355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Николай Лучник » Невидимый современник » Текст книги (страница 13)
Невидимый современник
  • Текст добавлен: 15 октября 2016, 03:02

Текст книги "Невидимый современник"


Автор книги: Николай Лучник


Жанры:

   

Биология

,

сообщить о нарушении

Текущая страница: 13 (всего у книги 13 страниц)

Во-первых, за это время уже достаточно изучили причины вредного действия радиации на живые клетки. Мы знаем, что главная причина – повреждение хромосом. Полагать, что слабая степень этого повреждения благотворно повлияет на жизненные процессы, не было ровно никаких оснований.

Во-вторых, опыты, проведенные сторонниками радиостимуляции, не выдерживают никакой критики. Взгляните на растения, растущие на одном поле. Они разные. И не потому, что одно получило больше удобрений, а другое – меньше. Изменчивость – общее свойство всех живых организмов. И если одно растение облучить очень слабой дозой, а другое оставить необлученным, то разница может оказаться и совершенно случайной, не связанной с облучением. А множество опытов ставилось на очень небольшом числе растений. Если бы Стоклаза вместо сотни разных опытов поставил один, но большой и точный, проку было бы больше.

Вот потому-то в 40-х годах почти никто из серьезных радиобиологов в радиостимуляцию не верил. Но сейчас уже 60-е годы, а за двадцать лет многое изменилось.

Атомный век настойчиво ставил новые задачи. Одна из них связана с тем, что среди отходов атомной промышленности есть вещества, которые можно использовать в качестве удобрения, но они слегка загрязнены радиоактивностью. Необходимо ли их «хоронить», что связано с дополнительными затратами, или, если они не вредят урожаю, можно вывозить их на поля? Нужно было узнать, как разные концентрации радиоактивных веществ влияют на прорастание семян, всхожесть и урожай. Такое задание получила лаборатория, где я в то время делал свои первые шаги в науке.

Начали опыты. И не поверили своим глазам. Потому что увидели, что семена, облученные слабыми дозами или намоченные в слаборадиоактивных растворах, прорастали лучше, чем контрольные. Это отнюдь не было повторением экспериментов Стоклазы. Опыты ставились на тысячах семян, во многих повторностях, все варианты находились в строго одинаковых условиях… Но факт оставался фактом: семена прорастали быстрее.

Время шло, и оказывалось, что под влиянием низких доз облучения не только улучшается прорастание, но также ускоряется рост и развитие, повышается урожай…

В чем же дело? Почему этого не знали раньше? Как это увязать с тем, что известно о действии радиации на живую клетку?

Тогда мы вновь обратились к литературе, и более внимательное ее изучение показало, что наряду с совершенно недостоверными опытами существуют и отличные работы, проведенные со всей возможной точностью и показавшие существование радиостимуляции. Причем за самыми убедительными работами не приходилось далеко ехать: они были выполнены у нас на Родине, в Москве и Подмосковье, Лидией Петровной Бреславец и ее сотрудниками. К сожалению, большое количество несолидных статей так скомпрометировало идею радиостимуляции, что на эти работы радиобиологи в свое время не обратили должного внимания.

Противоречий с теорией тоже не было. Ведь действие ионизирующих лучей на клетку не ограничивается повреждением хромосом. Исследование клеток, облученных в условиях радиостимуляции, показало, что малые дозы ускоряют деление клеток, что заметила еще Бреславец. А мне пришлось заниматься этим специально. В результате стало ясно, почему не всегда малые дозы радиации оказывают стимулирующий эффект на рост и развитие.

Ускорение клеточного деления и повреждение хромосом по-разному зависит от таких условий облучения, как жесткость лучей и распределение дозы во времени. Когда эти условия были найдены, стало возможным получить радиостимуляцию всегда, когда это нужно.

Примерно в то же время, когда мы неожиданно столкнулись с радиостимуляцией, ее изучением занялись также наши коллеги в других лабораториях – в Москве и Ленинграде, на Украине, в Белоруссии и Прибалтике. И всюду получили очень сходные результаты.

Но вот наступает 1955 год. В Женеве созывается I Международная конференция по мирному использованию атомной энергии. Советская делегация представила в числе прочих и доклад «Об использовании ионизирующих излучений в сельском хозяйстве». В нем был приведен огромный собранный советскими учеными материал о действии малых доз радиации на культурные растения, в том числе и результаты наших уральских опытов.

Иностранцы с интересом слушали. Они не верили в стимулирующее действие радиации и даже не пробовали ставить точных опытов… Но с нашими данными спорить трудно. Советские ученые оказались впереди. Кое-кто из иностранцев, вернувшись домой, занялся повторением опытов и, конечно, полностью подтвердил наши результаты.

Теперь явление радиостимуляции достаточно хорошо изучено и там, где нужно, применяется на практике. Однако радиостимуляция культурных растений – далеко не единственное применение ионизирующих излучений в сельском хозяйстве и даже не самое важное.

Если человеку, ничего не смыслящему в часовом деле, предложить изменить что-нибудь в часовом механизме, то часы скорее всего остановятся или, во всяком случае, станут работать хуже. Гораздо реже изменения будут безвредными. Однако совсем-совсем редко чисто случайные изменения могут улучшить конструкцию. Та же ситуация с возникновением наследственных изменений под действием радиации. Подавляющее большинство мутаций вредны или гибельны. Только с этой точки зрения мы до сих пор о них и говорили. Но изредка случайно возникшие наследственные изменения могут быть полезными для организма.

Несмотря на редкость полезных мутаций, значение их крайне велико. Ведь они – элементарный материал для естественного и искусственного отбора. Если бы их не было, не было бы и развитой жизни на нашей планете. Без них немыслима и селекция.

До рождения радиационной генетики селекционер работал только с теми изменениями, которые дает природа. Радиация позволила во много раз увеличить материал для отбора. Хотя ионизирующие лучи стали применяться в селекции недавно, но уже сейчас целый ряд радиационных мутантов внедрен в практику.

Ионизирующие лучи используют и для борьбы с вредителями, и для стерилизации продуктов, и для подавления прорастания в тех случаях, когда оно нежелательно…


Вездесущие свидетели

Вы, конечно, помните восторженно-наивные идеи Хольвека, пытавшегося использовать теорию мишени в качестве статистического ультрамикроскопа: облучить клетку, по форме кривой выживания вычислить формальный объем мишени и получить тем самым сведения об объеме управляющего центра живой клетки. Он не учитывал слишком многих обстоятельств, которые влияют на получаемый результат, но в принципе его идея была вполне здравой.

Иногда ионизирующие лучи действительно можно с успехом использовать для статистической ультрамикрометрии. Только поступают при этом далеко не так, как делал Хольвек. Прежде всего облучение проводят в таких условиях, когда полностью исключено и непрямое действие лучей и восстановление. Конечно, такое далеко не всегда возможно. Для этого пригодны крупные молекулы, вирусы, бактериальные споры – словом, объекты, которые выдерживают полное обезвоживание и достаточно просты. Лучи тоже годятся не всякие. Применяют либо очень редко ионизирующие лучи (например, электроны высоких энергий), которые при каждом проходе через облучаемый объект оставят в нем не больше одной ионизации, либо, наоборот, очень густо ионизирующие (например, протоны), каждый проход которых оставляет не меньше одной ионизации. В первом случае с помощью несложных расчетов можно вычислить объем облучаемого объекта, во втором – его среднее поперечное сечение. А сопоставляя обе величины, нетрудно определить и форму изучаемого объекта.

Если все возможные помехи устранены, то метод дает очень точные результаты. Ведь их можно проверить. Совпадение получается отличное. Правда, широкого применения метод не получил, так как появился могучий конкурент – электронный микроскоп, который дает все же более однозначные результаты и обычно применять его не трудно. Но и теперь иногда микрометрию с помощью ионизирующих лучей с успехом применяют на практике.

Впрочем, радиационная ультрамикрометрия отнюдь не единственный и далеко не самый важный путь использования радиобиологии в качестве средства для научных исследований. И это не удивительно. Ведь ионизирующие лучи не знают преград и проникают в любые объекты на любую глубину. И в отличие от химических веществ, вступающих «по дороге» в реакции и изменяющихся при этом, остаются всегда теми же самыми. Экспериментатор всегда точно знает, что проникло в изучаемый объект и на какую глубину. Как же радиация служит науке?


Хотя мы и не всегда отдаем себе в этом отчет, но научное исследование состоит в сравнении. Иногда мы делаем это совершенно бессознательно. Например, описывая собаку, мы скорее всего упомянем о том, что у нее четыре ноги. Но ведь мы это делаем потому, что существуют животные, имеющие другое число ног (человек, птица, сороконожка) или даже вообще безногие (змея, инфузория). Если бы все живые существа были четвероногими, информация о том, что у собаки четыре ноги, оказалась бы излишней…

Или возьмем науку, о которой нам довольно много пришлось говорить в этой книге, – генетику. Если бы все особи данного вида не отличались друг от друга, не ломали бы люди с древнейших времен голову над вопросами: почему дети похожи на своих родителей, почему они наследуют их признаки так, а не эдак. И можно ручаться, что, если бы не было наследственной изменчивости организмов, не существовало бы и генетики, во всяком случае в той форме, в какой она возникла. А к чему сводятся методы генетической науки? Все к тем же сравнениям. Сравнивают признаки родителей и детей, братьев и сестер и т. д.

Метод созерцания применяется в любой науке лишь в ее младенческом возрасте. Как только наука становится наукой, ученые начинают экспериментировать, то есть как-то изменять нормальные структуры, нормальный ход жизненных процессов. Изучая работу измененного организма, познают их законы в норме. Отсюда ясно, каким незаменимым средством для исследователя становятся ионизирующие лучи. Ведь это – тончайший скальпель, с помощью которого можно куда угодно проникнуть и что угодно изменить.

Кроме того, ионизирующие излучения широко применяются в качестве исследовательского средства и вне связи с их биологическим действием, то есть вне прямой связи с радиобиологией. Рентгенография, электронография, рентгеноструктурный анализ, метод меченых атомов… И хотя сами по себе эти методы не радиобиологические, но при использовании их на живых объектах, приходится привлекать и радиобиологию. Ведь нужно знать, как сами методы влияют на изучаемый объект.

О методе меченых атомов придется сказать несколько слов, хотя с радиобиологией он связан лишь косвенно.

Атомы любого элемента не вполне одинаковы. У каждого элемента они существуют в виде нескольких разновидностей, так называемых изотопов, отличающихся друг от друга числом нейтронов в ядрах. Химические свойства всех изотопов данного элемента совпадают, поэтому они и ведут себя совершенно одинаково и в химических реакциях и в биологических процессах. Между изотопами каждого элемента так мало различий, что это доставило ученым массу хлопот при работе над атомной бомбой. До открытия плутония единственным расщепляющимся материалом служил один из изотопов природного урана. Для получения цепной реакции его нужно было выделить в чистом виде. Все методы, ведущие к цели, оказались крайне трудными, сложными и невероятно дорогими. В конечном счете ни один из них себя не оправдал.

Физики умеют получать искусственные радиоактивные изотопы любых элементов. Из-за того, что они химически ведут себя точно так же, как любые другие атомы того же элемента, они дают ученому совершенно уникальное средство для исследований. Радиоактивные атомы время от времени распадаются и выбрасывают ионизирующие частицы, обнаруживаемые с помощью специальных приборов. Поэтому к обычному веществу подмешивают небольшое количество радиоактивного изотопа, который всюду сопровождает его, посылая ионизирующие сигналы. Всеми основными успехами в изучении обмена веществ, достигнутыми за последние десятилетия, мы обязаны методу меченых атомов.

Но не довольно ли общих слов? Я хочу рассказать в качестве примера о расшифровке одного тончайшего биологического механизма. Речь пойдет о том, как образуются перед делением клеток новые хромосомы. Удвоение числа хромосом происходит в то время, когда их в микроскоп не видно. Да, кроме того, выяснению таких деталей микроскоп вряд ли помог бы. Раньше думали, что размножение хромосом происходит примерно так же, как размножение простейших: хромосома утолщается, а достигнув определенного размера, расщепляется вдоль. Но так ли это?

Американский генетик Джон Герберт Тэйлор воспользовался для изучения механизма редупликации хромосом методом меченых атомов. Применить его оказалось не просто. Ведь нужно было метить не клетки, даже не хромосомы, а отдельные части хромосом! На одной из стадий деления хромосомы расщеплены вдоль и состоят из двух половинок, так называемых хроматид. Был использован меченый тимидин – вещество, которое, попав в клетку, поступает только в хромосомы. В качестве метки взяли тритий – радиоактивный изотоп водорода. Избрали его не случайно. Энергия бета-частиц, излучаемых тритием, очень низка, путь их, состоящий из немногих ионизаций, не длинные линии, а почти точки.

Проростки бобов на короткое время помещали в раствор, содержавший меченый тимидин. Через разное время готовили препараты для микроскопического исследования. Но их делали не обычным способом, а покрывали фотографической эмульсией и хранили в течение определенного времени в темноте, а затем проявляли, как обычные фотопластинки. Хромосомы, содержавшие радиоактивную метку, оставляли на пластинке свои «автографы». А раз для метки был взят очень мягкий бета-излучатель, то было видно, какая из сестринских хроматид содержит радиоактивные атомы.

И вот что получилось. В первом клеточном делении все хромосомы оказались равномерно помеченными изотопом. Иное наблюдалось при втором делении, перед которым корешки находились в нерадиоактивной среде; оставалась только радиоактивность, данная в самом начале. Теперь метка распределялась неравномерно. Во всех хромосомах одна хроматида оставляла радиоактивные следы, а другая нет. Как объяснить такой результат? Ответ может быть только один. Старые структуры в течение всего опыта оставались неприкосновенными и строили возле себя новые хроматиды из материала, который находился вокруг и был перед первым делением радиоактивным, а перед вторым – обычным.

Кроме того, из этих опытов следовало, что из двух хроматид каждой хромосомы одна всегда «старая», а другая «новая». Долгие годы цитологи говорили о «сестринских» хроматидах. Но они оказались вовсе не сестрами, а «матерью» и «дочерью».

Эти результаты имели большое значение, заставив совсем по-другому посмотреть на строение и функции хромосом.


Метод Тэйлора имеет к радиобиологии, конечно, лишь очень косвенное отношение. Но тот же самый вопрос можно было решить и с помощью чистой радиобиологии (метод, о котором пойдет речь, был разработан и применен в нашей лаборатории).

В результате облучения отдельные участки хромосом теряют способность к самовоспроизведению, что и является одной из причин образования мутаций. Представим себе, что произойдет, если обе хроматиды будут инактивированы в одной и той же точке. Если хромосомы строятся так, что одна из них состоит из двух старых, а другая – из двух новых хроматид, то мы будем наблюдать одну фрагментированную, а другую вполне нормальную хромосому. Если же каждая состоит из одной старой и одной новой, то обе будут иметь по неполному разлому, который проявится в виде более светлых мест – пробелов.

В действительности после облучения наблюдаются как полные разрывы, так и пробелы. Относительное число их при разных дозах неодинаково. Чем доза облучения выше, тем больше полных фрагментов и тем меньше пробелов. Если получающуюся в опыте кривую зависимости эффекта от дозы продолжить влево, то она как раз пройдет через начало координат. Значит, при дозе «ноль», то есть без облучения, должны образовываться только пробелы. Следовательно, в норме каждая хромосома состоит из одной старой и одной новой хроматиды. Тот же вывод, к которому пришел Тэйлор на основании своих опытов с радиоактивной меткой. А радиобиологический метод, кроме того, показал, что дополнительные воздействия (в данном случае радиация) повреждают нормальный ход процесса формирования хромосом.

Но довольно примеров. И тех, что приведены, достаточно, чтобы показать, что молодая наука уже теперь находит много важных применений и в медицине, и в сельском хозяйстве, и в качестве средства для научных исследований. Остается только пожелать, чтобы с течением времени этих мирных применений становилось все больше, а немирных, в основе которых тоже лежит в значительной мере биологическое действие радиации, не было вообще.

Оглавление

Присказка: Квадратное уравнение … 5

Глава I Черт немецкой национальности

Апокриф о Гамлете … 9

Опасное легкомыслие … 12

Какого цвета электрон? … 15

Черт немецкой национальности … 21

Герой без ореола … 22

С чего все началось … 26

Две счастливые ошибки … 30

Атомный бильярд … 33

Насквозь и даже глубже … 34

Путешествие электрона … 37

Следы-невидимки … 38

Родственники «Икса» … 41

Дети атомного века … 44

Глава II Потомок Великого Моурави

По следам Дюма-отца … 47

Академик Тарханов … 50

Первые опыты … 53

Лучи, да не те 57

Новая болезнь … 59

Мнимое благополучие … 64

Вниз и вверх … 66

В рассрочку … 69

Мягкие и жесткие … 72

Обреченные до рождения … 74

Силами энтузиастов … 75

Вчера, сегодня и завтра … 78

Глава III Стрельба по мишеням

Чудеса в решете … 85

Лучевой яд … 89

Гипотезы, гипотезы … 91

«Прошу поднять руки» … 92

Возьмем карандаши … 95

Давайте сравнивать … 97

Сорок сороков … 102

Доктор богословия … 105

Горячие точки … 108

Попадание в цель … 110

Статистический микроскоп … 111

Физик становится биологом … 114

Не так просто … 117

Умерла ли бактерия? … 121

Колебания маятника … 124

Глава IV До седьмого колена

Дети отвечают за родителей … 129

Грядка в монастырском дворе … 132

Самое главное … 137

Атомы жизни … 138

Атомы наследственности … 141

Крылатая «морская свинка» … 143

Вы присутствуете при открытии … 145

Генные, хромосомные и геномные … 149

Ну и что? … 151

Прямолинейность … 155

Поломанные хромосомы … 158

Глава V Волшебные лекарства

Солнца Ван-Гога … 163

Мечты о волшебной пуле … 166

«Рентгеновское похмелье» … 169

Затаите дыхание! … 170

Самоотверженные молекулы … 174

От глицерина до цианида … 177

Ученые ищут закономерности … 179

Пики смертности … 182

Случай в городе Эн … 189

Глава VI Мрак рассеивается

О женских ножках … 193

Восстановление? … 197

Да, восстановление! … 200

Вмешательство в природу … 203

Химия гена … 206

Магическая спираль … 210

Одним словом … 213

Исправление ошибок … 217

Биологический усилитель … 220

Правила получают объяснение … 225

Глава VII Икс за работой

У нас в гостях … 231

Хлеб наш насущный … 239

Вездесущие свидетели … 244

Николай Викторович Лучник

«Невидимый современник» – новая книга доктора биологических наук Николая Викторовича Лучника, написанная для широких кругов читателей. Первая – «Почему я похож на папу», опубликованная в 1966 году, получила на Всесоюзном конкурсе научно-популярных произведений в 1967 году вторую премию.

Николай Викторович – ученый, и это позволяет ему писать о вещах малоизвестных, о последних достижениях науки. И самое главное – из первых рук. Ведь исследованиями в области радиобиологии и генетики автор этой книги занимается с 1947 года. Его работы по радиационной цитогенетике, изучению противолучевых средств, расшифровке генетического кода известны ученым всего мира. Николай Викторович сейчас руководит отделением биофизики в Институте медицинской радиологии Академии медицинских наук СССР.


    Ваша оценка произведения:

Популярные книги за неделю