355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Николай Лучник » Невидимый современник » Текст книги (страница 1)
Невидимый современник
  • Текст добавлен: 15 октября 2016, 03:02

Текст книги "Невидимый современник"


Автор книги: Николай Лучник


Жанры:

   

Биология

,

сообщить о нарушении

Текущая страница: 1 (всего у книги 13 страниц)

Николай Викторович Лучник
Невидимый современник


Присказка: квадратное уравнение


– Нет бога, кроме аллаха! Радуйся, о рыбак!

– Чем же ты меня порадуешь? – спросил рыбак.

И ифрит ответил:

– Тем, что убью тебя сию же минуту злейшей смертью.

Книга тысячи и одной ночи.
Третья ночь. Сказка о рыбаке

На горлышке кувшина был оттиск печати Сулеймана ибн Дауда (он же Соломон, сын Давидов)…

Чего уж яснее. Под печатью с величайшим из девяноста девяти имен аллаха не могло скрываться ничего и никого, кроме одного из ифритов (они же джинны, они же мариды, а попросту – духи, обладающие огромной силой и не сулящие ничего хорошего). Рыбак – не советский школьник Волька из «Старика Хоттабыча», не подозревавший о существовании ифритов до тех пор, пока не раскрыл кувшин. Рыбак – человек темный, отсталый, отлично знал, что могло скрываться под Сулеймановой печатью. Но он был Человеком.

В «Аксиоматике истории науки» когда-нибудь напишут:

«Аксиома № 1. Если Человек может совершить нечто, он это обязательно сделает».

Итак, рыбак был человеком и не смог противостоять соблазну.

Ева, вкушающая от запретного плода; Пандора, открывающая запретную шкатулку; ребенок, делающий именно то, что запрещено матерью; неодолимое свойство Человека (первая аксиома), источник его несчастий и его побед!

Любопытство ребенка, любознательность взрослого…

Пока же дадим слово Шехерезаде:

«А потом из кувшина пошел дым, который поднялся до облаков небесных и пополз по лицу земли, и когда дым вышел целиком, то собрался и сжался, и затрепетал, и сделался ифритом с головой в облаках и ногами на земле».

И тут происходит диалог, который вынесен в эпиграф. Рыбак оказывается в крайне затруднительном положении, так как перспектива умереть злейшей смертью его явно не устраивает.

Задача: Человек выпустил на волю злого духа, который угрожает его жизни и благополучию. Что делать?

Видимо, в основе решения лежит квадратное уравнение, так как задача имеет два и только два ответа.

Ответ 1: Обезвредить джинна, например загнать обратно в кувшин.

Ответ 2: Сделать так, чтобы джинн изменил свои намерения, например заставить служить себе.

Здесь в отличие от многих школьных задач оба корня уравнения имеют смысл. И других решений нет. Из многочисленных сказок нам известно, что их герои с успехом применяли оба решения. В «Сказке о рыбаке», например, герой с помощью хитрости заставил джинна влезть обратно и тут же наложил Сулейманову печать.

Это сказки. Но в наше время воплощается в жизнь большинство сказок и фантазий. Писателям-фантастам становится просто трудно выдумать что-нибудь действительно оригинальное. И в этой книге, далекой от фантастики, будет рассказано, как на свободу выпустили могучего и злонамеренного духа (не в сказке, а уже на самом деле) и что делали герои нашей правдивой истории (реальные люди в сюртуках и теннисках, в пиджаках и ковбойках), чтобы решить задачу, о которой уже шла речь и которая, как мы знаем, имеет два и только два ответа.


Глава I
Черт немецкой национальности


Пусть Гамлета к помосту отнесут,

Как воина, четыре капитана.

Будь он в живых, он стал бы королем

Заслуженно…

Шекспир, «Гамлет»


Апокриф о Гамлете

Тучи собрались с вечера. А когда на Эльсинор упала ночь, наступила такая тьма, что Бернардо, стоявший на посту, не видел не только помоста, но и эфеса собственной шпаги.

Когда же молния распорола непроглядный покров мрака и сокрушительный раскат грома потряс стены замка, Бернардо успел заметить человеческую фигуру, с ног до головы закутанную в плащ.

– Кто идет?

– А, это ты, Бернардо? Тогда все гораздо проще.

Бернардо узнал голос Горацио, самого верного из друзей Гамлета. Нет, не на последнее прощание с другом пришел он. Весь день в его мозгу звучали слова Фортинбраса: «Будь он в живых, он стал бы королем…» «Гамлет должен стать королем», – говорил себе Горацио. Быть может, душа еще не покинула тело принца. А если так, его можно спасти. Гамлету были известны все тайны целебных трав и кореньев, и многими из них он поделился со своим другом. И сейчас Горацио шел, чтобы попытаться вдохнуть жизнь в уже охладевшее тело.

Он приложил к посиневшим губам губку, намоченную в уксусе, настоянном на корневищах папоротника, и начал растирать грудь порошком бодяги. Бернардо, покинув пост, стал помогать ему. Долго трудились они, тщетно испытывая то одно, то другое средство, и уже начали терять надежду. Но, наконец, – о чудо! – за несколько минут до того, как прокричал петух, веки Гамлета дрогнули и губы слегка приоткрылись. Вскоре и румянец появился на уже побелевших щеках.

– Спасен, – облегченно вздохнули оба…

Гамлет стал королем и дожил до глубокой старости. Дания расцвела под его справедливым правлением. А сам Гамлет все свободное от дел государственных время тратил на занятия медициной, в которой добился изрядных успехов.

………………………………………………………

Почему бы и нет? Трагедии Шекспира далеко не всегда отличаются документальной точностью. И я берусь доказать, что именно так могла закончиться история с Гамлетом, принцем датским. Докажу это не менее логично, чем иные ученые доказывают какую-нибудь ахинею, делая это в отличие от меня вполне серьезно.

Когда у детей бывает бронхит, им нередко прописывают нашатырно-анисовые капли с добавлением глюкозы. Еще совсем недавно их называли каплями датского короля. И мне в детстве их давали.


Но при чем тут датский король? В том-то и штука. Очевидно, какой-то датский король (заметьте, именно король, а не принц) был видным медиком. Я не знаю таковых, кроме принца Гамлета. Доказательство? Пожалуйста. Вспомните, что говорит Гамлет в четвертой сцене третьего акта, обращаясь к Гертруде:

 
Ни с места! Сядьте. Я вас не пущу.
Я зеркало поставлю перед вами.
Где вы себя увидите насквозь.
 

Что это за зеркало, с помощью которого можно видеть насквозь? Ну конечно же, рентгеновский экран. Значит, Гамлет действительно был врачом. А поскольку капли не принца датского, а короля, значит, Гамлет не погиб от отравленной шпаги, а стал королем. Все совершенно логично, и попробуйте со мною спорить.

Ничто не мешает продолжить логическую цепь рассуждений и прийти к выводу, что историю открытия проникающей радиации и ее применения в медицине и биологии следует начинать с Гамлета – принца датского, позже – датского короля.


Опасное легкомыслие

Написанное выше, разумеется, не более, чем шутка, и на самом деле все началось гораздо позже и совсем по-другому. Если стремиться к документальной точности, нашу историю можно начинать с 3 апреля 1901 года, с того рокового дня, когда известный французский химик Анри Беккерель пришел в гости к своим друзьям Пьеру и Марии Кюри.

Незадолго до этого супруги Кюри получили новый химический элемент, которому дали имя радий. Интерес Беккереля к новому веществу был вполне понятен. Ведь Беккерель открыл недавно радиоактивность – свойство некоторых элементов испускать невидимые лучи. А радий по степени радиоактивности превосходил все дотоле известные вещества. Как же удержаться от желания «поиграть» с радием: поставить с ним несколько опытов!

В те дни единственным местом на Земле, где имелся чистый радий, была лаборатория супругов Кюри. Когда Беккерель пришел к ним со своей просьбой (запомним, что это было 3 апреля!), трубочку с драгоценными крупинками бережно завернули в бумагу и упаковали в картонную коробочку. Беккерель осторожно положил ее в жилетный карман…

Профессор был в восторге от новой «игрушки». Еще бы: как только он зашел в свою лабораторию, то увидел, что экран, по свечению которого обнаруживают радиоактивность, вовсю сияет. А ведь ученый не успел даже снять пальто и стоял на большом расстоянии от экрана.

Беккерель с увлечением принялся за опыты, которые в течение нескольких дней следовали один за другим. Но потом работа пошла более вяло: ученый почувствовал недомогание. А 13 апреля, то есть десять дней спустя, он обнаружил у себя на груди красное пятнышко. Довольно болезненное, оно – удивительное дело! – образовалось как раз под тем жилетным карманом, в который Беккерель положил коробочку с ампулой, полученной от Кюри. Пятнышко превратилось в язвочку, которая упорно не хотела заживать. Профессор обратился к врачу.

Долго лечился Беккерель, в конце концов и краснота и болезненные ощущения исчезли. Однако не навсегда. Через два года он опять почувствовал боль в том же самом месте и снова был вынужден обратиться к врачам…

Ампула с радиоактивным веществом и пятнышко на груди Беккереля не случайное совпадение. У всех ученых, которые начинали исследования радиоактивных веществ (а также рентгеновых лучей), наблюдались различные болезненные явления из-за неосторожного обращения с новыми лучами. Но кто в те времена думал об осторожности?!

Беккерель отделался сравнительно легко. А для многих других ученых и врачей, начинавших исследования рентгеновых лучей и радиоактивности, лучевые поражения закончились в конце концов смертью…

В Гамбурге, возле здания одного из институтов, воздвигнут обелиск в память о жертвах науки, погибших в результате исследования новых лучей. Когда в 1936 году этот обелиск установили, на нем было высечено 110 имен. За последующие годы число их утроилось.

Медленно собирала радиация свою зловещую жатву. И знали об этом лишь немногие: те, кто исследовал биологическое действие лучей, да те, кто был связан с ними по роду занятий и должен был принимать необходимые меры предосторожности. Нужно заметить, что со временем несчастные случаи происходили все реже и реже. Большинство исследователей облучились в самые первые годы, когда о биологическом действии радиации не было ничего известно. Как только пришло знание, опасность стала сходить на нет.

И вдруг в 1945 году радиация, с которой раньше имели дело лишь единицы, вторглась в жизнь всего человечества. Атомная бомба, сброшенная на Хиросиму, в один день унесла во много раз больше жизней, чем погибло от действия радиации за полвека…

Позже началось мирное применение атомной энергии. С новым фактором стали соприкасаться большие массы людей. Наступил атомный век. Проникающая радиация стала невидимым современником граждан атомного века…

Мог ли кто-нибудь во времена Рентгена и Беккереля предвидеть, какая могущественная сила выпущена человеком из недр вещества?! Сила, могущественная и в зле и в добре: ведь она способна разрушать города и вращать роторы электростанций, вызывать тяжелую болезнь и исцелять. Но как ни удивительно, уже тогда были люди, которые не только догадывались об огромных силах, дремлющих в атомах, но даже предсказывали создание атомной бомбы.

В то же самое время, когда Беккерель лечил свою лучевую язву, на естественном факультете Московского университета учился худощавый студент – Борис Бугаев. Он горячо и глубоко увлекался и физикой, и музыкой, и философией. Начинал печатать стихи, которые подписывал псевдонимом Андрей Белый.

Позже (но не слишком поздно, чтобы иметь возможность приписать себе задним числом пророческую дальновидность), в 1921 году (за четверть века до начала атомной эры!), он вспоминал в поэме «Первое свидание» студенческие годы, свои впечатления, мысли и чувства тех времен. Вот профессор Николай Алексеевич Умов рассказывает на лекции по физике о том,

 
Что взрывы, полные игры,
Таят томпсоновые вихри
И что огромные миры
В атомных силах не утихли.
 

Студент Борис Бугаев слушал лекцию по физике, а для поэта Андрея Белого

 
Мир рвался в опытах Кюри
Атомной, лопнувшею бомбой
На электронные струи
Невоплощенной гекатомбой.
 

Не правда ли, удивительно?! Но ничего удивительного нет. Некоторые недалекие люди пытаются противопоставлять «физиков» и «лириков». А ведь Борис Николаевич Бугаев долго колебался, стать ему ученым или поэтом. И без глубокого проникновения в мир физики не унеслась бы его фантазия в атомный век. А разве не нужно быть поэтом для того, чтобы создавать в своем уме новые миры, которых никто не видел и которые так не похожи на окружающее, но тем не менее существуют в глубинах вещества и в необъятных просторах вселенной!

Теперь электрон кажется чуть ли не предметом ширпотреба. А еще в начале этого века он был загадкой, над которой бились величайшие умы. Понадобилась не одна «безумная» идея для того, чтобы электрон стал простым и понятным…


Какого цвета электрон?

Этот вопрос возник в головенке моего сына, когда ему было пять лет. Нет, он отнюдь не вундеркинд. Просто совещание происходило на открытом воздухе, и Андрюшка заинтересовался, что такое слушают мама, папа и другие дяди и тети. Он сел под кустиком рядом со своим старым другом Павлом Зыряновым, физиком-теоретиком, доктором физико-математических наук.

Итак, вопрос о цвете электрона, возникший потому, что в докладе этот самый электрон был упомянут несколько раз, адресовался как раз тому, кому нужно. Павел Степанович вполне серьезно ответил:

– Электрон цвета не имеет.

Самое замечательное в этой истории (ради чего, собственно, я ее и рассказывал) – то, что дальнейших вопросов не последовало. Детский ум не отягощен грузом стереотипных представлений. Для него вовсе не обязательно, чтобы каждый предмет имел какой-то цвет. И то, что возмутило бы ум взрослого, детский воспринял как новую информацию: бывают «вещи», не имеющие цвета.

Я не знал об этом разговоре, и, когда подошел к сыну, Андрей первым делом заявил:

– Папа, а я знаю, какого цвета электрон.

– Какого же?

– Электрон цвета не имеет.

Трудность восприятия некоторых представлений современной науки для неспециалистов состоит в том, что она вступила в области, где действуют законы, отличающиеся от тех, с которыми нам приходится иметь дело в повседневной жизни. Но и эти законы помаленьку переходят со страниц заумных статей в нашу повседневность. И то, что мы понимали с трудом, а отцы наши вообще не могли уяснить, для детей становится привычным.

Мой сын с детства слышал об электроне и даже знает, что он не имеет цвета. А крупнейший физик Вильгельм Конрад Рентген долго не хотел верить в существование электронов.

Когда я учился в школе, электрон уже казался понятным и привычным, но то, что это и частица и волна, не укладывалось в голове. Не только моей, но и ученых-философов. А прошли годы, и мне пришлось работать с электронным микроскопом, где используются волновые свойства электронов, постигать законы электронной оптики.

Не так давно многие смотрели на гениальное уравнение Эйнштейна E = mc2 как на формальный математический трюк, в лучшем случае, считали: да, это правильно, но какое это имеет значение? Так, что-то из области «четвертого измерения». А теперь этим уравнением начинены атомные бомбы и атомные реакторы, и оно же поведет космические корабли к другим звездным системам…

И хотя эта книга о радиобиологии, нам тоже придется соприкоснуться со странным миром мельчайших частиц вещества и энергии. Ведь в основе биологического действия радиации лежит взаимодействие электронов и прочих частиц микромира с атомами и молекулами живого вещества.

Нет, мы не будем говорить ни о таинственных «кварках», про которые никто не знает, существуют они или нет, ни про антигипероны, ни даже про мезоны, но соприкоснуться с этим миром необходимо.

Если бы Андрюша спросил доктора наук Зырянова не о цвете электрона, а сколько сейчас известно элементарных частиц, тот, вероятно, ответил бы более уклончиво, что-нибудь вроде «около тридцати», ведь в наше время новые частицы появляются одна за другой. И кто знает, может быть, вчера вышел в свет свежий номер журнала, где описано открытие следующей.

Первой элементарной частицей, с которой познакомились физики, оказался электрон. Открыл его знаменитый «Джи-Джи» – профессор Джозеф Джон Томпсон. Электрон сразу поставил физиков перед новыми трудностями (не потому ли мудрый Рентген не желал его признавать?!). Тотчас же стало ясно, что электроны присутствуют в огромном числе во всех телах. Между тем электроны заряжены отрицательно – это одно из их основных свойств. А наш мир электрически нейтрален. Явный парадокс!

Этот парадокс было дано разрешить талантливейшему из учеников «Джи-Джи», сыну новозеландского фермера Эрнсту Резерфорду – одному из первых и наиболее выдающихся исследователей радиоактивности. Он изучал рассеяние альфа-лучей при прохождении их через тонкую золотую фольгу. Альфа-лучи возникают при радиоактивном распаде и представляют собой поток довольно тяжелых (во всяком случае, по сравнению с электронами) частиц, заряженных положительно. Альфа-частицы прошивали тоненький золотой лепесток, как пуля лист бумаги. Некоторые слегка отклонялись от первоначального пути. Но отдельные, очень немногие вели себя крайне удивительно. Они летели назад! Пуля отскакивает от листка бумаги?

Слово «атом» было придумано Демокритом из Абдеры. Больше двух тысячелетий жил этот термин, не облеченный ни в какие физические одежды. Шарики? Песчинки? Но ведь это не физическая модель «мельчайшего неделимого».

Редкие частички, отражавшиеся от золотого лепестка, позволили различить первые физические черты атома. После долгих раздумий и неизбежных ошибок Резерфорд пришел к выводу: атом состоит из тяжелого, положительно заряженного ядра, вокруг которого вращаются легкие отрицательные электроны (как планеты вокруг Солнца). От этих тяжелых ядер и отражались частицы в опытах с золотой фольгой.

Удивительно наглядная гипотеза. Микромир устроен так же, как мир звезд и планет! Сколько раз потом атом менял свое обличье, но большинство людей до сих пор именно так его и представляют, потому что их вполне устраивает подобная наглядность.


Но что устраивало большинство, не удовлетворяло физиков, и в первую очередь, вероятно, самого Резерфорда. Физическая модель атома, описанная Резерфордом в мае 1911 года, противоречила законам физики. Та самая модель, что осела в умах большинства людей.

Согласно законам классической электродинамики, заряженная частица, вращающаяся по круговой орбите, должна непрерывно излучать энергию, теряя ее при этом. И в конце концов (а именно: очень быстро) упасть на ядро. Если бы атом был устроен так, как полагал Резерфорд, наш мир вообще не существовал бы. Но тем не менее ученый был прав, хотя и возник парадокс, который вскоре разрешил один из величайших физиков, датчанин Нильс Бор – ученик Резерфорда.


Классической электродинамике противоречило не только поведение электронов. Давно уже ученых смущали спектры излучений (не тех проникающих излучений, о которых пойдет речь в этой книге, а самых обыкновенных лучей света), испускаемых атомами. Вместо «радуги» атомы дают спектры, состоящие из отдельных полос. Они выглядят так, словно на обычный непрерывный спектр наложили черную бумагу с узкими прорезями. И это противоречило тогдашней физике.

В голове Бора родилась «безумная» гипотеза. Он предположил, что законы классической термодинамики не распространяются на мир электронов и атомов. Им управляют свои, особые законы.

Существуют определенные орбиты, по которым электрон движется, не излучая, утверждал Бор. При падении на более низкую орбиту электрон излучает вполне определенное количество энергии и, поглощая ее, переходит на более высокую орбиту. Таким образом, объяснялись и устойчивость атомов и линейчатая природа атомных спектров. От применения классической физики к явлениям микромира пришлось отказаться. Таким образом, Резерфорд оказался прав. И хотя модель атома все еще продолжает изменяться и уточняться, в ее основе лежат модели Резерфорда и Бора.


Черт немецкой национальности

Вюрцбург – средневековый германский город. Поздний осенний вечер… Собственно, даже не вечер, а ночь. Сквозь туман и слякоть неуверенно бредет к себе домой старый бондарь Курт Мюллер – лодырь и забулдыга, личность настолько ничем не замечательная, что автор в своем совершенно правдивом повествовании вправе его и выдумать. Он может быть не Куртом, а Фрицем, не Мюллером, а Майером, не бондарем, а колесным мастером – безразлично. Бондарь, пожалуй, лучше, потому что в Вюрцбурге крупный пивной завод, а где варят пиво, там нужны бочки. Но и это несущественно…

Важно, что Мюллер ежедневно покидает пивную последним. Его путь лежит через Пляйхер-Ринг, мимо большого серого дома, где все последние ночи в одном из окон цокольного этажа горит свет. Как-то Мюллер заглянул в окно и увидел, что вся комната заставлена какими-то чудными машинами, среди которых бродит мрачный господин. Не понравился он Мюллеру. Хотя и сюртук на нем такой, как носят вполне добропорядочные господа, но волосы как смола, курчавые (не разберешь, что под этими волосами!), бородища длинная, густая, а глаза так и горят, так и горят: ни дать ни взять нечистый (не помянуть бы его имя к полуночи).

Вот и сегодня подходит Курт к зловещему дому. В окне темно. Странно… Впрочем, что-то слабо светится. Набравшись смелости, Курт заглядывает в окно и спустя несколько мгновений опрометью несется по Пляйхер-Ринг (куда весь хмель девался!), будя истошным криком почтенных бюргеров и их дородных супруг, спящих мирным сном:

– Черт! Черт!

А следующим вечером Курт рассказывал собутыльникам вещи, совершенно невероятные. Поверить ему было просто невозможно, и все поняли, что старина Мюллер нализался вчера больше обычного.

Курт клялся и божился, что не где-нибудь, а в их городе видел самого дьявола, который сначала забавлялся тем, что пускал искры по всей комнате или наполнял ее мерцающим сиянием. А потом Мюллер увидел руку. Мертвую руку. Не рука и не скелет. Вроде бы и рука, а все косточки просвечивают. И живая – шевелится. А кроме руки, ничего и не было. Ну кто же этому поверит!

Автор не берется утверждать, что такой случай действительно произошел, но ручается, что вполне мог произойти, и притом не когда-нибудь, а именно в ноябре месяце.

С полной определенностью можно говорить лишь о том, что 28 декабря господин, которого мог видеть в окно пьяница Мюллер, передал другому господину какие-то бумаги. И, поднявшись на второй этаж, хитро подмигнул своей супруге и тихо сказал:

– So, nun kann der Teufel losgehen!

В переводе на русский язык эта немецкая поговорка звучит примерно так: «Ну вот, теперь можно и выпустить черта из бутылки».

И черта выпустили. Это был черт немецкой национальности, ибо дело происходило в средневековом немецком городе Вюрцбурге, впрочем, отнюдь не в средние века, а в году одна тысяча восемьсот девяносто пятом – в канун нашего трезвого века…


Герой без ореола

Нетрудно догадаться, что пьяница Мюллер торчал в ту страшную ночь под окнами великого физика профессора Вильгельма Конрада Рентгена, когда он открыл новые невидимые лучи, названные им «икс-лучами» и которые теперь во всем мире называют рентгеновыми. Поэтому, оставив навсегда Курта Мюллера, познакомимся уже всерьез с профессором Рентгеном.

Хорошо, если об ученом известно, что ему свойственна какая-то обычная человеческая слабость. Он может быть заядлым футбольным болельщиком, или филателистом, или скрипачом-любителем, или холостяком… Это делает его понятным, человечным. Приятно писать и приятно читать. Вот он – живой человек, такой же, как и мы с вами, сделал великое открытие. Проникаешься гордостью за Человека вообще, за самого себя!

Увы, у Рентгена не было «безумных» идей, как не было и нормальных человеческих слабостей. Словом – черт, столь характерных и для героев научно-фантастических романов и для героев научно-популярных книг. Но что делать, я здесь пишу только правду и не могу наделять своего героя чертами, которых у него и в помине не было.

Он был блестящим физиком. Может, даже самым лучшим физиком-экспериментатором конца прошлого века. Но он твердо верил, что дело ученого – собирать факты, а отнюдь не объяснять их.

Отлично известно, что лозунгом Ньютона было: «Я не измышляю гипотез!» Но Ньютон создал классическую физику. В его лозунге речь шла лишь об общей методологии создания теорий. Он считал, что нужно идти не от предположений к их проверке, а от сбора фактов к их обобщению. Но если Ньютон имел в руках достаточно фактов, то смелости у него хватало для «безумной» – не гипотезы, а уже теории, даже принципа!

Не таков был Рентген. Для него работа начиналась со сбора фактов и кончалась описанием полученных фактов.

Долгое время сотрудником Рентгена был Абрам Федорович Иоффе – выдающийся советский физик. Он вспоминает, как, получив неожиданные результаты, поставил серию опытов, приводящих к интересным выводам. Он написал об этом Рентгену, который тогда был в другом городе. В ответ пришла открытка, где Рентген писал: «Я жду от Вас солидной научной работы, а не сенсационных открытий», и рекомендовал вернуться к прерванным исследованиям.

Иоффе рассказывает о судьбе одной из совместных работ с Рентгеном. Была проведена обширнейшая серия исследований. Результаты укладывались в рамки простой и ясной теории. Рентген и слышать о ней не хотел. Абрам Федорович изложил ее на нескольких страничках. Рентген ничего не мог возразить, но настаивал, чтобы были описаны только факты – двести страниц описания фактов! Дело дошло до крупного конфликта между учителем и учеником.

Да о чем говорить, если до 1906–1907 годов в физическом институте Мюнхенского университета, которым тогда заведовал Рентген, просто-напросто запрещалось произносить слово «электрон». Рентген упорно продолжал считать его «недоказанной и ненужной гипотезой», и это в начале нашего века! А ведь электроны – те самые частицы, торможение которых рождает рентгеновы лучи, открытые им самим целым десятилетием раньше!

Таков научный стиль Рентгена. Не такими мы обычно представляем себе крупных ученых. Но тем не менее Рентген был крупнейшим физиком, и открытие его отнюдь не случайно. Такой стиль работы имел в своей основе исключительную требовательность к себе и другим, исключительное, сказал бы я, уважение к Науке.

Рентген никогда не публиковал незаконченных работ. Только когда он был абсолютно уверен в правильности полученных результатов, только когда было ясно, что действительно поставлена последняя точка, он решался направить свою работу в печать.

Его крайне раздражали «предварительные сообщения». Бушующий ныне поток кратких предварительных заявочных сообщений, в которых зачастую ничего нет и за которыми ничего не следует, начинался в виде постепенно расширявшегося ручейка уже в те времена. И чем больше появлялось подобных сообщений, тем фундаментальнее, солиднее, обстоятельнее становились работы Рентгена. Его последняя статья занимает целый выпуск «Физических анналов».

Рентген завещал после смерти сжечь все свои незаконченные работы. Его волю исполнили. Заодно бросили в огонь и работы его учеников и сотрудников; некоторые были вполне законченными. Таков Рентген-ученый.

Таким был и Рентген-человек. И в науке и в личной жизни его поступками руководило чувство долга. Он был принципиален до странности.

В свое время Рентген был состоятельным человеком. Лауреат Нобелевской премии (кстати, первая премия по физике присуждена именно ему), он при скромном образе жизни постепенно стал довольно богатым. Свои сбережения он хранил за границей, в голландском банке.

Когда началась первая мировая война, немецкие газеты стали публиковать воззвания к населению о максимальной экономии, о том, что долг каждого истинного немца – отдать свои сбережения родине. Рентген так и сделал: отдал все, что было им скоплено за долгие годы, до последнего пфеннига. Конечно, он мог бы этого и не делать, деньги-то хранились в надежном месте.

Но если вы из этого сделаете вывод, что Рентген относился к кайзеру Вильгельму со слепым благоговением, то ошибетесь. Долг немца – отдать сбережения, Рентген и отдал. А благоговения никакого не было.

Однажды Вильгельм II посетил Германский музей в Мюнхене. При осмотре физического отдела пояснения давал Рентген, и давал блестяще, с полным знанием дела. Когда очередь дошла до отдела артиллерии, то объяснения стал давать кайзер, считавший себя великим полководцем и знатоком военных наук. Но не смог сказать ничего, кроме общих фраз и общеизвестных вещей. И хотя перед ним стоял Вильгельм, Рентген не выдержал:

– Простите, ваше величество, но вы говорите совершенно тривиальные вещи.

Вряд ли кто другой отважился бы сказать такое. Но если вы решите, что Рентген ненавидел кайзера, то ошибетесь. Он сказал ему это так же, как сказал бы кому угодно другому.

Как известно, жертва Рентгена была совершенно ненужной – Германия проиграла войну. Наступил страшный для немцев 1917 год – год голода, разрухи, продовольственных карточек, по которым почти ничего не давали. Многочисленные друзья Рентгена, особенно из Голландии, зная об этом, непрерывно посылали ему посылки с продовольствием. Он их аккуратно получал и… аккуратно сдавал государству. Он считал, что не имеет права на большее, чем остальные. За год он похудел больше чем на 20 килограммов и стоял на краю смерти. Только после настойчивого убеждения врачей, что так он не выживет, Рентген согласился на усиленный больничный паек.

Нобелевская премия – чуть ли не единственная почесть, которую Рентген согласился принять. Он отказался от дворянского звания, звания академика, отказывался от орденов, от почетного занятия профессорских кафедр…

В последние годы Рентген жил более чем скромно и во многом себе отказывал. Лишь раз в неделю ел мясное блюдо. Незадолго до смерти он захотел посетить Швейцарию, где раньше бывал с женой… Ради этого он целый год не пил натурального кофе, к которому так привык.


С чего все началось

Гамлет – принц датский, конечно, ни при чем. Невидимые лучи, проникающие сквозь любые преграды, открыл Вильгельм Конрад Рентген, и никто больше. И смешно пытаться оспаривать его приоритет. Однако один претендент нашелся. Это был профессор Ленард – средней руки физик и человек с нечистой душой. Основой для его приоритетных претензий было то, что Ленард мог в своих опытах обнаружить новые лучи (кстати, Рентген сам упоминает об этом в своей статье). Мог сделать открытие, но не сделал… Во времена Гитлера Ленард стал одним из создателей «немецкой» физики. Как-то мне попал в руки немецкий школьный учебник, изданный в годы Третьего рейха. В нем вместо рентгеновых лучей говорится о «лучах Ленарда». Но теперь и в Германии, конечно, говорят только о лучах Рентгена.

Рентген сделал свое открытие, изучая катодные лучи, которые несколько раньше исследовал Ленард. И даже работал на приборе конструкции Ленарда. Впрочем, сами катодные лучи открыл тоже не Ленард, они были известны физикам по крайней, мере уже сорок лет. Поэтому всякий, кто работал с катодными лучами, мог сделать открытие.

Христофору Колумбу приписывают слова «гений тем отличается от посредственности, что гений делает то, что любой другой мог бы сделать». Правильно сказано!


    Ваша оценка произведения:

Популярные книги за неделю