355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Николай Лучник » Невидимый современник » Текст книги (страница 8)
Невидимый современник
  • Текст добавлен: 15 октября 2016, 03:02

Текст книги "Невидимый современник"


Автор книги: Николай Лучник


Жанры:

   

Биология

,

сообщить о нарушении

Текущая страница: 8 (всего у книги 13 страниц)

И вот, наконец, в 1927 году ученый мир узнал, что мутации можно вызывать и искусственно. Однако теперь, когда пишут об открытии действия ионизирующих лучей на наследственность, упоминают, что на два года раньше то же открытие сделали двое ленинградских ученых – Георгий Адамович Надсон и Григорий Семенович Филиппов. В 1925 году они, как известно, опубликовали первые работы о возникновении наследственных изменений у дрожжей под влиянием излучений радия.

Перед тем как начать писать эту главу, я решил просмотреть статьи Надсона. Вот самая старая из его радиобиологических работ, «О действии радия на дрожжевые грибы в связи с общей проблемой влияния радия на живое вещество». Она напечатана в самом первом номере журнала «Вестник рентгенологии и радиологии», основанного Неменовым. На журнале дата: 1920. Статья занимает почти сто страниц большого формата. Много места уделено подробнейшему обзору литературы, которая теперь безнадежно устарела. Говорится и об опытах по радиобиологии дрожжей, начатых Надсоном и его сотрудниками. Должен сознаться, раньше я эту статью не читал. Зачем? Ведь существуют более лаконичные последующие публикации того же автора, основанные на большем материале. Впрочем, статью, видно, почти никто внимательно не читал. Сейчас мне это совершенно ясно.

На странице 122 черным по белому написано: «Полученный от радия импульс может передаваться клеткой наследственно (это выделено и в журнале. – Н. Л.). Иногда клетка, непосредственно радиированная, не обнаруживает никаких заметных изменений, которые выявляются лишь у ее потомков». Это опубликовано в 1920 году, в самом первом номере журнала. Но чтобы напечатать статью, ее нужно сначала написать, а чтобы написать статью, провести опыты. Совершенно ясно, что опыты были поставлены не позже чем в 1918–1919 годах.

Выходит, Надсон опередил американских ученых не на два года, как обычно считают, а почти на целое десятилетие! Почему же честь открытия обычно приписывают Меллеру, почему именно он, а не кто-нибудь другой стал лауреатом Нобелевской премии за открытие действия ионизирующих излучений на наследственность?

В том, что открытие было сделано раньше 1920 года, а первая специальная статья по этому поводу вышла в свет в 1925 году, нет ничего удивительного. Низшие грибы, в частности дрожжи, относятся к числу трудных объектов для генетического исследования, даже сейчас с ними еще не все ясно. А в начале 20-х годов ясности было гораздо меньше. Правда, Надсон был одним из крупнейших в мире специалистов по дрожжам, именно это и позволило ему провести такие опыты.

Самым главным в этих опытах было доказать, что наблюдаемые изменения наследственны. Дрожжевые клетки обычно размножаются бесполым способом – простым делением. При этом даже ненаследственное изменение может наблюдаться в обеих дочерних клетках. Правда, по мере деления клеток ненаследственное изменение будет «разбавляться» и постепенно сойдет на нет. Поэтому в опытах с дрожжами требовалось наблюдать изменения в течение многих поколений, для чего нужно больше времени. И в опытах Надсона некоторые изменения прослеживались в течение более чем сотни поколений.

Но, несмотря на это, полной уверенности, что здесь действительно произошли настоящие изменения генетического аппарата, быть не могло. Нужны дополнительные сложные исследования. Надсон осторожен и не спешит с публикацией. Даже когда он стал печатать статьи об облучении дрожжей, то предпочитал называть наблюдаемые изменения не мутациями, как принято называть наследственные изменения, а «радиорасами».

Большая часть экспериментов велась молодым сотрудником Надсона – Григорием Филипповым. Работы, как правило, публиковались совместно. После выхода в свет первой работы стало ясно, что Надсон и Филиппов открыли широкое наступление. Они ставили опыты с разными группами дрожжей и с плесневыми грибками, работали с радием и рентгеновыми лучами, исследовали не только внешние, но и биохимические признаки, имея в виду возможное практическое использование «радиорас»…

Увы, этим опытам не суждено было завершиться. Филиппов умер от туберкулеза в 1933 году, в возрасте 35 лет. Ненадолго пережил его учитель. Он погиб во второй половине 30-х годов.

Меллер для своих опытов избрал плодовую мушку – дрозофилу, бывшую в те годы самым удобным, самым изученным генетическим объектом. К тому же к середине 20-х годов уже существовало большое число специальных культур для быстрого, простого и вполне однозначного обнаружения разных типов наследственных изменений. Большой популярностью пользуется, например, культура «Си-Эль-Би», которую применяют, когда надо выявить так называемые рецессивные леталии (то есть мутации, вызывающие гибель организмов, но при возникновении находящиеся в скрытом состоянии). С помощью этой культуры можно обнаруживать изменение не какого-нибудь одного, а всех генов, находящихся в так называемой половой хромосоме, что составляет около 20 процентов генов дрозофилы.

И методика работы с культурой «Си-Эль-Би» предельно проста. Исследуемых самцов скрещивают с самками из этой культуры и смотрят, есть ли во втором поколении самцы. Если у «дедушки» в соответствующей хромосоме была мутация, то при таком скрещивании наблюдаются только «внучки» и ни одного «внука». Не правда ли, просто? Мало того, такие эксперименты в отличие, например, от опытов с дрожжами совершенно ясно говорят о том, что в хромосоме произошло наследственное изменение.

Герман Меллер применил именно культуру «Си-Эль-Би» (кстати, он же и был ее автором). Не приходится удивляться, что хотя он начал опыты значительно позже Надсона и Филиппова, но довел их до победного конца раньше. Ведь даже сам Надсон не был вполне уверен, что у него получались истинные наследственные изменения. А данные Меллера не оставляли в этом никакого сомнения.


Генные, хромосомные и геномные

Мутации бывают разные. Все они изменяют наследственность, но в их основе лежат разные изменения хромосом. Во-первых, может измениться число хромосом. В нормальных клетках по две хромосомы каждого сорта. Но хромосомный набор может удвоиться, и в клетке окажется по четыре хромосомы каждого сорта. Такие случаи бывают. Организмы, содержащие увеличенное число хромосомных наборов, называют полиплоидами. Они вполне жизнеспособны, более того – полиплоиды обычно развиты лучше нормальных форм, обладают повышенной продуктивностью. Ясно, что они могут иметь важное хозяйственное значение. И многие селекционеры занимаются искусственным получением полиплоидов у сельскохозяйственных растений.

Бывают и другие случаи, когда большинство хромосом содержатся в клетках в нормальном двойном числе, а одна какая-нибудь в ненормальном, скажем, в единичном или тройном. Такие организмы называют анеуплоидами, и они в отличие от полиплоидов, как правило, характеризуются теми или иными дефектами. Полиплоиды и анеуплоиды объединяют под общим названием «геномные мутации».

Второй тип мутаций носит название хромосомных. О них говорят, когда количество хромосомного материала остается прежним, но меняется его расположение. Возможностей здесь много: две хромосомы обменяются своими частями, внутри хромосомы какой-то участок перевернется на 180 градусов, бывают и гораздо более сложные перестройки хромосом. Но чаще всего наблюдается их фрагментация: хромосома распадается на две или большее число частей.

Наконец, бывают случаи, когда микроскоп не обнаруживает в клетках никаких изменений хромосомного набора, но наследственное изменение тем не менее произошло и проявляет себя. Например, в потомстве нормальных красноглазых дрозофил появляется муха с белыми глазами. Это не просто уродство, потому что потомки такой мухи также белоглазые. Изменение налицо, однако микроскоп ничего не обнаруживает. Следовательно, заключили генетики, в основе мутации лежит внутреннее изменение самого гена, и назвали это явление генными мутациями. И оказались правы. В настоящее время научились исследовать тонкую химическую структуру гена, и выяснилось, что генные мутации сопровождаются небольшими изменениями в химическом строении отдельных генов. Понятно, что под микроскопом этого не заметишь.

Итак, мутации делятся на генные, хромосомные и геномные. Все эти типы встречаются в природе и возникают (хотя и крайне редко!) в лабораторных условиях, без всякого вмешательства человека.

Когда ученые узнали, что после облучения наблюдается большое число мутаций, многие стали говорить, что радиация просто-напросто ускоряет естественный мутационный процесс. Однако это не так. Если бы речь шла лишь об ускорении, то число мутаций всех типов должно было бы возрастать одинаково. Но уже Меллер обнаружил, что под воздействием проникающих лучей особенно увеличивается число хромосомных мутаций, как раз того типа, который в природе встречается особенно редко. Отсюда следует, что радиация не просто ускоряет возникновение мутаций, а способна их вызывать.

Теперь известно, что на образование геномных мутаций облучение влияет слабо. Что же касается генных и хромосомных мутаций, то они появляются в большом числе. И особенность действия лучей не сводится только к тому, что они вызывают большее число хромосомных мутаций по сравнению с генными. Если мы сравним «спектр» генных мутаций, возникающих самопроизвольно (как говорят генетики – спонтанно) и под влиянием радиации, то заметим большую разницу. Генные мутации бывают разными. Некоторые вызывают гибель будущего организма (летальные мутации), другие понижают жизнеспособность, что может сопровождаться или не сопровождаться внешними изменениями (мутации жизнеспособности), наконец, могут только меняться внешние признаки. Очень существенно, что под влиянием облучения особенно велик процент летальных мутаций: он гораздо выше, чем среди мутаций, возникающих спонтанно.

Мы гордимся тем, что действие ионизирующих излучений на наследственность впервые открыто нашими соотечественниками Георгием Надсоном и Григорием Филипповым. Их приоритет бесспорен. Но не приходится удивляться, что «отцом» радиационной генетики стал не Надсон, а Меллер. Это связано с тремя причинами.

Во-первых, Меллер избрал особенно удобный генетический объект – дрозофилу, – на котором можно быстро получать вполне однозначные результаты. Что же касается главного объекта Надсона и Филиппова – дрожжей, то он как раз относится к числу наиболее трудных. Заранее можно сказать, что десятки генетиков возьмутся продолжать работы Меллера, в то время как генетические опыты с дрожжами тогда мало кого могли вдохновить.

Во-вторых, Надсон и Филиппов успели только начать свои исследования. Смерть обоих ученых не дала возможности довести их до конца. А Меллер до сих пор жив и продолжает заниматься радиационной генетикой.

В-третьих, и это тоже имеет известное значение, Надсон и Филиппов публиковали большинство своих работ на русском языке, который был доступен лишь небольшому числу их коллег. А Меллер печатал почти все свои статьи на английском языке, который наиболее распространен в научном мире.

Можно, конечно, досадовать, что, хотя приоритет открытия принадлежит русским, Нобелевская премия за открытие и изучение мутагенного действия радиации присуждена американцу Меллеру. Однако и Меллер получил эту премию вполне заслуженно.


Ну и что?

А много ли мутаций возникает под влиянием облучения? В первой работе Меллера ответа на этот вопрос не было. Он не измерял величину дозы, и в его статье указана только продолжительность облучения в минутах. Однако в большинстве последующих работ (в том числе, конечно, и в работах самого Меллера) производится точное измерение доз.

Возьмем какую-нибудь из работ с дрозофилой (все равно какую, так как разные авторы получают очень близкие результаты). Мы увидим, что после облучения дозой 1000 рентген около трех процентов мух имеют в X-хромосоме мутации. X-хромосома составляет пятую часть хромосомного материала, следовательно, мутации будут наблюдаться приблизительно у 15 процентов потомков. Речь идет здесь о рецессивных деталях – наиболее распространенном классе мутаций из тех, которые можно обнаруживать с помощью простых генетических методов.

Ведь это не так много! Для человека, например, доза 1000 рентген – абсолютно смертельна, так не все ли равно, что при этом произойдет с хромосомами?! При меньших дозах мутаций соответственно меньше. Их число возрастает с дозой линейно. Значит, при дозе 100 рентген будет около полутора процентов мутаций. Стоит ли с этим считаться? А при больших дозах возникает временная стерильность; к тому моменту, как плодовитость восстановится, «испорченных» хромосом в клетках почти не останется…

После подобных рассуждений возникает роковой вопрос: ну и что? Что из того, что радиация влияет на наследственность? Так ли это важно для человека? Так ли это существенно в общей картине лучевого поражения? Может показаться, что все это почти никакого значения иметь не может. Однако такой ответ – грубейшая ошибка!

Если вероятность, что у кого-то родится ребенок с наследственным дефектом, да к тому же в скрытой форме, равна одной сотой, это, как может показаться, не так уж важно. Ведь дозы облучения, которые дают такую вероятность, получают на нашей планете единицы.

Конечно, радиация – далеко не единственная причина наследственных аномалий. Без всяких атомных испытаний каждый год на нашей планете рождается около 1 миллиона 500 тысяч детей с тяжелыми наследственными недугами. 15 тысяч – всего лишь один процент от этой цифры. К результатам таких расчетов можно при желании относиться по-разному. Но совершенно ясно, что ничего хорошего в действии радиации на потомство нет и что даже небольшое повышение радиоактивного фона на нашей планете, которое уже существует, оказывается с этой точки зрения вредным.

Но вредное действие радиации на наследственность касается далеко не только грядущих поколений. Наследственность – это не просто передача признаков и свойств от одного индивидуума к другому. Это также передача тех или иных особенностей от клетки к клетке. Ведь в основе явлений наследственности среди организмов лежит клеточная наследственность.

Под действием радиации больше всего возникает хромосомных мутаций, а среди них наиболее часто встречается фрагментация («поломка») хромосом. Эти поломки, как правило, приводят к гибели клеток. Но ведь причиной лучевой болезни является поражение различных органов и систем (кишечник, кроветворные органы и так далее), а оно связано с гибелью клеток. Конечно, гибель клеток не единственная причина лучевой болезни. Так, поражение центральной нервной системы, вызывающее «смерть под лучом» при воздействии очень высокими дозами, вряд ли можно связать с гибелью клеток. Но, так или иначе, гибель клеток играет при острой лучевой болезни исключительно важную роль. А основная причина гибели облученных клеток (хотя тоже не единственная) – хромосомные мутации.

А как обстоит дело с отдаленными последствиями облучения? Самое серьезное из них – лучевой рак. А что такое рак вообще? Заболевание, при котором клетки начинают бесконтрольно делиться, передавая это свойство дочерним клеткам. Что же это, как не наследственное изменение? Следовательно, и лучевой рак – тоже результат действия радиации на наследственные свойства клеток.

Причины других отдаленных последствий облучения, таких, как преждевременное старение, худшая приспособляемость к окружающим условиям, до недавнего времени казались менее понятными. Однако и здесь, как выясняется, генетическим повреждениям принадлежит ведущая роль.

Это может показаться на первый взгляд странным. Ведь мы знаем, что вредная мутация чаще всего либо приводит к гибели ту клетку, в которой возникла, либо находится в скрытом состоянии, ничем себя не проявляя. Такие скрытые мутации (генетик выразился бы более точно, но совсем непонятно: «гетерозиготные рецессивные летали») проявляются только в результате скрещиваний, когда две одинаковые мутации встречаются вместе. Но так ли это? Может быть, мутации, которые называют скрытыми, в действительности как-то действуют на организм?

Самуил Наумович Александров, известный радиобиолог, занимающийся вопросами отдаленной лучевой патологии и работающий, кстати, в том же институте, где Надсон и Филиппов сделали свое историческое открытие, получил недавно поистине удивительные результаты. Он изучал способность клеток к свечению под действием ультрафиолетовых лучей. Нормальные клетки светятся, но если их предварительно облучить ионизирующими лучами, начинают светиться сильнее. Впрочем, удивительно не это. Способность сильнее светиться передается облученными клетками по наследству. Значит, она связана с возникновением рецессивных мутаций, которые, как думали, находясь в скрытой форме, не влияют на свойства клеток.

А раз меняется способность клеток к свечению, может быть, меняются и другие ее свойства, незаметные на первый взгляд? Ставятся дальнейшие опыты, и выясняется, что и преждевременное старение и пониженная приспособляемость организмов в первую очередь обусловлены рецессивными мутациями, находящимися в скрытой форме.

К этому нужно еще добавить, что генетические действия радиации играют особенно важную роль при низких дозах облучения. Для всех остальных биологических эффектов радиации есть порог: существует доза облучения, ниже которой нет вообще никакого эффекта. А для генетических эффектов порога не существует. Любая, самая малая доза способна изменить хромосомы. Правда, при низких дозах вероятность такого изменения очень мала. Но если это несущественно для любого отдельного человека, то очень важно для человечества в целом.

Итак, действие радиации на хромосомы играет очень важную роль:

во-первых, при острой лучевой болезни;

во-вторых, при отдаленных лучевых поражениях;

и в-третьих, при облучении очень малыми дозами, где все прочие эффекты оказываются несущественными.

Это все относится к организмам, которые были непосредственно облучены. А для потомства роль повреждения наследственности очевидна.


Прямолинейность

Что стоит в центре любой экспериментальной научной работы? По моему, рисование кривых линий. Опыты ставят, чтобы найти закономерность, которая изображается какой-нибудь кривой. А анализ полученных результатов сводится к тому, чтобы объяснить, почему кривая пошла не так, а эдак.

Кривые, получаемые в опытах, не слишком разнообразны: прямая линия (мы ее тоже называем кривой, правда, прямолинейная кривая – бессмыслица, но мы как-то привыкли к этому); кривая, загнутая вверх; кривая, загнутая вниз; эс-образная кривая (то есть в виде латинской буквы «S»), кривая с максимумом, которая сначала идет вверх, а потом загибается вниз. Вот, пожалуй, и все. Встречаются, конечно, и более хитрые кривые, но с ними ученые стараются меньше иметь дела: слишком это сложно. И когда получают такую сложную кривую, то или из нее делают целую науку, либо просто приводят без всяких комментариев.

Сколько я типов кривых перечислил? Пять. Как будто маловато. И человек, который никогда не имел дела с экспериментальными кривыми, может подумать, что, во-первых, это, должно быть, очень скучное и однообразное занятие, а во-вторых, что в этих пяти типах кривых разобраться очень просто. Однако простота и однообразие только кажущиеся. Можно всю жизнь прожить, получая и анализируя кривые, и считать это самым увлекательным делом. А любая новая зависимость, даже и самая простая – прямая линия, – заставляет поломать голову, но она же часто щедро вознаграждает за вложенный в нее труд.

При изучении мутаций самый главный вопрос – тоже получение кривых и их объяснение. Начнем с генных мутаций.

Главный результат сводится к тому, что зависимость числа мутаций от дозы выражается самой простой из возможных зависимостей – прямой линией. Прямая линия получается всегда: при действии рентгеновыми лучами и нейтронами; при облучении, заканчивающемся за несколько секунд, и при растягивании его на несколько дней, при высокой и низкой температуре, в опытах на излюбленной генетиками дрозофиле и на любых других организмах.

Но мало того, что почти все опыты дают прямые линии. Ведь и прямые линии могут идти по-разному, иметь разный наклон. Однако если поставить опыты по облучению дрозофил разными дозами рентгеновых, бета– и гамма-лучей разной жесткости, то для зависимости числа мутаций от дозы вовсе не получится пучка прямых линий, расходящихся веером. Нет, все экспериментальные точки (разумеется, в пределах точности опыта) лягут на одну прямую. Единственное серьезное исключение – быстрые нейтроны. Довоенные опыты показывают, что нейтроны менее эффективны, чем другие виды лучей. После войны некоторые авторы получили прямо противоположные результаты: нейтроны в несколько раз более эффективны. Теперь же пришли к выводу, что нейтроны оказывают ненамного больший эффект, чем рентгеновы лучи. В чем тут дело? Ни нейтроны, ни мухи не могли за это время стать другими. Генетики ставили опыты совершенно одинаково… Дело в физиках. Дозиметрия нейтронов дело не простое. Нетрудно подсчитать, сколько нейтронов «попало» в облучаемый объект. Но ведь для биологического эффекта важна энергия, которая поглотилась живыми клетками. А поглощенную энергию определить было нелегко.


Из этих простых фактов можно сделать важные выводы. Прямолинейная зависимость эффекта от дозы говорит о том, что возникновение генной мутации – реакция одного попадания, другими словами, для возникновения мутации необходимо и достаточно, чтобы через хромосому прошла всего одна ионизирующая частица.

Но проход частицы может оставить в хромосоме разную энергию. Какая же энергия необходима для возникновения мутации? Если бы для этого нужна была большая энергия, больше энергии одной ионизации, то редко ионизирующие (жесткие) лучи не при всяком проходе оставляли бы нужную энергию и потому должны были быть менее эффективными. Однако в опытах такого не наблюдается. Следовательно, для возникновения мутации достаточно энергии одной ионизации.

Итак, наследственное изменение, генная мутация, вызывается всего лишь одной ионизацией. А много ли может сделать одна ионизация? Не так много: произвести одно изменение в одной какой-нибудь молекуле. То есть может либо отщепиться, либо присоединиться, либо измениться какая-нибудь химическая группа. Значит, мутация – не что иное, как небольшое химическое изменение внутри гена. Такой вывод и как раз на основе анализа результатов опытов по вызыванию мутаций облучением смогли сделать уже в 1935 году Николай Владимирович Тимофеев-Ресовский, Карл Гюнтер Циммер и Макс Дельбрюк. Недавно с помощью более прямых методов молекулярной генетики удалось подтвердить правильность этого вывода.


Поломанные хромосомы

Многие слышали древнюю притчу о группе слепых, захотевших узнать, что такое слон. Пощупав его, один сказал: это колонна; другой: змея; третий: гора. Ясно, что один ощупывал ногу, другой – хобот, третий – туловище. Нечто подобное произошло в первые годы с исследованием хромосомных мутаций, вызываемых облучением.

За дело взялись две группы ученых. Прежде всего те же дрозофильные генетики. Они обнаруживали хромосомные мутации в опытах по скрещиванию. По распределению признаков среди потомства делали вывод о том, что произошла либо транслокация (обмен частями между двумя хромосомами), либо инверсия (внутренний участок хромосомы перевернулся на 180 градусов), либо делеция (небольшой участок вообще выпал и потерялся), либо еще какое-нибудь более сложное изменение. Во всех случаях речь шла об обменах частями между хромосомами или внутри хромосом.

Но ведь что-то очень похожее было знакомо генетикам давным-давно. Созревание зародышевых клеток сопровождается процессом, который называют кроссинговер, или перекрест хромосом. Хромосомы каждой пары сближаются, приходят в тесный контакт и обмениваются частями. Внешне хромосомы выглядят так же, как и до кроссинговера, но произошла перекомбинация отцовских и материнских генов. Это один из способов, с помощью которых природа увеличивает наследственное разнообразие живых организмов. Кстати сказать, именно кроссинговер помог «четырем разбойникам» определять расположение генов в хромосомах.

Хромосомные перестройки напоминали результат кроссинговера с той только разницей, что обмен происходит не в гомологичных точках хромосом. Это позволило профессору А. С. Серебровскому предложить контактную, или кроссинговерную, гипотезу, которая была им детально разработана совместно с молодым в ту пору генетиком, ныне академиком Николаем Петровичем Дубининым. Согласно этой гипотезе, хромосомы под влиянием облучения приходят в контакт, как бы слипаются, а потом разъединяются, причем части их оказываются соединенными иначе, чем в исходных хромосомах.

Хромосомные мутации заинтересовали не только генетиков, но и цитологов. Они в отличие от генетиков не пользовались скрещиваниями, позволяющими наблюдать только отдаленный результат облучения, а изучали сами облученные клетки. При этом бросалось в глаза, что наиболее частое изменение, наблюдающееся после облучения, – фрагментация хромосом. Отдельные хромосомы оказываются разломанными на две или большее число частей. Кроме того, встречались и перестройки, описанные генетиками, но их было значительно меньше. Исходя из этого, Михаил Сергеевич Навашин предложил фрагментационную гипотезу, согласно которой хромосомы под действием облучения ломаются, а получившиеся фрагменты могут соединиться друг с другом неправильно. Генетики и цитологи наблюдали две разные стороны медали и соответственно предложили разные гипотезы.


Но кто прав? Долгое время шли споры между сторонниками обеих гипотез, и мир был внесен только тогда, когда, наконец, получили точные кривые зависимости эффекта от дозы. Опыты были проведены разными авторами и на разных объектах. Николай Петрович Дубинин в Москве облучал дрозофил, то же самое делал в Германии Ганс Бауэр, а в США Карл Сакс облучал растение традесканцию. Результаты оказались похожими и сводились к тому, что число фрагментов растет с дозой линейно (так же, как и число генных мутаций), а число перестроек увеличивается пропорционально квадрату дозы. Отсюда следовал вывод, что первично возникают фрагменты, а перестройки – результат нескольких (по крайней мере двух) элементарных событий. Фрагментационная гипотеза взяла верх.

Итак, поломки хромосом, подобно генным мутациям, дают для зависимости эффекта от дозы прямые линии. Но на этом сходство кончается. Если выход генных мутаций почти не зависит от жесткости лучей, то с хромосомными мутациями наблюдается вполне четкая зависимость: жесткие лучи оказываются менее эффективными. Чем более густую ионизацию вдоль своего пути создают частицы, тем при той же общей дозе больше получается хромосомных мутаций. Значит, чтобы поломать хромосому, недостаточно одной ионизации и нужна большая энергия.

Этим вопросом подробно занимался английский ученый Ли. Поставив совместно с ботаником Кечесайдом и с генетиком Тодеем ряд специальных опытов и проанализировав полученные результаты математически, Ли пришел к выводу: чтобы разломать хромосому, проходящая через нее частица должна оставить в ней около 15 ионизаций.

Таким образом, к середине 40-х годов вопрос о механизме образования как генных, так и хромосомных мутаций прояснился. Правда, что представляет собой с физико-химической точки зрения разлом хромосомы, или генная мутация, оставалось неизвестным.

Впрочем, подобный вопрос и ставить-то в те времена нельзя было. Как можно говорить о химической природе мутаций, когда неизвестна химическая природа гена? Как можно говорить о природе хромосомного разрыва, когда неизвестно, как построена хромосома?

Только в наши дни, после рождения новой науки – молекулярной биологии, радиационная генетика начинает искать ответы на эти вопросы.


    Ваша оценка произведения:

Популярные книги за неделю