Текст книги "Невидимый современник"
Автор книги: Николай Лучник
сообщить о нарушении
Текущая страница: 9 (всего у книги 13 страниц)
Глава V
Волшебные лекарства
Кончиком пальца Маргарита выложила небольшой мазочек крема на ладонь, причем сильнее запахло болотными травами и лесом, и затем ладонью начала втирать крем в лоб и щеки… Брови сгустились и ровными черными дугами легли над зазеленевшими глазами. Тонкая вертикальная морщинка, перерезавшая переносицу, появившаяся тогда, в октябре, когда пропал мастер, бесследно исчезла.
М. Булгаков, «Мастер и Маргарита»
Солнца Ван-Гога
Страшные черные птицы кружат над желтым полем, на краю поля стоят зловещие черные кипарисы, а над всем вращаются безумные красно-желтые солнца… Эти полотна писал уже полубезумный мастер в последние свои годы – в Арле, Сен-Реми и Овере… Невозможно пройти равнодушно мимо этих солнц, хотя они – это всего лишь мазки желтой и красной краски на полотне.
Каждое утро я прохожу по коридору, где со многих дверей смотрят на меня красно-желтые круги: шесть секторов, закрашенных попеременно красной и желтой краской. И хотя я вижу их ежедневно, они, как неправдоподобные солнца на картинах Ван-Гога, останавливают взгляд, не дают пройти мимо. Эти круги я вижу не только здесь. Все больше лабораторий с такими знаками. Их все чаще и чаще встречаешь на заводе, в клинике, в аэропорту – на дверях, приборах, контейнерах, клетках с животными…
Красно-желтые круги короче и выразительнее любых слов говорят случайному посетителю и еще раз напоминают постоянному сотруднику: ОСТОРОЖНО – РАДИАЦИЯ!
Защита от радиации организована серьезно. В любых случаях для работы с источниками излучений или с изотопами необходимо специальное разрешение, которое выдают лишь после того, как убедятся, что помещение вполне пригодно для таких работ, установлены средства защиты, а персонал прошел медицинский осмотр и специальный инструктаж. Точно установлены предельные нормы для контакта с радиацией: в течение дня, недели, года, всей жизни.
Предельно допустимые нормы берутся не с потолка. Именно для этого и проведена огромная работа, о которой писалось в предыдущих главах, по выяснению влияния разных доз облучения во всех возможных условиях на различные клетки, органы, системы и функции живых организмов. И сейчас тысячи радиобиологов продолжают подобные исследования. Чем больше мы будем знать, тем надежнее сможем организовать защиту от нового и коварного фактора, с которым встретилось человечество.
А какую дозу я получил сегодня? Это тоже определяют не на глазок, не по формуле «трех П» (пол – потолок – палец). Всюду, где человек встречается с радиацией, на ее пути стоит заслон из врачей-гигиенистов и инженеров-физиков со строгой системой радиационного контроля.
У всех людей, находящихся поблизости от красно-желтых солнц, вы видите какую-то общую деталь туалета. Или торчат из карманов золотистые трубочки, напоминающие размером и формой авторучки, или приколоты к груди не то брошки, не то значки, на которых, однако, ничего не изображено. Такую же «безделушку» настойчиво вручают вместе с белым халатом и случайному гостю. Это индивидуальные дозиметры, которые по потемнению фотопленки или по разрядке электрометра совершенно точно покажут, сколько миллирентген получил сегодня каждый из нас.
Много ли людей на нашей планете страдают от лучевой болезни? Очень немного. Многие ли умирают от облучения? Единицы. Автомобильные катастрофы в тысячи, а может быть, и в сотни тысяч раз более частая причина смерти или увечья. Нужны ли тогда такие предосторожности в отношении радиации? Несомненно. И лишь потому, что злому джинну, выпущенному из кувшина, отведены только вполне определенные «дома» и «дороги», он остается почти безвредным для человека.
Однако бывают случаи, когда человеку приходится вступить в более тесное соприкосновение со «злым духом» – облучиться дозой, во много раз превышающей предельно допустимую.
Но когда это может случиться? – спросите вы. Атомная война? Да, и атомная тоже. Разумное большинство человечества борется за ее предотвращение, но быть к ней готовым необходимо. Однако поговорим о мирном времени. И в мирное время облучение человека дозами, во много раз превышающими абсолютно безвредные, отнюдь не редкость.
Неужели так часты аварии? Нет, они редки. Настолько редки, что международная статистика не располагает достаточным материалом для уверенного суждения о величине доз, смертельных для людей. Но нам дороги жизнь и здоровье каждого человека. А жертвой злого джинна оказываются как раз чаще всего люди, наиболее ценные для общества. Вспомните хотя бы Гусева из фильма «Девять дней одного года».
Мечты о волшебной пуле
Чтобы вылечить больного, нужно уничтожить болезнетворное начало. Убить находящихся в организме вредных бактерий или вирусов, уничтожить неизлечимо больные клетки тела, например раковые. Но часто приходится слышать, что наука не знает средств, убивающих вирусов, средств, надежно уничтожающих раковые клетки.
Нет ничего более неправильного, чем это утверждение. Потому что убивать, например, вирусы очень просто. И это касается любого болезнетворного начала. Есть простые и дешевые средства, во много раз более эффективные, чем все антибиотики, вместе взятые.
На огне стоит блестящая коробочка. В ней шприц и иглы. Медсестра собирается вводить больному чудодейственное лекарство. Но не лекарство привлекает наше внимание, а пламя спиртовки. Почему для укола берут всегда «вареный шприц», известно любому ребенку. Его стерилизуют, чтобы не ввести вместе с лекарством новую болезнь.
Стерилизация – дело простое. Все возбудители болезней построены из органических веществ, в первую очередь из белков. Это очень нежные вещества. Они не выдерживают ни нагревания, ни кислот, ни щелочей, ни многого другого. Надежнейшими средствами дезинфекции и стерилизации служат такие вещества, как карболовая кислота, хлорная известь, спирт.
Но одно дело шприц или зараженное помещение, а другое – живой человек.
Вы знаете, конечно, как произошло выражение «медвежья услуга». Подружился медведь с человеком. Человек уснул, на лоб ему села муха и стала его беспокоить. Услужливый медведь взял большой камень и убил муху, а вместе с ней и человека.
То же самое получилось бы, если бы попытались лечить человека огнем или кислотой. Наше тело тоже построено из органических веществ. Дело не в том, чтобы «убить болезнь», – это легко, а в том, чтобы при этом не повредить организм больного.
Лет семьдесят назад один немец с богатым воображением придумал сказку о волшебной пуле: о пуле, которая сама ищет цель и без промаха разит микробов, не вредя клеткам человека, о химическом веществе, которое в отличие от карболки портит не любой белок, а только убивает болезнетворных бактерий.
Эта сказка из тех, что быстро осуществляются. Воплотить ее в жизнь удалось самому автору сказки, Паулю Эрлиху – тому самому Эрлиху, который открыл первое эффективное средство для лечения сифилиса – сальварсан, или препарат «606». Последнее название говорит о том, что успех пришел после 605 неудач.
Одно из основных понятий современной фармакологии – науки о лекарствах – терапевтический индекс. Он показывает, во сколько раз самая малая доза, вредная для микробов, больше самой большой, безвредной для человека. Чем выше это число, тем лучше. А если оно меньше единицы, лекарство никуда не годится: оно будет убивать человека, не вредя бактериям.
Ионизирующие лучи применяют с лечебной целью, особенно для лечения рака. Это оказывается возможным как раз потому, что на раковые клетки радиация действует сильнее, чем на нормальные, здоровые. Но разница не велика. Если бы она была больше, все формы рака стали бы легкоизлечимыми.
Врач-онколог (онкология – наука о злокачественных опухолях) вынужден держаться на лезвии бритвы, потому что ему приходится облучать больного такими дозами, которые, с одной стороны, безусловно вредны для пациента, а с другой – заведомо не убивают все раковые клетки. Приходится идти на хитрости, например облучать несколько раз. Больной оправился от первого облучения, можно добивать злокачественные клетки. Или организовать лечение таким образом, чтобы раковым клеткам досталось побольше, а здоровым – поменьше. Для этого, например, можно крутить источник излучения вокруг больного так, чтобы луч все время был направлен на опухоль. В результате она облучается непрерывно, а здоровые ткани попеременно. А можно подобрать такую жесткость лучей, что они сконцентрируют максимум своей энергии на вполне определенной глубине.
Но всего этого мало. Вот если бы удалось увеличить терапевтический индекс: сделать раковые клетки более чувствительными к лучам или нормальные – менее чувствительными! Это как раз та область, где люди постоянно (и совершенно сознательно!) облучаются довольно высокими дозами радиации.
Значит, необходимо, не обязательно на случай атомной войны, но и ради самых мирных дел научиться уменьшать вред, наносимый злыми лучами, не только с помощью бетонных стен, свинцовых стекол и предельно допустимых норм. Научиться делать это и когда человек получает дозу, которая способна нанести вред.
Но возможно ли это?
«Рентгеновское похмелье»
Когда человека облучают, он ничего не чувствует. Но спустя некоторое время начинаются неприятности, у разных людей по-разному выраженные: общее недомогание, тошнота, рвота, кишечные расстройства… Врач обнаруживает нарушения водно-солевого равновесия, падение числа лейкоцитов, повышение содержания сахара в крови…
Кто-то из немецких врачей-рентгенологов, видимо вспомнив, как у него после очень приятно проведенного вечера наутро трещала голова, дал этому состоянию довольно хлесткое название: «рентгенкатер», в буквальном переводе – «рентгеновское похмелье». В других языках этот термин не привился. По-русски болезненные симптомы, наступающие через некоторое время после облучения, чаще всего называют общей реакцией.
В общей реакции нет ничего хорошего. Она ухудшает самочувствие больного, мешает дальнейшему проведению лечения. Пытались ли лечить общую реакцию? Конечно. Находили ли эффективные средства? О да.
Однажды я заинтересовался, какие средства рекомендовались для лечения лучевого «похмелья». Взял полтора десятка карточек, на которые записывают интересующие статьи, пошел в библиотеку и обложился грудой старых комплектов радиологических журналов. Карточки удивительно быстро заполнились, пришлось идти за новыми. А когда число эффективных средств перевалило за сотню, я бросил это занятие.
Плохо, когда предлагают слишком много средств. Это значит, что ни одно из них не действует достаточно хорошо. Чем же пытались лечить общую реакцию?
Лечебные средства бывают двух сортов. Одни действуют на причину болезни (например, убивают болезнетворных бактерий), их называют каузальными (причинными). Другие – на симптомы болезни (успокаивают головную боль, понижают температуру и т. п.). Их называют симптоматическими. Ясно, что первые лучше. Они действительно лечат, а вторые влияют в основном на самочувствие больного.
Что касается средств против «рентгеновского похмелья», то все они без исключения были симптоматическими. Поэтому не приходится удивляться, что их было слишком много.
Но можно ли повлиять на самые глубинные изменения живого вещества, лежащие в основе лучевой болезни? Ведь ее причина – изменение молекул, вызванное ионизирующими частицами. Разве может быть какое-нибудь другое средство, кроме как отгородиться от лучей, поставив свинцовый экран на их пути, или вообще уйти от греха подальше?
Перед учеными встала задача: уменьшить вредное действие радиации даже в том случае, если она добирается до живых клеток.
Затаите дыхание!
Как важно сделать открытие вовремя! Когда никому не известный инженер Бернского патентного бюро Альберт Эйнштейн выступил со специальной теорией относительности, она сразу привлекла к себе внимание физиков, а сам Эйнштейн стал знаменитостью. Когда же несколько лет спустя знаменитый физик Альберт Эйнштейн предложил общую теорию относительности, на нее долго никто не обращал внимания. Это произошло потому, что специальная теория отвечала на вопросы, волновавшие физиков, и почва для открытия была готова. А общая теория стояла в стороне от их интересов, она слишком опередила развитие науки.
С этой точки зрения двум англичанам – Тодею и Риду – определенно повезло. Шла вторая половина 40-х годов. Уже разрушена Хиросима, и ученые лихорадочно ищут средства, снижающие лучевое поражение живых организмов.
Но дело не только в этом. Бурно развивается изучение действия радиации на водные растворы. Выяснено, что большая часть эффекта связана не с прямыми попаданиями в молекулы растворенного вещества, а с активацией воды.
Тодей и Рид облучали корешки конских бобов рентгеновыми лучами, а затем измеряли их рост и исследовали под микроскопом повреждения хромосом в их клетках. Подобные опыты ставили в то время многие радиобиологи. Но в отличие от других Тодей и Рид половину корешков облучали в присутствии кислорода, а другую – в его отсутствие. И получились удивительные результаты: при облучении в отсутствие кислорода поражение оказывалось в два-три раза меньшим. Статья об этом была напечатана в 1947 году и, хотя по объему была меньше страницы, привлекла внимание очень многих ученых.
Но Тодей и Рид этим не ограничились. Через два года они напечатали следующее сообщение. Оно было помещено в том же журнале и было столь же лаконичным, как и первое. Описывались результаты точно таких же опытов. Единственное отличие состояло в том, что облучение вели не рентгеновыми, а альфа-лучами. А результаты получились совершенно другими: при облучении альфа-лучами кислород не оказывал никакого влияния на биологическое повреждение. Сказать, что работа привлекла внимание, было бы слишком слабо. Потому что после этой статейки кислородный эффект сразу оказался в самом центре внимания радиобиологов и продолжает занимать его до сих пор.
Мало того, что в этих опытах наблюдалось заметное снижение вредного эффекта, вызываемого облучением; казалось, новые факты сразу получают красивое теоретическое объяснение. Все было очень похоже на то, что происходит при облучении воды. Образуется перекись водорода. Эту реакцию к тому времени хорошо изучили, и было известно, что при облучении воды рентгеновыми лучами выход перекиси резко падает в отсутствие кислорода, а в опытах с альфа-лучами он не влияет на результаты.
Не правда ли, как хорошо все получается! Дело, видимо, в перекиси водорода, образующейся из облученной воды (а все живые ткани содержат очень много воды!). Перекись химически очень активна. Вот она-то и повреждает биологические структуры. Казалось, остается выяснить некоторые второстепенные детали, и механизм влияния кислорода, а заодно и биологического действия радиации вообще станет вполне ясным.
Увы, надежды оказались обманчивыми. Сейчас, спустя почти двадцать лет, механизм кислородного эффекта, как назвали результат, полученный Тодеем и Ридом, менее ясен, чем в 1949 году.
Им действительно сильно повезло. Помните разговор о колебаниях маятника? О том, что мнение большинства радиобиологов несколько раз колебалось от признания исключительной роли непрямого действия (то есть действия радиации через активацию воды) до его полного отрицания? Тодей и Рид опубликовали свои работы, когда маятник делал взмах в сторону непрямого действия. Еще бы: как раз тогда Вейсс расшифровал химическую природу активированной воды. Естественно, что на работы двух англичан сразу обратили внимание. Мало того, их статьи так подтолкнули маятник, что он сделал самый сильный за всю историю радиобиологии взмах в сторону непрямого механизма.
Но, интересное дело, когда кислородный эффект оказался в центре внимания, обнаружили, что он открыт давным-давно. Еще на самой заре радиобиологии, в 1905 году, некто Шварц заметил, что, если подавить циркуляцию крови в облучаемой ткани, лучевое поражение оказывается меньше. Но ведь кровь разносит по телу кислород! Именно отсутствием кислорода и объяснил Шварц открытое им явление. Правда, это было лишь случайное наблюдение. Но в начале 20-х годов Холтгузен специально изучал кислородный эффект. Причем опубликовал не коротенькую заметку, как Шварц (или Тодей и Рид!). Его статья имеет объем около ста страниц. И еще и еще находили старые работы, где описан кислородный эффект… Но эти сообщения не привлекли к себе большого внимания во время публикации, так как с практической стороны оказались неинтересными, а с теоретической – непонятными.
Поэтому, если бы Тодей и Рид сделали свою работу на несколько лет раньше, ее постигла бы та же судьба, что и работы Шварца, Холтгузена и многих других. Даже если бы то же самое они сделали позже, когда вопрос о роли непрямого действия (следовательно, и кислородного эффекта) казался далеко не столь ясным, они не произвели бы такой сенсации, как в середине 40-х годов. Везет же людям!
Если с механизмом кислородного эффекта вопрос до сих пор не ясен, то само существование кислородного эффекта никакому сомнению не подлежит. Десятки ученых поставили сотни опытов и за ничтожным числом исключений (а где их не бывает!) получили один и тот же результат: при облучении рентгеновыми и гамма-лучами отсутствие кислорода значительно снижает поражение; при облучении нейтронами и альфа-частицами кислородного эффекта нет или почти нет. Один и тот же результат наблюдали на любых организмах, начиная от бактерий и кончая млекопитающими.
Эффект есть, и немалый. Но как лабораторные результаты применить на практике? Сказать облучаемому пациенту: «Затаите дыхание»? Ничего не выйдет. Облучать в герметическом контейнере без кислорода? Этого никто не выдержит. Редко бывает, чтобы дорогу от первого экспериментального результата до практического применения можно было изобразить коротким отрезком прямой линии. Но открытие кислородного эффекта имело далеко идущие практические последствия.
Норберт Винер, крестный отец кибернетики, писал в связи с секретом атомной бомбы, что самый главный секрет, связанный с бомбой, был добровольно раскрыт ее первыми хозяевами. Этот секрет – сообщение о том, что бомба существует. «Раз ученый работает над проблемой, которая, как он знает, разрешима, то изменяется все его поведение».
Раз стало известно, что лучевое поражение может быть уменьшено, хотя бы принципиально, вполне реально рассчитывать добиться этого не только «удушением», но и с помощью каких-нибудь уколов или таблеток.
Самоотверженные молекулы
Нужно, однако, заметить, что первые противолучевые таблетки были найдены вне связи с кислородным эффектом, хотя и в связи с опытами по облучению водных растворов.
В том же 1949 году, когда Тодей и Рид опубликовали результаты своих опытов с альфа-лучами, в другом журнале и в другой стране появилась интересная статья. Гузман Бэйрон – биохимик латиноамериканского происхождения, работавший в то время в США, опубликовал вместе с группой сотрудников статью, где было рассказано об удивительных свойствах органического вещества с маловразумительным названием «глютатион». Оказалось, что если раствор белка облучать в присутствии глютатиона, белок поражается значительно меньше, чем при облучении в чистой воде. Создалось впечатление, что глютатион самоотверженно принимает лучевой удар на себя, защищая тем самым остальные молекулы, находящиеся в растворе.
По-видимому, так оно и есть на самом деле. Глютатион очень-легко окисляется под действием продуктов активации воды, имея к ним гораздо большее сродство, чем другие вещества. В результате на долю этих других молекул остается гораздо меньше вредных продуктов.
От этих опытов дорога к предупреждению лучевой болезни была явно более короткой, чем от кислородного эффекта. Буквально напрашивался опыт, где животным перед облучением вводили бы глютатион. И не мудрено, что более или менее одновременно разные ученые в разных странах начали ставить очень похожие опыты.
В то время я уже занимался радиобиологией, делал первые шаги в этой новой науке. Мне тоже попалась на глаза статья Бэйрона, тоже захотелось ввести глютатион мышам и облучить их. Но должен честно признаться, что я очень мало знал в то время. Глютатион был для меня пустым звуком. Что он собой представляет, где его добывают, насколько он вреден для живых организмов – ничего этого я не знал. Но узнать это нетрудно, нужно только познакомиться с соответствующей литературой.
Глютатион оказался довольно простым белковоподобным веществом. В основе строения всех белков лежат длинные цепи, составленные из гораздо более простых веществ – аминокислот. Цепи состоят, как правило, из многих десятков звеньев, в молекулу белка входит часто по нескольку таких цепей. И глютатион представляют собой такую же цепочку, только совсем короткую – всего из трех аминокислот. Вот их названия: цистеин, глицин и глютаминовая кислота.
И еще я узнал, что глютатион относится к числу широко распространенных веществ. Он содержится почти во всех клетках; особенно много его в эритроцитах, в печени и в надпочечниках. Но не все, что широко распространено в природе, столь же широко представлено в лабораторных химических шкафах. Химическая промышленность глютатион в те годы не производила. Я стал приставать к знакомым химикам, чтобы они сделали для меня чудесное вещество. Я просил, умолял, убеждал, что этой работой мы можем спасти человечество (в молодости почти все каждой своей работой собираются спасать человечество). Наконец один из химиков сжалился надо мной. Но он тоже не стал делать глютатион. Вместо этого он стал думать вместе со мной.
– Я думаю, – завершил он свои рассуждения, – что глютатион тебе не нужен. Его защитные свойства в опытах Бэйрона наверняка связаны с присутствием цистеина. Ведь именно цистеин составляет легкоокисляемую часть молекулы. Правда, цистеина у нас тоже нет, но его приготовить гораздо проще, чем глютатион. Я попробую.
Через три дня после этого разговора я с благодарностью прижимал к груди запаянные ампулы с белым кристаллическим порошком, а еще через час впрыскивал раствор белым крысам и нес их под рентгеновскую трубку. Как жаль, что пройдет еще несколько дней, прежде чем будут какие-то результаты!
Прошло четыре дня… Контрольные животные почти все погибли, осталось в живых только 8 процентов. А из тех, кому перед облучением той же дозой был введен раствор цистеина, больше половины жили. Первый же опыт по поискам лекарства от облучения оказался удачным! Правда, подопытные животные хотя и жили, но выглядели явно больными. И следующие дни принесли разочарование. Через полторы недели не осталось ни одной крысы – ни контрольной, ни опытной.
Но лиха беда начало. Вначале мы не знали, сколько цистеина можно вводить животным, и были слишком осторожны. В дальнейших опытах дозировка цистеина была увеличена в десять раз. Мы также не знали, как лучше применять цистеин: вводить под кожу, или в кровь, или еще как-нибудь. Не знали, в какое время его следует вводить. Приходилось действовать наугад. Очень скоро результаты удалось сильно улучшить. При дозах, убивавших 70–80 процентов животных, с помощью цистеина удавалось спасти около половины, причем эффект не был временным, животные вообще оставались живы.
Как я уже говорил, мысль применить глютатион или цистеин в опытах по облучению животных напрашивалась сама собой. И естественно, что такие опыты более или менее одновременно поставили разные ученые в разных странах. В печати же раньше других появилось сообщение об опытах американца Гарвея Патта.
Вскоре попробовали вводить цистеин людям перед их облучением в клинике. Как и ожидалось, цистеин снимал у большинства пациентов общую реакцию.
От глицерина до цианида
Когда одного студента-двоечника спросили, чем дышит кузнечик, то он задумчиво втянул в себя воздух и радостно ответил: «ноздрей», за что и получил свою обычную оценку. А действительно, чем мы дышим? На этот вопрос ответить не так-то просто. Можно сказать – легкими, а можно сказать – кислородом. Но ведь смысл дыхания не в том, чтобы наполнять легкие воздухом и вновь выпускать его. Кислород нужен, чтобы окислять («сжигать») питательные вещества в клетках нашего тела. За счет этого наш организм получает энергию. Кислород разносится по всему телу гемоглобином, красящим веществом крови, а в клетках целая серия биологически активных веществ – ферментов использует кислород для окисления органических веществ. Поэтому лишить клетки кислорода можно по-разному: можно заткнуть ноздри (и студент был по-своему прав), можно подавить работу легких, а можно и помешать гемоглобину переносить кислород от легких к клеткам.
Вероятно, именно так и думал известный бельгийский фармаколог, иностранный член Академии наук СССР Зенон Бак, когда размышлял о возможности использования кислородного эффекта. Ведь вовсе не обязательно для получения кислородного эффекта помещать облучаемый организм в безвоздушное пространство. Достаточно лишить его клетки кислорода. А сделать это можно по-разному.
Некоторые яды, и притом очень опасные, такие, как синильная кислота и угарный газ, как раз отравляют дыхание. Они обладают свойством соединяться с гемоглобином прочнее, чем кислород. Гемоглобин оказывается занят, кислород не может к нему присоединиться, и клетки задыхаются. А что, если животным ввести такой яд перед облучением? Можно подобрать дозировку, которая не будет их убивать, но сильно подавит дыхание. По прошествии некоторого времени яд все-таки уйдет из крови, не оставив вредных последствий.
Бак ввел мышам перед облучением соль синильной кислоты – цианистый натрий. Результат получился примерно такой же, как и от введения цистеина.
Ученые стали испытывать другие вещества, связывающие гемоглобин, средства, блокирующие внутриклеточные дыхательные ферменты, подавляющие дыхательный центр в головном мозгу. Все они оказывали больший или меньший эффект.
Пробовали применять вещества, как будто и не имеющие отношения к дыханию и даже совсем индифферентные, вроде глицерина, – многие из них также оказывали защитный эффект.
Прошло несколько лет. Ленинградский фармаколог и радиобиолог Всеволод Петрович Парибок, сам много занимавшийся противолучевой защитой, решил вместе со своими сотрудниками собрать воедино материал, который накоплен учеными всех стран по противолучевой защите. Они стали составлять таблицу, где по каждому средству приводились основные данные, причем в самом телеграфном стиле. Таблица была опубликована и заняла ни много ни мало целых две книги большого формата. Оказалось, что очень многие вещества обладают противолучевыми свойствами.
Но не слишком ли их много? Может быть, ученые продолжали свои поиски потому, что ни одно из уже найденных веществ не удовлетворяло? В какой-то мере – да. Большинство средств обладало двумя недостатками. По своему эффекту они были равны цистеину – самому первому из открытых средств, или даже уступали ему. Кроме того, чтобы вещество оказало эффект, его нужно вводить животным за несколько минут до облучения. Поэтому найти применение они могли только там, где заранее известно время облучения.
После более подробного исследования обнаружились и другие недостатки этих веществ: они далеко не всегда защищали даже при введении за вполне определенное время перед облучением. Так они защищали при облучении рентгеновыми и гамма-лучами, но не давали эффекта при облучении нейтронами и альфа-лучами. Эффективные при однократном облучении высокой дозой, они не защищали или даже повышали смертность, если общая доза делилась на несколько частей, или когда животные подвергались хроническому облучению.
Именно поэтому приходилось продолжать поиски. То, что было достаточно хорошим для одних случаев, оказывалось совершенно негодным для других.
Ученые ищут закономерности
Капитан-командор Витус Беринг открыл во время своего знаменитого плавания новые острова. В честь славного командора их назвали Командорскими. Совсем недавно исполнилось 225 лет со дня их открытия, по этому случаю выпустили памятные значки. На значках изображен морской котик, причем незадачливый художник нарисовал его с огромным пушистым хвостом. А на самом деле у морских котиков хвостов нет в отличие от котов сибирских, ангорских, сиамских и прочих. Об этом случае писали даже в журнале «Крокодил».
Случай очень характерный для человеческой психологии. Мы все, часто бессознательно, ищем закономерности там, где они есть и где их нет. Ребенок в возрасте «от двух до пяти», познакомившись с молоком и манной кашей, с одной стороны, и с папиросами и портфелем с другой, пытается все слова на «М» связывать с мамой, а на «П» – с папой. Взрослый человек, попав под дождь, на следующий день часто берет с собой дождевик, несмотря на ясное небо… А художник приделывает хвост морскому котику.
Если вы думаете, что ученый не способен на столь же необоснованные обобщения, то ошибаетесь. Ведь он такой же человек, как и все. А к тому же одно из его основных занятий – искать закономерности. Вот он и ищет их там, где они есть и где их нет. Кроме того, каждый ученый мечтает открыть какой-нибудь очень важный и очень общий закон. Поэтому нередко бывает, что никакой ошибки нет и закономерность найдена, но автор старается распространить ее на гораздо более широкий круг явлений, чем следует.
Когда открыли достаточно большое число противолучевых средств, ученые стали искать закономерности. Но, увы, слишком часто они пытались приделывать хвосты морским котикам.
Помните соображения, которые руководили радиобиологами, начавшими применять глютатион и цистеин? Эти вещества особенно энергично реагируют с продуктами радиолиза воды и, связывая их, предохраняют молекулы белка от повреждения. Для защитного эффекта глютатиона важно, что в его состав входит цистеин. А для защитного эффекта цистеина важно, что в его состав входит сульфгидрильная группа. Страшные слова «сульфгидрильная группа» обозначают всего-навсего серу, соединенную с водородом.
Было естественным попробовать другие вещества, в состав которых входит эта неудобопроизносимая группа. Почти все они оказались более или менее эффективными. Попробовали вещества, содержащие другие химические группы, которые предположительно должны связывать активированную воду, получили похожие результаты. Закономерность налицо: все защитные вещества (более осторожные ученые говорили – большинство их) помогают, связывая продукты радиолиза воды.
А потом оказалось, что сульфгидрильные группы оказывают защиту и при облучении сухих белков, то есть в условиях, где никаких продуктов радиолиза воды появиться не могло.