Текст книги "Человек редактированный, или Биомедицина будущего"
Автор книги: Сергей Киселев
сообщить о нарушении
Текущая страница: 10 (всего у книги 12 страниц)
Вирусы на службе генетиков
В главе 3 мы уже говорили об использовании вирусов в качестве векторов для переноса в клетку «правильного» гена, как, например, в случае генной терапии одного из видов наследственной дистрофии сетчатки глаз – амавроза Лебера. Эта технология использует аденоассоциированный вирус для доставки прямо в глаз здоровой копии мутировавшего гена RPE65, и на ее основе в 2018 году появился препарат Люкстурна, позволяющий частично вернуть таким больным зрение.
К сожалению, тяжелые болезни зрения бывают вызваны мутациями в достаточно широком спектре генов. В результате люди либо рождаются незрячими, либо постепенно теряют зрение – в пятнадцать, двадцать, тридцать лет, и это еще более трагическая ситуация, влекущая за собой тяжелую психологическую травму. Не было никаких способов хотя бы остановить прогрессирование этой патологии, и только генная терапия дает какие-то шансы впоследствии изменить ситуацию.
Сегодня ученые уже научились создавать вирусные векторы для генной терапии, используя в них и аденовирусы, и аденоассоциированные вирусы, и даже вирус иммунодефицита человека (ВИЧ), что звучит достаточно страшно – а вдруг он действительно приведет к развитию иммунодефицита! Но нет, на самом деле уже с 1970-х годов ученые умеют работать с генами в пробирке.
В чем заключается работа с вирусами? Главное, в чем состоит для нас ценность вируса, – это его свойство копировать свою генетическую информацию внутри клетки за счет ее ферментов репликации. Если мы уберем из состава генома вируса те фрагменты генетического текста, которые отвечают, скажем, за его размножение, то вирус сохранится, но размножаться не сможет. А можно изъять из генома вируса те фрагменты генетического текста, которые у него отвечают за синтез белков капсида (оболочки вируса), генно-инженерным путем встроить их в клетку, и клетка будет сама производить эти белки, в то время как вирусная молекула эту способность потеряет. Таким образом удается существенно уменьшить генетическую информацию самого вируса, поскольку часть его функций теперь передана клетке вне организма. А с уменьшением содержания генетической информации вирус становится более безопасным, неинфекционным.
Благодаря этой генно-инженерной манипуляции можно сделать все вирусы достаточно безопасными, а кроме того, за счет передачи некоторых функций вируса специализированным клеткам освободить в его геноме место для полезной генетической информации. И получается тот самый вектор, в который дальше можно с помощью методов генной инженерии и гомологичной рекомбинации вставить нужный ген, в специализированных клетках собрать уже новые вирусные частицы – нашу синтетическую химерную нуклеиновую последовательность, запаковать ее в вирусные белки и уже этим вирусом инфицировать человека. Напомню, что он лишен возможности реплицироваться и собираться, так как у него нет генов для синтеза этих белков – они остались в тех специализированных клетках, с которыми производились манипуляции в лаборатории для производства нашего векторного вируса. Он может совершить инфицирование только один раз – перенести нужный нам генетический материал в клетку и на этом закончить свое существование.
Когда без редактора не обойтись
Но, увы, использование рассмотренного выше метода для генной терапии ограничено размерами вируса. Мы не можем вместить в него больше генетической информации, чем позволяет его природный максимальный размер, называемый емкостью вируса. Но даже существенное замещение вирусного генома на необходимый для переноса генетический текст не всегда удовлетворяет потребностям исследователей. Сегодня мы можем вставить внутрь вирусных векторов, в зависимости от используемого вируса, где-то от трех до семи тысяч букв генетического текста. А, например, при генной терапии макулодистрофии сетчатки, которая возникает из-за мутации в гене СЕР290, размер гена раза в три больше, чем может себе позволить, скажем, аденоассоциированный вирус. Поэтому для пациентов с таким диагнозом стандартный подход генной терапии с помощью вирусов неприменим.
Кажется, положение безвыходное. Но почему бы не попытаться исправить дефектный ген прямо в клетках глаза, не прибегая к доставке нового гена, а с помощью системы геномного редактирования CRISPR/Cas9?
Ученые умеют доставлять в клетку целую страницу генетического текста, а вот уже пять—десять страниц не могут, и приходится переходить на новый уровень редакторской работы: не просто заменять параграф, зная, что там что-то произошло, а внимательно читать десятки страниц и менять отдельные буквы. Это как раз и позволяет делать система геномного редактирования CRISPR/Cas9. И вот уже компания Editas Medicine, которой принадлежит одно из первых достижений ге-номного редактирования – восстановление функции печени у мышей, в 2019 году получила разрешение FDA на проведение клинических исследований по исправлению гена СЕР290 с помощью CRISPR/Cas9 прямо в глазу у пациента. Понятно, что исправление гена в соматических клетках человеческого глаза никак не затрагивает клетки зародышевого пути, и эта мутация продолжит передаваться по наследству. Но благодаря даже еще не конечному, а лишь начальному, но положительному решению регулятора (FDA) по поводу планов компании, она сразу получила от инвесторов двадцать пять миллионов долларов. То есть становится возможным появление перспективного лекарственного препарата.
Не унаследовать бы изменения!
Главной целью генной терапии, естественно, является благо человека, его избавление от тяжелых заболеваний, которые другим путем не лечатся. Однако в этой книге я уже неоднократно подчеркивал, что все исследования, о которых мы говорили, были направлены на клетки взрослого организма, которые не принадлежат к клеткам зародышевого пути, а значит, все внесенные в процессе терапии генетические изменения не будут наследоваться. Почему же люди проявляют такую боязливость в отношении вмешательства в стандартный биологический процесс? Разве человечество не вмешивается постоянно в биологические процессы окружающей среды, выводя новые виды растений и животных за счет скрещиваний и модификаций?
Тем не менее факт остается фактом: человек о себе заботится больше, чем об окружающей природе. Например, когда в 1978 году родилась Лиза Браун – первый в мире ребенок, зачатый «в пробирке», это почему-то вызвало бурю негодования, и не только среди людей религиозных, но и в научном сообществе. Как посмели вмешаться? А вдруг что-то у этого человека пойдет не так? И еще неизвестно, что его ждет в будущем!
Действительно, опасность существует, когда мы повторяем некоторые естественные процессы в искусственных условиях. Наверное, также негативно воспринималось когда-то появление ребенка с помощью кесарева сечения, – это тоже вмешательство в нормальную биологию, но оно спасало жизни. А новая технология экстракорпорального оплодотворения дарила жизни, причем никаких отклонений ни у мамы Лизы Браун, ни у нее самой, ни у других десяти миллионов детей, «зачатых в пробирке», пока не наблюдается.
Почему я уделяю особое внимание технологии экстракорпорального оплодотворения? Потому что именно она дает возможность вмешательства в клетки зародышевого пути человека. Ведь на первом этапе своего развития человек представляет собой одну клетку! Потом эта клетка делится – их становится две, затем четыре и т. д. На ранних этапах все они одинаковы, неотличимы друг от друга, и только на стадии примерно ста клеток в эмбрионе начинается первая специализация, то есть появляются клетки, которые потом создадут нервную, кровеносную, пищеварительную, эндокринную, сердечно-сосудистую системы, а часть клеток станет гоноцитами и из них смогут образовываться сперматозоиды или яйцеклетки.
Если изменить генетическую информацию на самых ранних стадиях развития эмбриона, генетические изменения попадут и в клетки зародышевого пути. По достижении половой зрелости организма эти клетки полового пути естественным путем передадут введенные в них генетические изменения потомству.
Казалось бы, это так здорово! Давайте всех заранее откорректируем, чтобы никто не болел, и пусть болезни вообще устранятся из рода человеческого. Что тут скажешь? Несомненно, когда речь идет об известных моногенных неизлечимых заболеваниях, такой подход имеет право на существование. Но у людей, как правило, появляются и другие, порой опасные желания по изменению генотипа человека. В любом случае они мешают появлению естественного биоразнообразия, а значит, препятствуют развитию. Конечно, геномное редактирование, в том числе с помощью системы CR1SPR/Cas9, позволяет при необходимости заменить единственную букву генетического текста. Но даже эта, самая совершенная на сегодняшний день система все равно, увы, несовершенна. Она тоже может ошибаться. Как часто? Вроде бы нечасто, с вероятностью 10-6. Но если у нас 109 букв генетического текста в одной клетке, то даже при точности редактирования 10-6 все равно около одной тысячи букв могут быть повреждены. Эти внемишенные (off-target) изменения можно как-то предсказать и потом просмотреть соответствующие фрагменты генетического текста, чтобы выяснить, действительно ли там происходит повреждение (скажу по собственному опыту: в основном нет, не происходит). И все-таки вероятность внесения каких-то нежелательных изменений, пусть низкая, но существует. Поэтому возникает естествен-ный вопрос: допустимы ли подобные вмешательства в принципе?
В 2013 году появились первые публикации о применении системы СRISPR/Cas9 для геномного редактирования, а уже в 2014 году китайскими учеными была опубликована совершенно фантастическая работа, выполненная на приматах – мартышках. Приматы гораздо ближе к человеку, чем мыши: человек ведь тоже из отряда приматов. Китайские ученые решили на уровне одноклеточного эмбриона мартышки, то есть на только что оплодотворенной яйцеклетке, провести множественное редактирование генома – исправить генетический текст не в одном месте, а в пяти различных местах, чтобы добиться определенных признаков у потомства.
Зачем это делалось? У исследователей была благая цель. Мартышки хоть и близки к человеку, но в плане иммунной системы отличаются, и использовать обезьян, чтобы проверять на них те или иные биомедицинские технологии, связанные с иммунной системой человека, не удается. Китайские исследователи решили с помощью геномного редактирования сделать так, чтобы эти мартышки могли впоследствии быть использованы в качестве реципиентов тканей и органов человека для трансплантации.
Это очень важно, потому что сегодня ученые уже умеют выращивать «зачатки» искусственных органов (органоиды) человека для всевозможных исследований. Но прежде чем пересаживать искусственно выращенные органы, надо проверить, как они будут встраиваться в организм, взаимодействовать с другими его тканями, как туда проникнут кровеносные сосуды, как эти ткани будут иннервироваться[10]10
Иннервация – снабжение органов и тканей нервами, обеспечивающее связь с центральной нервной системой. – Прим. ред.
[Закрыть]. Мы не сможем поместить в мышь выращенный печеночный органоид человека, пусть и маленький, величиной с наперсток, из-за физической и физиологической несовместимости.
Для всех таких экспериментов требуются соответствующие модельные системы, и задачей китайских исследователей в данном случае было выведение такой линии животных, которые впоследствии могли быть использованы для изучения особенностей организма человека. А для этого надо, чтобы они были иммунологически совместимы с человеком. Причем вносить изменения надо было на уровне одной клетки, чтобы они попали в зародышевый путь, и уже после этого животное-основатель (founder), в котором обнаружатся необходимые свойства, естественным путем могло передать их своим потомкам, которых впоследствии можно было бы использовать в научных целях.
Для своего эксперимента исследователи использовали сто девяносто восемь яйцеклеток (ооцитов), извлеченных из мартышек. Для этого потребовалось около сорока самок. После искусственного оплодотворения было получено сто восемьдесят шесть зигот, из которых восемьдесят три ученые подсадили тридцати суррогатным самкам. Всего развилось девять беременностей и родилось девятнадцать мутантов-мартышек. Процедура получилась длительная и очень дорогая. Но зато дальнейшие расходы сводятся к минимуму, потому что один мутантный самец с заданными свойствами менее чем за год способен естественным образом обеспечить появление двух-трех десятков потомков с необходимым генотипом. Таким образом, китайским ученым с помощью технологии геномного редактирования CRISPR/ Cas9 удалось получить линию мартышек с заданными генетическими свойствами – совместимостью с клетками и тканями человека.
Девятнадцать мутантных отпрысков были тщательно исследованы учеными. У мартышек были обнаружены только те генетические изменения, которых они добивались, а в других местах никаких изменений не оказалось, что указывает на высокую точность редактирования.
Это генетическое редактирование, проведенное на уровне яйцеклетки, было первой работой, которая показала, что если данный процесс вообще можно проводить на приматах, то технология полностью готова для проведения генетического редактирования генома человека, причем такого, при котором внесенные изменения станут наследуемыми.
Следующего шага долго ждать не пришлось. Уже в 2015 году вышла новая работа китайских ученых, в которой они сообщили о результатах проведенного генетического редактирования на эмбрионах человека. В опубликованной статье было сказано, что большинство эмбрионов после их геномного редактирования оказались нежизнеспособными, а с остальными эксперимент был прерван на стадии четырнадцатого дня развития эмбриона, причем большинство из них погибло даже раньше. Тем не менее этот эксперимент вызвал бурный взрыв эмоций со стороны научных сообществ, в первую очередь американского. Ученые из США возмущались громче всех, доказывая, что это неэтично, что человечество к таким экспериментам еще не готово, надо проверить получше, изучить более тщательно, провести дополнительные исследования.
Наверное, это отчасти правильно. Чем больше мы проведем исследований, прежде чем применить что-то непосредственно на человеке, тем лучше, все-таки человек – не обезьяна. Но все равно когда-то придется переходить на человека и применять разработанные на животных технологии. А неудовольствие американских ученых этим первым экспериментом, скорее всего, было вызвано тем, что «кто-то» опередил США.
В декабре 2015 года в США состоялся 1-й Международный саммит по редактированию генома человека. Организаторами являлись США, Великобритания и Китай, присутствовали ученые из разных стран. В отличие от Асиломарской конференции 1975 года, российских представителей там не было. На саммите 2015 года участники конференции договорились, что на настоящий момент клиническое использование отредактированных эмбрионов человека является безответственным.
Такое решение не было первым. Еще в конце 2014 года Организация Объединенных Наций выпустила декларацию, к которой присоединился ряд стран, в том числе и Россия, о том, что нельзя использовать геномное редактирование для клеток человека, которые могут попасть в зародышевый путь. Но в китайской работе 2015 года по редактированию эмбрионов человека генетическая информация уже могла бы сохраниться, если бы эмбрионы не погибли или их развитие не было специально остановлено. Саммит 2015 года был созван, чтобы, так сказать, сверить часы. По его результатам было принято решение, что эмбрионы человека редактировать не стоит...
Однако в 2017 году вышла работа американских ученых именно по генетическому редактированию эмбриона человека, выполненная под руководством одного из ведущих ученых-эмбриологов мира Шухрата Миталипова, в свое время получившего образование в СССР.
За этим ученым признано несколько больших технологических прорывов. В частности, он был первым в мире человеком, который совершил терапевтическое клонирование приматов. Он же впервые в мире в 2012 году клонировал эмбрион человека. Это было не репродуктивное клонирование с целью рождения нового человека, а терапевтическое клонирование для получения эмбриональных стволовых клеток, полностью идентичных донору генетического материала.
Целью исследования 2017 года было внесение исправлений в некую патогенную мутацию. Сначала коллектив Миталипова пытался идти по пути своих китайских коллег и производить геномное редактирование на уровне зиготы, когда яйцеклетка уже оплодотворена сперматозоидом и там присутствуют два генома – отцовский и материнский. Но оказалось, что при последующих делениях получается целый набор различных вариантов клеток, отличающихся своим геномом. Бывает, например, так, что все клетки в многоклеточном эмбрионе оказываются несущими нужные исправления. Возможен и совершенно другой вариант: получаются эмбрионы, в которых вообще нет никаких генетических исправлений. Но самое плохое – когда образуется смешанный вариант (он называется мозаик), в котором присутствуют различные геномы; это значит, что в получившемся многоклеточном эмбрионе часть клеток несет генетические исправления, а другая часть – не несет.
Последний вариант хуже всех, потому что впоследствии эти клетки продолжают деление и с определенного момента начинают специализироваться: какие-то идут в клетки зародышевого пути, другие начинают формировать сердце, образуют закладки мозга, крови, пищеварительного тракта и других органов тела. А вот в какую ткань попадет клетка с каким геномом – совершенно непредсказуемо. И получится, что уже во взрослом организме клетки с исходной мутацией будут, скажем, наблюдаться в коже, но отсутствовать в крови. Или, к примеру, в сердце они могут и присутствовать, и отсутствовать. Это значит, что совершенно четкой картины мы не получим и не сможем сказать, каков вклад мутации, исправили мы ее или нет. Группа Шухрата Миталипова поставила перед собой задачу преодолеть эту проблему – сделать так, чтобы все эмбрионы на стадии сотни клеток были однородными, не мозаичными. Для этого генетический редактор вводился в ооцит на разных стадиях оплодотворения. Оказалось, чтобы получить единообразный эмбрион, лучше делать генетическое редактирование еще на стадии яйцеклетки – до того, как произошло оплодотворение отцовским геномом. Вероятно, здесь работают какие-то определенные механизмы, приводящие к более эффективному геномному редактированию.
В своих работах на приматах китайские исследователи проблем мозаичности не наблюдали. Почему такая разница в результатах китайских и американских ученых? В первую очередь надо понимать, что каждый исследователь использует свои условия, которые хоть немного, но отличаются (как минимум, это собственные глаза и руки). Немножко различаются и используемые реактивы, поскольку они выпускаются разными фирмами, изготовлены в разные годы, по-разному хранились (это «немножко» может на самом деле оказывать большое влияние). Исследования некоторых групп, проведенные позже, не совсем подтвердили точку зрения Миталипова и его коллег относительно того, что лучше редактировать геном яйцеклетки до оплодотворения. Ничего драматичного нет в том, что по каким-то неустранимым причинам результаты оказываются не полностью воспроизводимыми. К тому же надо иметь в виду, что работа очень сложна, поскольку ведется на живых системах, которые исключительно гибки, и действие многих внешних факторов нам трудно заранее предсказать.
Итак, можно сказать, что, несмотря на принятые самими учеными ограничения, работы с эмбрионами человека активно продолжались и усложнялись, хотя и были исключительно экспериментами в пробирке, in vitro. В США, Англии и еще нескольких странах Европы действовал категорический запрет на геномное редактирование эмбрионов человека с их последующей имплантацией.
Наиболее грамотную политику в плане всех новых технологий, в том числе геномного редактирования, проводил Китай: эти работы не были полностью запрещены, но для них были установлены некие внутренние правила. И хотя они подлежали определенным согласованиям и разрешениям, запреты были минимальны, поэтому исследования развивались стремительно. Глядя на успехи применения технологии геномного редактирования в Китае, американские регуляторы в 2017 году несколько снизили строгость своего запрета на редактирование эмбриона человека. Они уже допускали, что с большой вероятностью исследования по редактированию наследственных заболеваний на уровне эмбриона человека могут быть совершены в будущем при серьезной патологии у людей.
Причина этого послабления простая: наука не стоит на месте, и этот вопрос все равно придется решать. Делать пока ничего нельзя, но запрещать себе даже думать о генетическом редактировании на уровне эмбриона для лечения наследственных заболеваний уже непростительно. Таким образом, американский регулятор FDA сделал первый шаг, позволив ученым «думать». А в середине 2018 года уже британский регулятор выпустил очередную брошюру, в которой отмечалось, что редактирование эмбриона при наследственном заболевании может быть приемлемо при некоторых обстоятельствах. Это была гораздо более приближенная к жизни формулировка, чем в США, поскольку не содержала расплывчатых указаний на вероятные действия в неопределенном будущем. Великобритания допускала, что в обозримые сроки этот вопрос каким-то образом точно будет решен.
В сентябре 2018 года Министерство здравоохранения Японии выпустило правила, допускающие выдачу разрешений на генетическое редактирование эмбриона человека для клиники.
Таким образом, запрет на эти действия постепенно начал ослабевать.

![Книга Эра Генома. Люди среди нас. Часть 2 [СИ] автора Андрей Горин](http://itexts.net/files/books/110/oblozhka-knigi-era-genoma.-lyudi-sredi-nas.-chast-2-si-409940.jpg)






