355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Саймон Сингх » Великая Теорема Ферма » Текст книги (страница 20)
Великая Теорема Ферма
  • Текст добавлен: 10 октября 2016, 04:35

Текст книги "Великая Теорема Ферма"


Автор книги: Саймон Сингх


Жанр:

   

Математика


сообщить о нарушении

Текущая страница: 20 (всего у книги 23 страниц)

Между тем по математическому факультету Принстона продолжали циркулировать слухи. Профессор Джон Конвей вспоминает атмосферу, царившую тогда в чайной комнате математического факультета: «В три часа мы собирались на чай и налегали на булочки. Иногда мы обсуждали математические проблемы, иногда – суд над О. Дж. Симпсоном, иногда судачили о том, как продвигалась работа у Эндрю. Поскольку никому из нас и в голову не приходило пойти и спросить у него, как идут дела с доказательством, мы вели себя, как кремлинологи. Кто-нибудь заявлял: "Сегодня утром я встретил Эндрю". "Он улыбался?" – спрашивал другой коллега. "Улыбался, но вид у него был не слишком радостный". О том, как продвигается исправление доказательства, мы могли судить только по выражению лица Эндрю».

Кошмарное сообщение по электронной почте

Зима вступила в свои права. Надежды на прорыв окончательно угасали, и все больше математиков высказывали мнение, что Уайлс должен опубликовать рукопись. Слухи не стихали, и в одной из газетных статей появилось сообщение о том, будто Уайлс отказался от попыток восполнить пробел в своем доказательстве и признал, что оно обладает неисправимым дефектом. И хотя автор заметки заведомо преувеличил, не подлежало сомнению, что Уайлс испробовал несколько вариантов в надежде исправить замеченную ошибку и пока не видел новых возможных путей, ведущих к решению.

Уайлс признался Питеру Сарнаку, что ситуация становится отчаянной и он готов признать поражение. Сарнак был склонен думать, что трудности Уайлса отчасти обусловлены его одиночеством: у Уайлса не было надежного человека, с которым он мог бы «перебрасываться» идеями, который вдохновлял бы Уайлса исследовать не столь прямые подходы. Сарнак посоветовал Уайлсу довериться кому-нибудь и попытаться еще раз восполнить пробел. Уайлсу был необходим специалист, свободно владеющий методом Колывагина-Флаха и способный, к тому же, хранить тайну. По зрелом размышлении Уайлс решил пригласить к себе в Принстон для совместной работы Ричарда Тейлора, ученого из Кембриджского университета.


Тейлор был одним из рецензентов, проверявших доказательство. Кроме того, он был бывшим аспирантом Уайлса, поэтому Уайлс питал к нему двойное доверие. В прошлом году Тейлор присутствовал на лекции Уайлса в Институте сэра Исаака Ньютона. Теперь ему предстояло помочь в спасении доказательства, которое оказалось небезупречным.

В январе Уайлс с помощью Тейлора снова без устали исследовал метод Колывагина-Флаха, пытаясь найти выход из создавшегося затруднения. Иногда, после нескольких дней упорнейших усилий, Уайлс и Тейлор вступали на новую территорию, но неизбежно возвращались к исходному пункту. Проникая все дальше и дальше вглубь неизвестной территории и возвращаясь каждый раз туда, откуда они выходили, Уайлс и Тейлор осознали, что находятся в самом центре невообразимо огромного лабиринта. Больше всего они боялись, что этот лабиринт бесконечен, что из него нет выхода и они обречены бесцельно блуждать до скончания времени.

Весной 1994 года, когда казалось, что ситуация не может быть хуже, на экраны компьютеров всего мира поступило следующее сообщение по электронной почте:

Дата: 03 апр 1994

Тема: Снова великая теорема Ферма!

Сегодня в доказательстве великой теоремы Ферма произошел поистине поразительный сдвиг. Наум Элькис заявил, что располагает контрпримером. Таким образом, великая теорема Ферма оказалась неверной! Элькис выступил с сообщением о контрпримере сегодня в Институте. Построенное им решение уравнения Ферма имеет невероятно большую простую степень (больше, чем 1020), тем не менее оно представляет собой разновидность точечной конструкции Хенгера в комбинации с весьма остроумным вариантом метода спуска для перехода от модулярных кривых к кривой Ферма. Самая трудная часть задачи заключается в том, чтобы показать, что область определения решения (которая априори есть некоторое поле классов колец мнимого квадратичного поля) действительно допускает спуск на Q.

Я не смог проследить за всеми деталями, которые были весьма сложными… Таким образом, есть основания полагать, что гипотеза Таниямы-Шимуры все-таки неверна. По мнению экспертов, гипотезу все еще можно спасти, обобщая понятие автоморфного представления и вводя понятие «аномальных кривых», которое приведет к «квазиавтоморфному представлению».

Анри Дарман

Принстонский университет

Наум Элькис, профессор Гарвардского университета, в 1988 году обнаружил контрпример к гипотезе Эйлера. Теперь Элькис, по-видимому, нашел контрпример, опровергающий Великую теорему Ферма. Для Уайлса это был весьма чувствительный удар: причина, по которой ему никак не удавалось исправить доказательство заключалась в том, что так называемая ошибка была прямым следствием ложности Великой теоремы Ферма. Для математического сообщества в целом удар был еще сильнее, так как если Великая теорема Ферма неверна, то, как показал Фрей, это привело бы к эллиптической кривой, которой не соответствует никакая модулярная форма, а это прямо противоречит гипотезе Таниямы-Шимуры. Тем самым, можно было утверждать, что Элькис нашел не только контрпример Великой теореме Ферма, но и к гипотезе Таниямы-Шимуры.

Кончина гипотезы Таниямы-Шимуры имела бы разрушительные последствия для всей теории чисел, поскольку на протяжении двух десятилетий математики молчаливо предполагали, что гипотеза Таниямы-Шимуры верна. В главе 5 мы упоминали о том, что математики опубликовали десятки доказательств различных теорем, начинавшихся со слов: «Предположим, что гипотеза Таниямы-Шимуры верна…», но если Элькис доказал, что это предположение неверно, это означало бы, что все опиравшиеся на него теоремы рухнули. Математики немедленно стали требовать более подробной информации и забросали Элькиса вопросами, но ответов и разъяснений не последовало. Никаких подробностей относительно якобы построенного им контрпримера никому разузнать не удалось.

Через день или два всеобщей сумятицы некоторые математики взглянули на сообщения о контрпримере Элькиса еще раз и поняли, что, хотя сообщение было датировано 2 или 3 апреля, объяснялось это тем, что электронная почта была получена из вторых или третьих рук. Первоначально сообщение было датировано 1 апреля: сообщение было шуткой канадского специалиста по теории чисел Анри Дармана. Розыгрыш стал уроком для тех, кто распространял слухи о Великой теореме Ферма, и на какое-то время Великую теорему Ферма, Уайлса, Тейлора и доказательство с вкравшейся ошибкой оставили в покое.

В то лето Уайлсу и Тейлору не удалось продвинуться ни на шаг. После восьми лет непрестанных усилий – несмотря на то, что поиск доказательства стал делом его жизни, Уайлс был на грани того, чтобы признать свое поражение. Он сообщил Тейлору, что не видит смысла продолжать их совместные усилия по исправлению доказательства. Тейлор к тому времени уже принял решение провести сентябрь в Принстоне прежде, чем возвращаться в Кембридж, и поэтому, несмотря на то, что Уайлс пал духом, Тейлор предложил поработать над проблемой еще месяц. Если к концу сентября выяснится, что никаких признаков успеха нет, они публично признают поражение и опубликуют доказательство в том виде, в каком оно есть, чтобы предоставить другим возможность найти и исправить вкравшуюся ошибку.

Подарок ко дню рождения

Хотя сражение, которое Уайлс вел с самой трудной математической проблемой мира, по-видимому, было обречено на поражение, он мог, оглянувшись на семь последних лет, утешить себя сознанием того, что все же он достиг неплохих результатов.

Если не считать заключительной части, связанной с использованием метода Колывагина-Флаха, остальная работа Уайлса сомнений не вызывала. Гипотеза Таниямы-Шимуры и Великая теорема Ферма могли оставаться недоказанными, тем не менее Уайлс обогатил математику целой серией новых методов и стратегий, которые можно было использовать для доказательства других теорем. В том, что Уайлс потерпел неудачу, не было ничего постыдного, и он начал привыкать к такому положению дел.

В качестве слабого утешения Уайлс хотел по крайней мере понять, почему он потерпел поражение. Пока Тейлор еще и еще раз подвергал тщательному анализу альтернативные методы, Уайлс решил посвятить сентябрь изучению метода Колывагина-Флаха, чтобы понять, почему он не работает. Он живо вспоминает те роковые дни: «В понедельник 19 сентября я с утра сидел у себя в кабинете, изучая метод Колывагина-Флаха. Я не надеялся на то, что мне удастся заставить его заработать, но хотел по крайней мере выяснить, почему этот метод не срабатывает. Я понимал, что хватаюсь за соломинку, но хотел до конца разобраться в причинах постигшей меня неудачи. Внезапно, совершенно неожиданно, на меня снизошло озарение. Я понял, что хотя метод Колывагина-Флаха не работал на полную мощность, в нем было все, что необходимо для возможности применения теории Ивасавы, на которую я первоначально опирался. Мне стало ясно, что от метода Колывагина-Флаха я могу взять все необходимое для того, чтобы сделать эффективным мой первоначальный подход трехлетней давности. Так из руин и пепла метода Колывагина-Флаха возникло правильное решение проблемы».

Теория Ивасавы сама по себе была недостаточна. Метод Колывагина-Флаха сам по себе также был недостаточен. Но взятые вместе, они идеально дополняли друг друга. Этот момент, когда на него снизошло прозрение, Уайлс не забудет никогда. Когда он вспоминает те мгновения, картины прошлого оживают настолько ярко, что он едва удерживает слезы: «Решение было неописуемо прекрасно, такое простое и изящное. Я никак не мог взять в толк, почему оно не приходило мне в голову раньше. Не веря самому себе, я минут двадцать молча таращился на него. На следующий день я обошел моих коллег по математическому факультету и пригласил их заглянуть ко мне в кабинет и посмотреть, все ли в порядке с найденным мной накануне решением. С решением все было в порядке. Я был вне себя от возбуждения. Это был самый важный момент за всю мою математическую карьеру. Ничто из того, что мне суждено свершить, не могло сравниться с переживаемым моментом».

Момент действительно был необычайно важным: не только исполнилась мечта детства Уайлса, не только достигнута кульминация восьми лет напряженнейшей работы, но и сам Уайлс, казалось, находившийся на грани поражения, еще раз заявил о себе как о выдающемся математике. Последние четырнадцать месяцев были особенно мучительным, унизительным и отчаянным периодом в его математической карьере. И теперь блестящее озарение положило конец всем страданиям.

«В первый вечер я отправился домой и заснул у себя в кабинете над найденным решением. На следующее утро к 11 часам я убедился, что все в порядке. Тогда я спустился вниз и сказал жене: "Я нашел его! Думаю, что мне удалось найти его". Мое заявление прозвучало так неожиданно, что жена решила, будто я говорю о какой-то детской игрушке. Тогда я объяснил, что мне удалось исправить свое доказательство».


Первая страница доказательства теоремы Ферма, представленного Уайлсом

MODULAR ELLIPTIC CURVES AND FERMAT'S LAST THEOREM / 455
Chapter 1

This chapter is devoted to the study of certain Galois representations. In the first section we introduce and study Mazur's deformation theory and discuss various refinements of it. These refinements will be needed later to make precise the correspondence between the universal deformation rings and the Hecke rings in Chapter 2. The main results needed are Proposition 1.2 which is used to interpret various generalized cotangent spaces as Selmer groups and (1.7) which later will be used to study them. At the end of the section we relate these Selmer groups to ones used in the Bloch—Kato conjecture, but this connection is not needed for the proofs of our main results.

In the second section we extract from the results of Poitou and Tate on Galois cohomology certain general relations between Selmer groups as Σ varies, as well as between Selmer groups and their duals. The most important observation of the third section is Lemma 1.10(i) which guarantees the existence of the special primes used in Chapter 3 and [TW].

1. Deformations of Galois representations

Let p be an odd prime. Let Σ be a finite set of primes including p and let QΣ be the maximal extension of Q unramified outside this set and ∞. Throughout we fix an embedding of Q, and so also of QΣ, in C. We will also fix a choice of decomposition group Dq for all primes q in Z. Suppose that k is a finite field of characteristic p and that

(1.1)

ρ: Gal(QΣ/Q) → GL2(k)

is an irreducible representation. In contrast to the introduction we will assume in the rest of the paper that ρ comes with its field of definition k. Suppose further that det ρ0 is odd. In particular this implies that the smallest field of definition for ρ is given by the field k0 generated by the traces but we will not assume that k = k. It also implies that ρ0 is absolutely irreducible. We consider the deformations [ρ] to GL2(A) of ρ in the sense of Mazur [Ma1]. Thus if W(k) is the ring of Witt vectors of k, A is to be a complete Noetherian local W(k)-algebra with residue field k and maximal ideal m, and a deformation [ρ] is just a strict equivalence class of homomorphisms ρ: Gal(QΣ/Q) → GL2(A) such that ρ mod m = ρ, two such homomorphisms being called strictly equivalent if one can be brought to the other by conjugation by an element of ker: GL2(A) → GL2(k). We often simply write ρ instead of [ρ] for the equivalence class.

В следующем месяце Уайлс, наконец, смог исполнить обещание, которое ему не удалось исполнить в прошлом году. «Приближался день рождения Нады, и я вспомнил, что в прошлый раз я не смог подарить ей то, что она хотела получить в подарок. На этот раз, через полминуты после начала праздничного обеда по случаю ее дня рождения, я подарил Наде рукопись полного доказательства. Думаю, что этому подарку она была рада больше, чем любому другому, который я когда-либо дарил ей».

Дата: 25 окт 1994 11:04:11

Тема: Последние новости о великой теореме Ферма

Этим утром поступили две рукописи: «Модулярные эллиптические кривые и великая теорема Ферма» Эндрю Уайлса и «Теоретико-кольцевые свойства некоторых алгебр Гекке» Ричарда Тейлора и Эндрю Уайлса.

Первая из них (большая) содержит среди прочего доказательство великой теоремы Ферма, использующее в одном решающем шаге вторую (малую).

Как известно большинству из вас, в доказательстве, изложенном в кембриджских докладах Уайлса, оказался серьезный пробел, а именно: построение эйлеровской системы. После безуспешных попыток исправить эту конструкцию, Уайлс обратился к другим подходам, которые он использовал раньше, но от которых отказался в пользу идеи эйлеровской системы. Уайлсу удалось восполнить пробел в своем доказательстве в предположении, что некоторые алгебры Гекке представляют собой локально полные пересечения. Эта и остальные идеи, бегло описанные в кембриджских докладах Уайлса, изложены в первой рукописи. В совместной работе Тейлор и Уайлс (вторая статья) установили необходимое свойство алгебр Гекке. Общий ход доказательства аналогичен намеченному Уайлсом в его кембриджских докладах. Новый подход гораздо проще и короче первоначального, поскольку изъята система Эйлера. (После изучения обеих работ Фалтингсу удалось еще более упростить эту часть доказательства.) Варианты представленных рукописей попали в руки небольшого числа людей (в некоторых случаях) в течение нескольких недель. И хотя разумно сохранять осторожность, основания для оптимизма заведомо имеются.

Карл Рубин

Университет штата Огайо

Глава 8. Великое Объединение в математике

Был малый не промах, а стал, как чума.

Виною всему – теорема Ферма:

Не может никак он ее доказать,

Уайлса пример не дает ему спать.

Фернандо Гувеа

На этот раз никаких сомнений в доказательстве не было. Две статьи общим объемом в 130 страниц были подвергнуты самому тщательному анализу, которому когда-либо подвергались математические рукописи за всю историю человечества, и в мае 1995 года были опубликованы в журнале «Annals of Mathematics».

Уайлс снова оказался на первой полосе «New York Times», но заголовок «Математик утверждает, что классическая проблема решена» оказался в тени заголовка другой статьи: «Новые данные о возрасте Вселенной ставят перед учеными новую космическую проблему». И хотя журналисты на этот раз проявили по отношению к Великой теореме Ферма несколько меньший энтузиазм, математики по достоинству оценили истинное значение полученного доказательства. «Для математиков окончательный вариант доказательства эквивалентен по своему значению расщеплению атома или открытию структуры ДНК, – заявил Джон Коутс. – Доказательство Великой теоремы Ферма представляет собой великий триумф человеческого интеллекта, и не следует упускать из виду, что оно единым махом совершило переворот в теории чисел. Для меня очарование и красота работы Эндрю заключается в том, что она стала гигантским шагом вперед в развитии теории алгебраических чисел».


За восемь лет упорнейшего труда Уайлс, по существу, свел воедино все достижения теории чисел XX века, выстроив из них одно сверхмощное доказательство. Преследуя свою главную цель, Уайлс попутно создавал совершенно новые доказательства и использовал их в немыслимых ранее сочетаниях с традиционными методами.

Этим Уайлс открыл новые направления для атак на множество других проблем. По словам Кена Рибета, доказательство Уайлса представляет собой идеальный синтез современной математики и служит источником вдохновения на будущее: «Я думаю, что если бы вы оказались на необитаемом острове и захватили с собой только рукопись с доказательством Уайлса, то у вас было бы предостаточно пищи для размышлений. Перед вами предстали бы все течения современной мысли в области теории чисел. На одной странице вы встретите краткое упоминание о фундаментальной теореме Делиня, на другой найдете несколько неожиданную ссылку на теорему Хеллегуарка – и все это вводится в игру и используется с тем, чтобы через мгновенье уступить место следующей идее».

Большинство журналистов превозносили на все лады найденное Уайлсом доказательство Великой теоремы Ферма, некоторые из них комментировали нераздельно связанное с ним доказательство гипотезы Таниямы-Шимуры. Лишь немногие удосужились упомянуть о вкладе Ютаки Таниямы и Горо Шимуры, двух японских математиков, которые еще в 50-е годы XX века посеяли семена, предопределившие успех Уайлса. Хотя Танияма умер более тридцати лет назад, его коллега – Горо Шимура – стал свидетелем доказательства гипотезы Таниямы-Шимуры. Когда его спросили о его впечатлении от доказательства, он мягко улыбнулся и сдержанно, с достоинством ответил: «Я же говорил вам».

Подобно многим своим коллегам, Кен Рибет считал, что доказательство гипотезы Таниямы-Шимуры совершило переворот в математике: «Важным психологическим отзвуком доказательства гипотезы Таниямы-Шимуры явилось то, что теперь математики стали смело браться за решение проблем, которые прежде казались им неприступными. Ныне картина полностью изменилась. Теперь известно, что все эллиптические кривые модулярны, и, когда вы доказываете какую-нибудь теорему для эллиптических кривых, вы тем самым доказываете теорему относительно модулярных форм, и наоборот. У вас появляется иное видение происходящего в математике, и мысль о том, что вам придется работать с модулярными формами пугает вас меньше, поскольку вы, по существу, работаете с эллиптическими кривыми. Когда прежде приходилось писать статью об эллиптических кривых, мы вместо того, чтобы открыто признать, что нам ничего не известно, делали предположение: "Пусть гипотеза Таниямы-Шимуры доказана", – и смотрели, какие следствия проистекают из этого. Теперь нам достоверно известно, что гипотеза Таниямы-Шимуры верна, и мы смело можем утверждать, что из этого следует. Нужно ли говорить, что это гораздо приятнее».

С помощью гипотезы Таниямы-Шимуры Уайлс объединил эллиптический и модулярный миры и, тем самым, проложил математике пути ко многим другим доказательствам: проблемы, стоящие в одной области, могут быть решены по аналогии с проблемами из параллельной области. Классические нерешенные проблемы теории эллиптических кривых стало возможным подвергнуть пересмотру, используя все имеющиеся средства и методы теории модулярных форм.

Что еще более важно, Уайлс сделал первый шаг к осуществлению грандиозной программы математики Роберта Ленглендса. После успеха, достигнутого Уайлсом, стало возможно с новыми силами пытаться доказать другие гипотезы, объединяющие различные разделы математики. В марте 1996 года Уайлс разделил с Ленглендсом премию Вольфа (не путать с премией Вольфскеля) размером в 100 000 долларов. Комитет по присуждению премии Вольфа признал, что доказательство Уайлса само по себе представляет собой выдающееся достижение, к тому же оно вдохнуло жизнь в амбициозную схему Ленглендса. Уайлс совершил прорыв, который может привести математику в новый золотой век.

После года сумятицы и неопределенности математическое сообщество могло, наконец, успокоиться. На каждом симпозиуме, коллоквиуме, на любой конференции одно заседание посвящалось доказательству Уайлса, а бостонские математики даже устроили соревнование: кто из них сумеет запечатлеть памятное событие, каким, несомненно, стало доказательство Уайлса, в шутливом стихотворении. Всеобщее внимание привлекли следующие вирши-лимерик:

 
– Гарсон, книгу жалоб прошу я давно:
Несвежая скатерть, прокисло вино.
– Что книга! Ее я могу Вам подать,
Но узки поля, и нельзя записать,
Как Вы ни старайтесь, на них ничего.
 

Э.Хоув, Х.Ленстра, Д.Моултон.


    Ваша оценка произведения:

Популярные книги за неделю