412 000 произведений, 108 200 авторов.

Электронная библиотека книг » Роджер Хайфилд » Танец жизни. Новая наука о том, как клетка становится человеком » Текст книги (страница 7)
Танец жизни. Новая наука о том, как клетка становится человеком
  • Текст добавлен: 26 июня 2025, 08:47

Текст книги "Танец жизни. Новая наука о том, как клетка становится человеком"


Автор книги: Роджер Хайфилд


Соавторы: Магдалена Зерницка-Гетц

Жанры:

   

Химия

,

сообщить о нарушении

Текущая страница: 7 (всего у книги 17 страниц)

Наконец-то мы раскрыли механизм, сдвигающий онтогенетический потенциал клеток четырехклеточного эмбриона, – механизм, который объяснял, почему клетки на очень ранней стадии не идентичны друг другу.

Хотя открытие было поразительным, нашу статью приняли не сразу. Одному из трех анонимных рецензентов не понравилось, что мы опять затронули концепцию неидентичности клеток на заре жизни мышиного эмбриона. Редактор журнала, тем не менее, остался непредвзятым и перенаправил нашу рукопись со всеми комментариями рецензентов и нашими на них ответами одному очень уважаемому эксперту, который, как нам сказали, не принимал участия в прежних дебатах и мог судить беспристрастно.

Мы понятия не имели, кем был этот независимый эксперт, но, к нашему облегчению, ему понравилась наша работа, и он рекомендовал статью к публикации. После столь долгого для меня и моих коллег пути мы отпраздновали новость большим количеством шампанского. Исследование было опубликовано в 2016 году в престижном журнале Cell [27].

Невероятно, но в том же мартовском номере Cell вышла еще одна статья с аналогичными выводами. Группа из Института молекулярной и клеточной биологии при Агентстве науки, технологии и исследований[15] в Сингапуре, возглавляемая Нико Плахтой, творчески подошла к изучению взаимодействий ДНК и транскрипционных факторов клеток четырехклеточного эмбриона. Они узнали, что в индивидуальных клетках SOX2 связывается с ДНК в разные периоды и что продолжительность этой связи коррелирует с судьбой клеток. Следовательно, по длительности связи SOX2—ДНК можно предсказать судьбу клеток на четырехклеточной стадии развития. Изумлял и тот факт, что Нико установил зависимость связи SOX2—ДНК от активности фермента CARM1, которая у клеток четырехклеточного эмбриона была вовсе не одинаковой [28].

Выполненная группой Нико красивая и замысловатая работа поведала все ту же историю о том, что клетки мышиного эмбриона не идентичны друг другу и их судьба на четырехклеточной стадии развития подвластна активности фермента CARM1 [29]. Тот самый номер журнала Cell содержал комментарий по поводу обеих статей и их актуальности, написанный Хуаном Карлосом Исписуа Бельмонте – главой лаборатории регуляции экспрессии генов в Институте Солка (Ла-Хойя, Калифорния) и автором впечатляющей работы по программированию и перепрограммированию клеточной судьбы.

Накопленные доказательства подтверждали гипотезу о том, что клетки и в самом деле отличаются уже на очень ранней, четырехклеточной, стадии развития эмбриона. Понадобилось много времени, но мы наконец-то поняли принципиальные основы того, как возникают первоначальные уклоны и выступают движущей силой, шаг за шагом очерчивающей судьбы клеток на заре жизни.

Как сделать близнецов

С тех пор как мы обнаружили доказательства уклона в онтогенетическом развитии, нам захотелось узнать, как этот уклон может быть настолько сильным, что лишь одна из двух клеток, разделенных на двухклеточной стадии, развивается должным образом? Связано ли это с генерацией плюрипотентных клеток в организме?

Выдающийся британский биолог Льюис Уолперт часто спрашивал меня: сколько плюрипотентных клеток нужно при имплантации, чтобы беременность была успешной? Определенно для создания мыши требуется минимальный набор клеток, но какой именно?

Ответ, как это бывает в науке, пришел неожиданно в ходе экспериментов с видеовизуализацией, проводимых Сэм Моррис из моей команды. Сэм разделила клетки двухклеточного эмбриона и оставила их развиваться в половинчатые бластоцисты. После подсчета количества эпибластных клеток в каждой из близнецов-бластоцист Сэм перенесла их в матку приемных матерей. Это был ответ на вопрос Льюиса: чтобы получился мышонок, при имплантации нужны как минимум четыре плюрипотентные клетки. Если на двухклеточной стадии отделить две клетки друг от друга, только одна сможет генерировать это количество, а ее сестра – нет.

Сэм продвинулась еще дальше. Она задалась вопросом: какая из двух клеток может, а какая не может совершить этот онтогенетический подвиг превращения в индивидуум? Чтобы ответить на вопрос, она создала химеры из того же типа клеток, который когда-то использовала Каролина. Оказалось, что клетка, не развивающаяся после разделения со своей сестрой, – это та самая клетка, которой суждено стать вегетативной на четырехклеточной стадии, своего рода материнская клетка вегетативной клетки.

Более того, Сэм помогла клетке с меньшей тотипотентностью генерировать больше плюрипотентных клеток. Она использовала для этого специальный препарат, воздействующий на два семейства сигнальных белков: факторы роста фибробластов (FGFs) и белки Wnt. Этот трюк позволил Сэм создать мышей-близнецов из двух отдельных клеток двухклеточного эмбриона. Ее исследование было опубликовано в 2012 году [30]. Сэм была одним из лучших участников моей команды и вложила всю свою душу во многие наши проекты, но эта работа была, наверное, ее наивысшим достижением. Так полвека спустя догма, настаивающая на одинаковости клеток двухклеточного эмбриона, была окончательно опровергнута.

Репликация

В 2004 году, в самом начале потасовки с Хиираги и Сольтером, Джон Гёрдон предупредил меня, что с учетом осторожного темпа научного прогресса пройдут десятилетия, прежде чем споры так или иначе улягутся. Он оказался совершенно прав, хотя скептики попадаются до сих пор. Через десять лет мы действительно обнаружили механизм, лежащий в основе паттернов, которые запускаются на гораздо более ранних этапах развития. Более того, другие ученые, устоявшие перед бурей и натиском дебатов, воспользовались мощными новейшими технологиями и получили те же результаты.

Несмотря на оппозицию, наши исследования были независимо воспроизведены коллегами по научной области. Например, команда физика Скотта Фрейзера (одного из наиболее выдающихся ученых, занимающихся эмбриональной визуализацией) из Калифорнийского технологического института продемонстрировала динамику транскрипционного фактора ОСТ4, контролирующего развитие мышиного эмбриона. Их превосходные эксперименты показали, что индивидуальные клетки четырехклеточного эмбриона имеют разную скорость перемещения ОСТ4 между ядром и цитоплазмой. Выяснилось, что чем дольше ОСТ4 задерживается в клеточном ядре, тем больше растет плюрипотентность данной клетки [31]. Или, говоря другими словами, чем медленнее ОСТ4 перемещается по клетке, тем выше вероятность того, что эта клетка разовьется в собственно эмбрион, в то время как клетки с более подвижным ОСТ4 больше вкладываются в развитие трофэктодермы.

Уже упомянутый мною Нико Плахта, первый автор этого исследования, вместе со своей командой продвинулся еще дальше. Используя метод визуализации взаимодействий факторов транскрипции и ДНК, он обнаружил, что критически важный для клеточной плюрипотентности SOX2 дольше всего остается связанным с ДНК в тех клетках четырехклеточного эмбриона, которые склонны формировать собственно эмбрион [32]. Команда Нико также выяснила, что эта разница обусловлена активностью фермента CARM1.

Еще одно доказательство ранних эмбриональных паттернов поступило от группы Кевина Эггана, получателя «Гранта для гениев» от Фонда Макартуров, чья команда использовала генетически маркированные клетки «радужных» мышей, где разные клеточные линии помечены разными цветами. Отслеживая судьбу клеток, группа Кевина подтвердила, что клетки четырехклеточного эмбриона не одинаковы и приобретают предрасположенность к определенному пути развития гораздо раньше, чем принято считать [33]. Эта работа была опубликована в журнале Current Biology, и я помню слова Кевина о том, как трудно ему пришлось из-за критики анонимных рецензентов, хотя результаты эксперимента были ясны как божий день.

Кроме того, они сделали важный шаг вперед и показали, что судьба клеток различается как на стадии бластоцисты, так и после имплантации эмбриона. Они заключили, что «уклон, наблюдаемый в бластоцисте, сохраняется на постимплантационных стадиях, а следовательно, имеет значение для всего последующего развития» [34]. Вместе с работами Скотта Фрейзера и Нико Плахты мы получаем превосходный пример непротиворечивости, когда независимые и несвязанные между собой исследователи приходят к одному и тому же выводу.

Хотя нам удалось мельком взглянуть на хронологию и механизм нарушения симметрии, многие вопросы остались без ответа. Один из них касается поляризации клеток на восьмиклеточной стадии: что является триггером и какой механизм гарантирует, что это случится именно на восьмиклеточной стадии, когда развитие эмбриона настолько гибкое? Есть ли у клеток какой-нибудь часовой механизм, говорящий им, что делать? Природа этого эмбрионального таймера – нынешняя страсть моей коллеги Мэн Чжу.

Но важнее всего то, что мы до сих пор ищем источник асимметрии, возникающей на четырехклеточной стадии. Похоже, на него влияет асимметрия на двухклеточной стадии, но откуда берется она? Имеет ли отношение ко всему этому асимметрия яйцеклетки вдоль анимально-вегетативной оси? Связана ли она с проникновением сперматозоида? Имеет ли значение переносимый сперматозоидом генетический груз в форме маленьких РНК? Или все перечисленные факторы оказывают влияние в различной степени, и именно поэтому источник асимметрии так трудно установить?

Во время перерыва в наших исследованиях развития четырехклеточных эмбрионов и до того, как мы занялись изучением молекулярных свойств отдельных клеток, я переключила интерес своей команды на более поздние стадии развития – те, что всегда были покрыты мраком тайны из-за невозможности наблюдать и экспериментировать с имплантированными эмбрионами, так называемым черным ящиком онтогенеза млекопитающих.

Раз мы затеяли эту научную авантюру, единственный способ отследить клеточную судьбу состоял в том, чтобы имплантировать приемной самке эмбрион с клеткой, помеченной GFP, а через несколько дней извлечь его и посмотреть, где окажутся потомки промаркированной клетки. Продолжает ли первый акт нарушения симметрии воздействовать на развитие эмбриона после имплантации, как предполагало исследование Кевина Эггана? Или вся память об этом событии стирается при создании плана тела?

Решением этого вопроса я занималась в середине 1990-х, однако в процессе интенсивного роста эмбриона после имплантации маркеры в большинстве случаев не сохранялись. Чтобы получить достаточное количество информации, эксперименты приходилось повторять снова и снова. Мне не хотелось возвращаться к этому расточительному методу. Более того, для понимания процесса важно непосредственное наблюдение, которое невозможно, когда эмбрион спрятан в теле матери.

Но если бы нам удалось это проследить, мы смогли бы понять, почему некоторые эмбрионы процветают, несмотря на клетки с аномальным набором хромосом. В том, что касается Саймона и обнаружения аномалий в пробах ворсинок хориона (CVS), взятых с соединяющей нас плаценты, в ходе экспериментов я могла бы найти им объяснение. Для изучения этой стадии развития надо было придумать такой способ, который позволил бы эмбрионам развиваться в лабораторных условиях дольше, чем когда-либо, в течение того периода, который они обычно проводят в теле матери.

Глава 6

Вскрытие черного ящика

Читая лекции, Скотт Фрейзер любит озадачить свою аудиторию следующим вопросом: насколько легко разгадать правила игры, которую никогда не видел и в которую никогда не играл? Чтобы проиллюстрировать сложность проблемы, он показывает фотоснимки игры в американский футбол – серию картинок с изображением всяких хадлов, тэклов, скрамов и, для пущей драматичности, пирамиды из черлидерш. Последовательно рассматривая варианты человеческих поз, трудно понять суть игры в целом [1].

По словам моего друга Скотта, отснявшего замечательные кадры развития эмбриона и в настоящее время являющегося директором по научным проектам в Университете Южной Калифорнии в Лос-Анджелесе, есть много способов заполнить пробелы в понимании того, что происходит при столкновении двух футбольных команд. Так много, что трудно установить взаимосвязь последовательностей формаций и гарантировать верное объяснение. Аналогично, когда клеточные игроки эмбриональной команды сталкиваются с игроками материнской, тяжело разобраться в том, что произошло в интервале между одним снимком нагромождения клеток и другим. Это если вы вообще делали хоть какие-то снимки. Разумеется, выходом является непрерывная съемка эмбрионального развития, вроде той, что мы выполняли для более «молодых», преимплантационных эмбрионов. Из всех пробелов в понимании человеческого онтогенеза момент имплантации эмбриона в матку является одним из самых загадочных и одновременно критически важных.

Может показаться, что изучение таких эмбрионов – обычная практика, ведь имплантация происходит на второй неделе развития, и ученые в Великобритании могут легально культивировать эмбрионы в течение двух недель, вписывающихся в четырнадцатидневный лимит [2].

Однако практика выращивания человеческих эмбрионов в культуре ограничивалась шестью днями. Был случай, когда эмбрион с помощью клеток матки культивировался девять дней, но здоровье полученного таким способом эмбриона осталось под вопросом [3]. События человеческого развития от стадии бластоцисты на шестой день до стадии гаструляции были скрыты от наших глаз.

До имплантации эмбрион (мышиный или человеческий) представляет собой маленький дрейфующий шарик из клеток – бластоцисту, сопоставимую по размерам с исходной яйцеклеткой. Когда количество клеток в мышиной бластоцисте достигает одной сотни, zona pellucida разрывается и выпускает эмбрион, чтобы тот мог имплантироваться в стенку матки и начать расти.

К моменту «вылупления» внутри эмбриона образуется полость. Теперь бластоциста – это шарик из клеток, наполненный жидкостью. Если заглянуть внутрь этого полого шарика, можно увидеть скопление клеток – эпибласт. Именно из этого скопления вырастает индивидуум. Эти клетки являются предками каждой клетки организма. Окружающие клетки делятся на два типа. С одной стороны расположена примитивная энтодерма, из которой в свое время сформируется желточный мешок. С другой стороны эпибласта находится трофэктодерма, которая предоставит эмбриону систему жизнеобеспечения и построит ему дом внутри матери. Клетки трофэктодермы непосредственно принимают участие в критическом этапе развития, когда бластоциста внедряется в стенку матки.

Разноцветное изображение бластоцисты предваряет большинство моих современных лекций. Перед ней я рисую один большой вопросительный знак, а после нее рисую второй, еще больше. Это и есть два главных вопроса, направляющих работу моей лаборатории. Во-первых, каким образом появляются эти три типа клеток? Во-вторых, каким образом эти три типа клеток взаимодействуют друг с другом, чтобы создать нечто столь сложное, как мы с вами?

До стадии бластоцисты эмбрион легко развивается в культуре, чего не скажешь об эмбрионе в момент имплантации. Когда мы проводили трудоемкие эксперименты (помечали индивидуальные клетки бластоцисты, переносили их в приемную самку, а затем извлекали эмбрион после имплантации, чтобы отследить клеточных потомков), все, что мы получали в итоге, было серией фотоснимков. Являлось ли это воспроизведением процесса развития или, подобно трейлерам, вводящим зрителя в заблуждение, не отображало множество ключевых событий? Можно ли найти способ изучения эмбриона вне укрывающей его матки, чтобы проследить, заснять и задокументировать каждый шаг его развития?

Незнание того, как развивается эмбрион во время имплантации и вскоре после нее, тормозило нас по многим направлениям. Раскрытие тайн этого периода развития принесло бы много практической пользы. Оно повысило бы успешность ЭКО и расширило наши знания о том, как стволовые клетки распадаются на разные клеточные линии. Это могло бы улучшить их применение в регенеративной медицине (обсуждаемой в главе 10), где разрабатываются способы выращивания замещающих клеток, тканей и даже органов.

Кроме того, это тот самый период развития, когда многие беременности подходят к концу, при этом женщины о них даже не подозревают [4]. Природа расточительна или, возможно, предусмотрительна, поскольку эмбрион чаще всего отторгается в случае своей неисправности. Около 30% ранних беременностей заканчиваются неудачей раньше, чем эмбрион имплантируется в теле матери, а другие 30% – примерно в момент имплантации. И именно в это время возникает большинство дефектов. Некоторые из них детальны, другие могут привести к таким аномалиям, как сиамские близнецы.

Должна признать, мною двигал и старейший из всех научных мотивов: я хотела достичь фундаментального понимания ключевой главы истории человеческой жизни, поскольку именно тогда эмбрион приступает к росту и начинает определять план всего организма.

Мое любопытство также подогревалось желанием понять, почему некоторые несовершенные эмбрионы могут развиваться в нормального ребенка. Я не знала причину аномальных результатов моего анализа, но я хотела понять лежащую в их основе науку. Для этого требовалось исследовать эмбрион дольше, чем было возможно в то время, причем не только мышиный, но и человеческий, потому что после имплантации их развитие не одинаково.

Всего за два дня человеческий эмбрион превращается из относительно примитивного шарика клеток в более сложную дискообразную структуру, которая к десятому дню становится примерно в пять раз больше. На этом этапе архитектура эмбрионов мыши и человека удивительно сильно различается, причем мышиный формирует чашеобразную, а не дисковидную структуру, которая позже (примерно на пятый день) становится цилиндром из трех типов стволовых клеток. Из них первый тип, эпибласт, формирует эмбрион путем гаструляции, при которой клетки (прежде чем решить, превратиться им в мозг, кишечник, кости и др.) мигрируют и реорганизуются в формацию, являющуюся предшественником плана тела. Мышиный эмбрион приступает к гаструляции между шестым и седьмым днями. Человеческий – на четырнадцатый день.

Когда я впервые завела разговор о возможности культивирования эмбрионов после стадии бластоцисты, мои наставники и коллеги были обескуражены. Они сказали, что это слишком сложно и любые отчеты о том, что этот подвиг реален, будет трудно воспроизвести. Я откопала несколько старых статей с описанием культивирования эмбрионов путем имплантации, но в них было мало информации о том, как эмбрион трансформируется из пре– в постимплантационную структуру. Это и в самом деле могло оказаться пустой тратой времени, ведь для того, чтобы начать расти и правильным образом перестраивать свою структуру, эмбриону могло понадобиться взаимодействие с эндометрием.

Долгие годы я сдерживала свое любопытство, фокусируясь главным образом на том, как и когда клетки начинают дифференцироваться перед имплантацией. Ситуация изменилась в 2009 году, когда я, вдохновленная биоинженерным прогрессом, все-таки решилась попробовать. В итоге, когда мы действительно заглянули в черный ящик, мы увидели, что хрестоматийные описания наиболее аргументированных предположений о том, что происходит на этом этапе развития, были ошибочными.

Охота на эмбрион

Первые сведения об онтогенетическом развитии в период имплантации поступили из исследований человеческих эмбрионов, опубликованных больше полувека назад. В мае 1956 года вышла статья, которая давала представление о содержимом черного ящика [5]. В ней описывались исследования человеческих эмбрионов со второго по семнадцатый день развития – всего тридцать четыре эмбриона, которые были найдены в образцах тканей, полученных десятилетиями ранее. Образцы были взяты у женщин, подвергнутых гистерэктомии[16] в 1933-1934 годах. Операции были проведены автором исследования, Элеонорой Адамс из Института Карнеги в Балтиморе, штат Вашингтон, под руководством Джорджа Стритера, в те годы – директора отдела эмбриологии этого института [6].

Изучив коллекцию из десяти тысяч человеческих эмбрионов, собираемых с 1880-х, Институт Карнеги разработал стандартизированную систему из двадцати трех стадий, представляющих единую хронологию эмбрионального развития позвоночных. Не было только материала, отображающего первые две недели, и эту недостающую главу истории человеческой жизни нужно было чем-то заполнить. Шанс появился тогда, когда Артур Хертиг сделался патологом в роддоме и бесплатной женской больнице Бостона, где работал и третий автор статьи, хирург Джон Рок.

После череды благодарностей, подходящих для церемонии награждения («несравненные препараты», «великолепные фотографии», «изобретательские способности» и т. д.), авторы статьи описали критерии отбора подходящих женщин: пациентки должны были иметь симптомы, делающие их нетрудоспособными, избавить от которых могла лишь гистерэктомия, а также должны были иметь менструальные циклы, то есть могли производить яйцеклетки.

Из всего операционного материала врачи проанализировали тот, что был получен от двухсот одиннадцати пациенток с 1938 по 1954 год, и обнаружили тридцать четыре ранних эмбриона (они назвали их ova). Среди них двадцать шесть оказались имплантированными. Из всех эмбрионов был двадцать один нормальный и тринадцать аномальных. После погружения в воскообразный материал эмбрионы были послойно разрезаны и сфотографированы: это был «первый полный обзор всех серий ova... от двухдневной двухклеточной трубной яйцеклетки до семнадцатидневной имплантированной яйцеклетки с ветвящимися хорионическими ворсинками и четко определяемой эмбриональной осью».

На иллюстрации 27 к данной статье изображен двенадцатидневный эмбрион, зарывшийся в поверхность матки. На иллюстрации 43 с тринадцатидневным эмбрионом можно различить сгусток свернувшейся крови, указывающий на то, что имплантация больше похожа на вторжение. Во время имплантации эмбрион разрушает кровеносные сосуды стенки матки, вызывая небольшое кровотечение.

В процессе адаптации виды млекопитающих придумали различные стратегии имплантации в матку, происходящей после сбрасывания оболочки zona pellucida. Мышиные и крысиные эмбрионы разрушают стенку матки. Эмбрионы морских свинок проскальзывают между клетками. Эмбрионы кроликов сливаются с клетками эндометрия. Эмбрионы людей и других приматов проделывают в стенке матки отверстие.

Все эмбрионы стараются «решить» одну и ту же задачу: создать с матерью совместное предприятие, называемое плацентой. Во всех случаях внедряющийся эмбрион запускает ремоделирование прилегающей выстилки матки, чтобы сформировать ткань под названием «децидуальная оболочка» (от лат. decidua, то есть «отпадающий»). У мышей эта прилегающая ткань более губчатая в сравнении с остальной частью матки, где больше мышечной ткани.

Децидуальная оболочка защищает эмбрион от атаки со стороны защитных иммунных клеток матери и обеспечивает питанием до формирования плаценты. Часть этой поддержки исходит от материнских иммунных клеток, натуральных киллеров, которые вырабатывают стимулирующие рост факторы, участвующие в широком спектре процессов развития [7].

Роза Венто-Тормо из команды Сары Тейхманн (Институт Сенгера в Хинкстоне) изучала генетический код РНК примерно семидесяти тысяч клеток, взятых из плаценты в первом триместре, чтобы показать, как иммунная система матери ослабляется и адаптируется к поддержке плаценты, пока та внедряется в стенку матки и развивает кровеносные сосуды и прочие структуры [8]. Красота этого исследования нашла отражение в рисунке, созданном моей бывшей коллегой по лаборатории Анной Хупаловской и размещенном на обложке журнала Nature за 2018 год, где было опубликовано данное исследование.

История о том, как эмбрион вторгается в матку, имеет отношение к исследованиям раковых заболеваний. Клетки имплантирующегося эмбриона способны к пролиферации, дифференциации, миграции, ангиогенезу (созданию кровеносных сосудов) и уклонению от атаки иммунной системы матери, что делает его полезной моделью для онкологических исследований. Взять, к примеру, преэклампсию, ведущую к серьезным осложнениям беременности, когда плацента не может правильно развиваться из-за проблем с ее кровеносными сосудами. Большинство генов, связанных с развитием преэклампсии, тесно вовлечены в рост опухолей [9].

Но в самом ли деле эмбрион нуждается во взаимодействии с телом матери, чтобы развиваться за пределы преимплантационной стадии бластоцисты? Может ли он нормально расти без поддержки со стороны матки?

Эмбрион во время имплантации

Когда мы, наконец, решили, что должны попытаться создать подходящие условия вне матки и исследовать развитие эмбриона в период имплантации, мы, как обычно, начали с мышиных эмбрионов. Я думала, что основной помехой будет симуляция эффекта матки. Я ошибалась. Решение этой задачи не составило труда.

Чтобы подготовиться, мы изучили методы, которые в прошлом использовались для культивирования эмбрионов, и выяснили, что важно добавлять сыворотку из пуповины человека. Врачи, два раза принимавшие у меня роды, любезно помогли нам получить свежую человеческую плаценту, пожертвованную для научных исследований.

Я подумала, что было бы неплохо смоделировать эластичную маточную поверхность. Для этого мы начали сотрудничать с Кевином Шейкшеффом, тканевым инженером из Ноттингемского университета, и его командой. Казалось интуитивно правильным позволить бластоцисте во что-нибудь зарыться. Мы попробовали созданные командой Кевина гидрогели – синтетические материалы, которые своей эластичностью напоминали маточные ткани.

С помощью моих коллег по лаборатории Симы Гревола, Сэма Морриса и Флоренс Барриос, а также Самира Патанкара и Ли Баттери из команды Кевина (фармацевтическая школа Ноттингемского университета) у нас получилось создать такие условия среды, которые каким-то образом «убеждали» эмбрион, что имплантация прошла успешно. Он продолжал развиваться и начинал увеличиваться в размерах.

Когда уже имеются знания, процесс кажется легким, но изначально на подбор правильной комбинации факторов для культивирования мышиных эмбрионов после стадии имплантации у Симы ушли месяцы ежедневных попыток. И даже когда у нас получилось, нам надо было сделать метод воспроизводимым, что, разумеется, вышло не сразу. Сегодня эксперимент работал, завтра нет. Это наводило на мысль, что условия среды были недостаточно стабильными. Работа по поиску причин и исправлению ошибок занимала много времени.

Проблему создавал и гидрогель, покрывающий дно чашки Петри. Он мешал снимать фильм в высоком разрешении. Это подрывало весь замысел проекта, состоящий в том, чтобы следить за прогрессом клеток, пока те сотрудничают друг с другом ради осуществления морфогенеза.

Со временем мы поняли, что гель нам не нужен. Достаточно было установить правильную среду, побуждающую эмбрионы расти in vitro[17], и они прикреплялись к самой пластиковой чашке. Мы использовали особые чашки, прозрачные и с оптическими свойствами, позволяющими делать сквозь них высококачественные снимки эмбрионов. В первую очередь мы хотели установить, как эмбрион закладывает свою передне-заднюю ось (голова – хвост). Многие ученые из моей области, включая меня саму, пытались разобраться в развитии данной оси, и вот впервые в жизни мы могли непосредственно наблюдать за тем, как это происходит.

Более ранняя работа Розы Беддингтон показала, что формирование передней части тела контролируется сигналом, поступающим от специализированной популяции клеток, потомков примитивной энтодермы [10]. Эта группа клеток называется передней висцеральной энтодермой (anterior visceral endoderm), или просто AVE, и если у нее не получится выработать сигнальный белок, эмбрион останется без головы. Развитие AVE происходит тогда, когда бластоциста превращается в цилиндрическую структуру, и мы первый раз в жизни могли наблюдать за этим процессом. Для образования головы нужен белок-ингибитор Cerberus (Цербер), поэтому мы использовали трансгенный эмбрион, у которого активность Cerberus сопровождалась свечением GFP (созданным еще в те годы, когда я была постдоком у Мартина Эванса).

Мы обнаружили интересный факт: по мере развития эмбриона некоторым клеткам суждено сформировать AVE, в то время как другие лишь индуцированы на то, чтобы превратиться в нее позже. Обе группы клеток собираются вместе на дне эмбриона и мигрируют на одну сторону. Перемещаясь, они сигнализируют соседнему эпибласту стать той частью эмбриона, где в будущем появится голова. Согласно нашим результатам, AVE, вероятно, происходит из двух наборов предшественников, один из которых обнаруживается уже во время нарушения симметрии на стадии бластоцисты [11]. Полученный результат подчеркивает важность событий до имплантации эмбриона, способных влиять на формирование организма на более поздних стадиях.

С противоположной от AVE стороны активируется ген Brachyury и приступает к созданию белка. Активность этого гена символизирует появление задней части эмбриона, образование мезодермы и гаструляцию. Взглянув на скрытые процессы имплантации в культуре, мы смогли проследить, какие из генов и в какой последовательности активировались на этапе, когда эмбрион создает свою передне-заднюю ось. У нас получилось сделать фильмы, которые демонстрировали хореографию клеток, ведущую к гаструляции. Эта информация была для меня чрезвычайно важна – казалось, будто каждая клеточка в моем теле улыбалась. К нашему удивлению, эту первую в мире визуализацию развития имплантирующегося эмбриона в культуре, отражающую ранние этапы формирования AVE, рецензенты Nature публиковать отказались (и, как водится, один из них выступил против идеи о том, что раннее нарушение симметрии влияет на формирование AVE). Зато журнал Nature Communications оценил наше открытие и опубликовал исследование в 2012 году [12].

Потребовались еще два года усердной работы, чтобы прояснить каждый шаг морфогенеза эмбриона на стадии имплантации. Тем временем два члена моей команды, Иван Беджов и Сай Люнг, усовершенствовали химию питательной среды. Наш метод культивирования позволил нам обнаружить, что во время имплантации архитектура эмбрионов меняется радикальным и неожиданным образом [13]. Три типа клеток, составляющих бластоцисту, перестраиваются в новую конфигурацию. Меняя форму шара на форму чаши, эпибласт превращается в красивую трехмерную розетку из клинообразных клеток. Затем в центре розетки образуется отверстие (или люмен) и расширяется с образованием полости, в которой позже будет находиться развивающийся плод. Могло ли это быть искусственным последствием метода культивирования in vitro? Анализируя эмбрионы, развивающиеся in vivo, Иван подтвердил, что аналогичная клеточная хореография происходит во время реального имплантационного эмбриогенеза в теле мыши.


    Ваша оценка произведения:

Популярные книги за неделю