятый день развития зиготы можно от эмбриона отщепить одну клетку, при этом эмбрион не пострадает – он и дальше будет нормально развиваться. Но на единственной взятой из него клетке можно провести генетический анализ (он называется предимплантационной генетической диагностикой) и посмотреть, хорош ли этот эмбрион с генетической точки зрения или плох. Если, предположим, обнаруживается трисомия по двадцать первой хромосоме (синдром Дауна), то данный эмбрион уже подсаживать не будут; вместо этого проверят другой эмбрион, и если он не несет трисомию, его можно будет подсадить. Предимплантационная генетическая диагностика (ПГД) – это стандартная процедура, используемая уже не один десяток лет.

Хэ Цзянькуй для проведения ПГД взял как раз одну клетку, но целью его диагностики в данном случае была необходимость узнать, прошло ли редактирование и насколько хорошо. Ведь и яйцеклетка, и сперматозоид до слияния несли свои геномы – по двадцать три хромосомы от каждого из родителей. Текст, на который нацеливался китайский ученый (ген CCR5), находился на третьей хромосоме генома мамы (в яйцеклетке), а другая его копия – на третьей хромосоме генома папы (в сперматозоиде). После их слияния образуется диплоидный набор хромосом: двадцать три от мамы и двадцать три от папы, всего сорок шесть. На этом этапе в зиготу был добавлен генетический редактор, нацеленный на ген CCR5. Такой ген есть и на маминой, и на папиной хромосоме, а значит, в дальнейшем могут получиться такие варианты: генетический редактор не сработает (оба аллеля гена CCR5 сохранятся неизменными); будет отредактирован только один аллель, а второй останется нетронутым; будут отредактированы оба аллеля.

При проведении ПГД на этапе, когда эмбриону от трех до пяти дней, Хэ Цзянькуй ставил своей целью посмотреть, в каких из нескольких развивающихся эмбрионов произошло редактирование целевого гена, чтобы выбрать впоследствии самую лучшую бластоцисту (раннюю стадию развития эмбриона) для трансплантации в матку женщины. Всего ученый использовал двадцать две оплодотворенные яйцеклетки от нескольких супружеских пар, и оказалось, что только в шестнадцати из них произошло редактирование – либо наполовину, либо полностью. Одиннадцать из этих шестнадцати эмбрионов были использованы для имплантаций. Сегодня не рекомендуется имплантировать женщине более двух бластоцист, так как техника экстракорпорального оплодотворения развита достаточно хорошо, и в семидесяти процентах случаев обе бластоцисты нормально развиваются до самых родов, так что рождается двойня.

Поскольку было имплантировано одиннадцать эмбрионов, и не более двух – одной женщине, то, очевидно, трансплантация была проведена пяти или шести женщинам. Однако, судя по всему, развилась только одна беременность, и родились двойняшки (не однояйцевые близнецы) – никакой информации о других беременностях не появлялось.

Так родились Нана и Лулу. У одной из них, как выяснилось, была внесена мутация только в один аллель, то есть получилась гетерозигота по гену CCR5. Это значит, что один аллель оказался измененным и несет природную мутацию дельта-32. А второй аллель остался исходным, без полиморфного варианта гена. Другая девочка имела изменения в обоих аллелях гена CCR5, то есть они несли мутацию дельта-32. Считается, что такие люди устойчивы к вирусу иммунодефицита человека.

К сожалению, с тех пор как Хэ Цзянькуй выступил со своим докладом на конференции в Гонконге в ноябре 2018 года, никакой новой информации об этом уникальном эксперименте не появлялось. Каких-либо определенных научных публикаций в рецензируемых журналах до сих пор нет; ни один из них не решился напечатать материалы, отправленные китайским ученым. И та история, о которой я здесь рассказываю, стала известна скорее из публикаций в СМИ и научно-популярных изданиях, чем из какой-то научной аналитической статьи.

В природе такого не бывает

О явлении, названном мозаицизм, мы уже говорили, когда обсуждали эксперименты на обезьянах и работы Шухрата Миталипова по редактированию эмбриона человека без имплантации. Мозаицизм возникает, когда у одного и того же организма разные клетки могут нести немного отличающиеся гены. Читатель уже, наверное, понял, что это явление могло развиться при геномном редактировании на уровне эмбриона, которое провел Хэ Цзянькуй. Ученый ввел необходимый генный редактор в зиготу (уже оплодотворенную яйцеклетку с диплоидным геномом), однако дальше эта клетка делится, образуя две, четыре, восемь, шестнадцать клеток и т. д., – и на каком этапе генный редактор сработает, неизвестно. Как вы помните, Шухрат Миталипов утверждал, что вводить генный редактор надо не тогда, когда гаметы уже слились, а на более раннем этапе, еще до оплодотворения яйцеклетки сперматозоидом. Хэ Цзянькуй пошел более стандартным путем, и генный редактор действительно сработал гораздо позже – уже на этапе нескольких клеток, причем сработал, скорее всего, далеко не во всех из них. В каких-то клетках ген был изменен, а в других остался в своем нормальном состоянии.

В естественной популяции такого не бывает. Существуют природные варианты гена CCR5 – те, которые наследуются. Например, от мамы будущий ребенок получает ген CCR5-дельта-32, а от папы более широко распространенный вариант гена без этого изменения, и все клетки этого человека с момента его рождения и до самой смерти будут гетерозиготны по гену CCR5. А вот с ситуацией, когда возникает мозаицизм, то есть часть клеток в одном и том же организме гомозиготна по гену CCR5, а другая гетерозиготна, человечество никогда раньше не сталкивалось. Как будет развиваться такой организм? Скорее всего, нормально, ведь и с тем и с другим геном люди живут и чувствуют себя прекрасно. Но если мозаиками окажутся кроветворные стволовые клетки, то когда дело дойдет до иммунного ответа, предсказать его правильность пока не представляется возможным.

Проблема в том, что на самом деле ген CCR5 играет важную роль для клеток иммунной системы. В частности, некоторые из них, а именно Т-лимфоциты, как раз из-за наличия гена CCR5 становятся мишенями ВИЧ. Очень показательна история Тимоти Рэя Брауна, американца, у которого в 1995 году во время учебы в Берлине диагностировали ВИЧ. На фоне иммунодефицита у Тимоти развился острый миелоидный лейкоз – разновидность лейкемии (рака крови). Самым эффективным способом лечения лейкемии является химическое устранение всех клеток крови, включая стволовые, поскольку они-то как раз и становятся раковыми. А взамен нужно было трансплантировать пациенту кроветворные клетки костного мозга от подходящего донора, и если они приживутся, пациент будет жить долго и счастливо.

Трансплантация состоялась в 2007 году. Несколько лет после этого события имя пациента скрывалось из соображений конфиденциальности. Из шестидесяти доноров был выбран человек, имевший мутацию гена CCR5 в обоих аллелях, доставшихся ему и от папы, и от мамы. Люди с этой мутацией встречаются достаточно редко – примерно в одном проценте случаев. Именно такие клетки костного мозга получил ВИЧ-инфицированный пациент для лечения своей лейкемии. То, что произошло дальше, назвали берлинским чудом: пациент оказался полностью излеченным от ВИЧ, потому что тот вид вируса, которым он был инфицирован, проникал в здоровые клетки именно через рецептор CCR5. Мутация дельта-32 приводит к тому, что вирус не связывается с рецептором на Т-лимфоцитах и не проникает в них, инактивируя в дальнейшем всю иммунную систему. Этот человек вылечился и прожил еще тринадцать лет. К сожалению, в 2020 году Тимоти Браун умер в результате рецидива лейкемии. Ему было пятьдесят четыре года.

Известен всего один случай успешного повторения этой лечебной процедуры у другого человека, известного как лондонский пациент. Случай аналогичный: у больного нашли лимфому, и при этом он был ВИЧ-инфицированным. Он тоже получил костный мозг от донора, который, по счастливому совпадению, имел ген CCR5 с мутацией дельта-32 в обоих аллелях. Лондонский пациент выздоровел и в 2019 году сообщил свое имя – Адам Кастильехо.

В этих двух случаях использовалась весьма дорогостоящая и сопряженная с повышенным риском медицинская процедура, ориентированная в первую очередь на онкологических больных. Но сегодня для целого ряда компаний, работающих по редактированию генома, мишенью является именно ген CCR5. Его редактируют, но не на уровне эмбриона, чтобы последствия этого редактирования не передавались по наследству, а берут у пациента кроветворные стволовые клетки костного мозга, вне организма редактируют их, а потом помещают обратно. Таким образом, зародышевый путь не затрагивается, наследования не происходит, но зато часть стволовых клеток крови получает мутацию дельта-32, и они становятся устойчивыми к инфицированию вирусом иммунодефицита человека.

Китайский эксперимент: за и против

Сегодня человечество находится еще в самом начале клинических исследований в области методов лечения ВИЧ с помощью технологии геномного редактирования. Задача, которую поставил себе Хэ Цзянькуй, была более сложной, чем у других исследователей, потому что в китайских популяциях мутация дельта-32 гена CCR5 не встречается. Ученый надеялся, что та мутация, которую он внес Нане и Лулу, в случае образования как гомозиготы, так и гетерозиготы повлияет не только на них, но – за многие годы – и на всю китайскую популяцию в плане защиты от ВИЧ. В самом деле, если клетки с подобной мутацией попадут в женскую репродуктивную систему и сформируют яичник, то либо половина яйцеклеток (у той девочки, у которой гетерозигота), либо все яйцеклетки (у второй девочки, у которой гомозигота) будут нести мутацию дельта-32 и передадут ее потомкам.

В этом Хэ Цзянькуй видел главный положительный момент, когда обосновывал свой эксперимент по редактированию эмбриона. Но тут надо оговориться, что есть несколько подтипов ВИЧ, использующих для проникновения в организм разные рецепторы, и CCR5, который выбрал в качестве мишени китайский ученый, – только один из них. Поэтому если мы изменили ген CCR5, то это не означает, что человек будет полностью защищен от инфицирования вирусом иммунодефицита человека.

Насколько важно наличие или отсутствие участка гена CCR5, лежащего в области дельта-32? Люди, естественным образом имеющие гомозиготную мутацию по этому рецептору, живут без него и каких-то особых проблем из-за этого не замечают – даже на Фарерских островах, где частота мутации дельта-32 максимальна и достигает трех процентов общей численности населения. По-видимому, ген CCR5 – не тот ген, вариации которого представляют опасность для здоровья в настоящее время.

Эксперимент китайского исследователя неожиданно возродил интерес и к полиморфизму гена CCR5. Так, в июне 2019 года в журнале Nature Medicine (это один из наиболее авторитетных научных журналов) была опубликована статья, что от варианта гена дельта-32 бывают и негативные последствия. Проанализировав результаты генотипирования и данные о смерти четырехсот тысяч британцев, исследователи из Университета Беркли пришли к выводу, что мутация CCR5-дельта-32 в гомозиготном состоянии увеличивает для ее обладателей риск смерти от любых причин! И это в довесок к тому, что она вроде бы приводит и к повышенной восприимчивости к вирусу гриппа. Шокирующая информация была опровергнута через полгода, когда три независимых анализа той же самой базы данных о смертности и генотипе дельта-32 опровергли данные статьи, поскольку обнаружили техническую ошибку в расчетах. В октябре 2019 года исходная статья о риске смерти была отозвана авторами из журнала. Ситуация как в старом анекдоте: ложки-то мы нашли, но осадочек остался... Тем не менее многие функции этого гена остаются неизвестными. Например, мы не знаем, для чего ген CCR5 экспрессируется в мозге, в опухолях и т. д. Насущная потребность в изучении таких вопросов отсутствует, а значит, и средства на их решение не выделяются.

Так каких же негативных эффектов можно ожидать от того, что в этих двух девочках, Нана и Лулу, Хэ Цзянькуй полностью или наполовину изменил рецептор CCR5? Прежде всего надо упомянуть, что они – возможные генетические мозаики, а в природе таких организмов не существует, и нам трудно оценить их дальнейшее развитие. В этом большой риск, потому что рецептор CCR5 экспрессируется не только на Т-лимфоцитах, но и на других клетках, и каким теперь будет взаимоотношение клеток с разными вариантами гена в одном организме – остается пока загадкой.

Одного из факторов риска – по крайней мере, со слов Хэ Цзянькуя – ему удалось избежать. Он сказал, что не обнаружил у этих девочек никаких внемишенных изменений в геноме. Да, система CRISPR/Cas9 действительно обладает высокой точностью распознавания генетического текста, но ведь «и на старуху бывает проруха»! Если система должна из шести миллиардов букв (по три миллиарда от папиного и маминого генома) генетического текста найти двадцать уникальных буквенных сочетаний, понятно, что она может и ошибаться. По утверждению китайского ученого, в случаях с этими девочками система нигде не ошиблась и совершенно четко произвела мутацию дельта-32, которую он и хотел получить.

Какой еще может быть риск от ее введения? Есть небольшое количество публикаций, в которых говорится, что при природной мутации дельта-32 в гене CCR5 у людей повышается риск заболеть лихорадкой Западного Нила. Но болеют ею люди нечасто. Возможно, более серьезная опасность, согласно единственной публикации, состоит в том, что эта мутация повышает чувствительность к гриппу. Но опять-таки надо учитывать некий баланс. От гриппа ежегодно умирает в мире, по разным оценкам, от трехсот до шестисот тысяч человек (а болеют шестьсот миллионов или больше), а от СПИДа каждый год погибает около миллиона, – при том, что болеют им гораздо реже, чем гриппом.

Возможно, удастся изучить, будут ли эти китайские девочки более чувствительными – пусть не к лихорадке Западного Нила, которая случается все-таки очень редко, а к гриппу.

Подводя общий итог целесообразности выбора китайским исследователем мутации CCR5-дельта-32, можно сказать, что это направление остается перспективным для исследований во всем мире. Но исследований не на уровне эмбриона, а на уровне соматических клеток – ученые ищут наиболее эффективные методы внесения нужной мутации в стволовые клетки крови, чтобы обеспечить защиту пациентам, инфицированным ВИЧ.

Заключение
Кто-то должен быть первым

Работа по наследуемому редактированию человеческого генома, которую выполнил Хэ Цзянькуй, – это смелый эксперимент, поставленный на человеке. Всего два дня – и информация об этой прорывной работе облетела интернет, была перепечатана, состоялись неофициальная встреча китайского ученого с оргкомитетом международной конференции по использованию геномного редактирования CRISPR/Cas9 и его собственный доклад на этой конференции, – за эти два дня мир реально изменился.

Реакция части научного сообщества была негативной. В прессе появилось письмо ста китайских ученых, в котором они осудили своего коллегу за его действия. Но я хочу особо подчеркнуть, что подписали письмо всего сто человек, даже не тысяча, что для Китая с его огромным количеством научных учреждений очень мало. Напомню также, что Китай отказался проводить эту конференцию на своей территории, хотя китайское правительство финансировало работы Хэ Цзянькуя, и поговаривают, что эта работа не была исключением. Однако, ожидая негативной реакции мирового ученого сообщества, власти Китая, на мой взгляд, просто решили «валять дурочку».

Они не могли не понимать, что обладание такой технологией дает фантастические возможности, и кто-то должен быть первым.

Хэ Цзянькуй – чрезвычайно отважный человек, даже если он не соблюдал каких-то законодательных формальностей в своей стране. Нельзя шагнуть в неизвестное, не нарушив каких-то правил. Поступок китайского ученого можно сравнить со смелостью первого человека, который, сев на простое бревно, оттолкнулся от берега Африки и поплыл через океан. Едва ли его соплеменники могли оценить этот поступок, но не будь таких людей, человечество никогда не заселило бы Землю, люди не знали бы колеса и не летали в космос. В разговорах о вмешательстве в эмбрион человека неизменно присутствуют указания на неэтичность таких работ. Но кто оценивал этичность запуска человека в космос? Кто с этой точки зрения обсуждал Юрия Гагарина и тех людей, которые сделали возможным его полет, в конце концов (ну что тут играть словами!), приказали лететь? А полетел он с радостью и удовольствием. Первый! Установка тогда была предельно четкая: люди могут в этом полете погибнуть (и погибали в других). Те, кто летел первыми, прекрасно это себе представляли, но все равно хотели быть первыми.

Да, в ряде стран существуют запреты и ограничения на действия с человеческим геномом. Но реальных наказаний за них не предусмотрено. И нет никаких доказательств, что это неэтично. В современном мире понимание этики оказывает весьма неоднозначное влияние на то, чем занимается человек. В моем понимании этика – это переживание об уже содеянном, и используя этот опыт для будущего, большинство формирует ограничения для всех.

В целом реакция научного мира на китайский эксперимент оказалась сдержанно негативной. Заинтересованные люди были недовольны тем, что Китай позволил или не помешал своему ученому выйти за установленные рамки. Лишь некоторые ученые сказали, что он молодец, поскольку нашел в себе смелость сделать шаг вперед и вступить на совершенно новую территорию.

К сожалению, отсутствие реальной поддержки со стороны научной общественности привело к тому, что эта новая территория, куда вступил Хэ Цзянькуй, стала подобной обратной стороне Луны. Мы не знаем доподлинно, что произошло с самим ученым. Из последнего по времени сообщения следует, что в декабре 2019 года Хэ Цзянькуй был приговорен к трем годам лишения свободы и штрафу в три миллиона юаней за нарушение законодательства в области экспериментов с людьми и проведение медицинских процедур без лицензии. Тем более ничего не известно о дальнейшей судьбе двух китайских девочек с отредактированным геномом, которым идет уже третий год.

Для эксперимента это большой срок, и науке было бы очень важно иметь информацию о том, что происходит с их развитием, иммунной системой, как отразился на их здоровье вирус иммунодефицита человека, которым инфицированы их родители. На мой взгляд, отсутствие такой информации приводит к тому, что у Хэ Цзянькуя появляются последователи, которые тоже желают провести редактирование эмбриона. Не так давно, примерно год назад журнал Science опубликовал статью Дениса Ребрикова, руководителя лаборатории Научного центра акушерства, гинекологии и перинатологии имени академика В. И. Кулакова. В статье было сказано, что лаборатория полностью готова к имплантации бластоцист с отредактированным геномом и ждет только разрешения, чтобы это сделать.

Кстати, здесь уместно вспомнить Роберта Эдвардса, лауреата Нобелевской премии за экстракорпоральное оплодотворение (ЭКО), ведь китайский ученый как раз использовал его технологию. Эдвардс в 1967 году попросил разрешения на использование технологии ЭКО. Нетрудно догадаться, какой он получил ответ... Тогда он попросил денег и разрешение на то, чтобы получить первого в мире ребенка в пробирке. Ему ответили, что это, во-первых, невозможно, а во-вторых, неправильно, так как зачатие – дело Божье.

Десять лет спустя Роберт Эдвардс нашел себе компаньона и финансирование и осуществил первое экстракорпоральное оплодотворение. Это тоже был риск, и последовали гонения. Тогда это был первый ребенок «из пробирки» (сейчас это мать двоих детей, зачатых естественным путем). На данный момент по миру ходят еще около десятка миллионов детей, зачатых в пробирке. Эта смелость – сделать шаг в неизвестность – всегда сопровождается риском и гонениями.

Есть еще один очень важный вопрос: а нужно ли, чтобы редактирование эмбриона передавалось по наследству? И нужно ли оно вообще? На самом деле трудно представить себе такие ситуации, где наследуемое редактирование генома было бы необходимо с медицинской точки зрения.

Денис Ребриков предлагает лечение генетической глухоты. Понятно, что глухота – вещь неприятная, но испокон веков люди с глухотой жили, даже сформировали свое сильнейшее сообщество – «Всероссийское общество глухих», и это не угрожающая жизни ситуация. То есть реально найти медицинскую мишень, для которой необходимо использовать технологию геномного редактирования с тем, чтобы результаты генетических манипуляций передавались по наследству, мне кажется, очень сложно.

Хэ Цзянькуй, на мой взгляд, сделал исключительно важный шаг. Правда, в данный момент мы еще не знаем его последствий. Скорее всего, подобное наследуемое генетическое редактирование не имеет большого медицинского значения, потому что не исправляет ситуации, однозначно угрожающие жизни. Но запрещать такие исследования нельзя. Мы должны уметь пользоваться технологией геномного редактирования, в том числе так, чтобы оно безопасно могло наследоваться.

Но мы ведь не знаем, что ждет человечество в будущем! А вдруг мы обнаружим, что определенная мутация в каком-то гене позволит человеку легко переносить космическое излучение или продлит срок его активной жизни? В любом случае можно говорить о том, что геномное редактирование прочно войдет в нашу жизнь и, возможно, станет основой биомедицины будущего.


    Ваша оценка произведения:

Популярные книги за неделю