355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Николай Одноралов » Занимательная гальванотехника: Пособие для учащихся » Текст книги (страница 4)
Занимательная гальванотехника: Пособие для учащихся
  • Текст добавлен: 21 октября 2016, 18:15

Текст книги "Занимательная гальванотехника: Пособие для учащихся"


Автор книги: Николай Одноралов


Жанры:

   

Химия

,

сообщить о нарушении

Текущая страница: 4 (всего у книги 5 страниц)

Пояса должны быть непременно горизонтальными. Таким же образом можно изолировать и отдельные глубоко профилированные детали формы, снабжая их самостоятельными проводниками для питания.

Подготовленную форму покрывают проводящим слоем, после чего наклеенные изоляционные ленты снимают; в результате пояса или отдельные углубленные элементы формы, оказываются изолированными друг от друга, так как вместе с лентами удаляют проводящий слой.

Наращивание начинают с наиболее углубленных деталей формы, в данном примере с пояса а, включая питающий проводник 7: по отложении в этом поясе требуемой толщины металла питающие проводники его отключают и включают проводник 6 и т. д. После отложения металла на участках а и б форму из ванны вынимают и наносят проводящий слой на место, где была наклеена изоляционная лента, затем сращивают два пояса формы. После этого включают следующий пояс и таким образом последовательно наращивают металл на всю форму.

Для получения изолирующего слоя в процессе наращивания металла на сложнопрофилированные формы (в особенности при изготовлении бесшовных бюстов в монолитных формах) применяется способ изоляции уже наращенных мест (где не требуется дальнейшего отложения металла) при помощи тетрахлорметана, который заливают в форму, пользуясь тем, что его плотность больше плотности электролита, так как он находится под слоем электролита, не смешиваясь и не реагируя с ним.

Для получения в процессе гальванопластики равномерного слоя металла можно применять периодическое изменение направления постоянного тока. Такое реверсирование тока препятствует росту металла на выступающих и острых элементах форм вследствие того, что анодное растворение металла в период подключения его к аноду происходит наиболее интенсивно именно на остриях и выступающих частях.

Ток переключают так, чтобы в течение 2—40 с отлагался металл на катоде, а затем в течение 0,5–5 с растворялся отложенный металл. Таким образом, при реверсировании тока наращиваемая форма включается в качестве анода только на короткие промежутки времени и в течение продолжительного времени остается катодом.

Анодное включение катода прерывает процесс роста кристаллов, что отражается на характере последующего роста кристаллов: вместо крупнозернистой столбчатой получается мелкокристаллическая структура меди.

Реверсирование тока сопровождается повышением рассеивающей способности электролита, а отложения металла становятся более светлыми, плотными, без шероховатостей.

Для реверсирования тока применяют реле времени для периодического переключения тока.

Правильное расположение анодов в процессе наращивания металла на глубоко профилированные формы является одним из активных средств для получения равномерного отложения металла в форме.

Обычно в дополнение к основному устанавливают специальные вспомогательные аноды. Их вводят в глубоко профилированные места и в поднутрения, т. е. в такие места формы, куда электрические силовые линии от удаленных анодов в достаточной степени не проникают. Вспомогательные аноды должны быть из прокатанной высококачественной меди марки М-0 или М-1 (ОСТ ЦМ 21–39), чтобы избежать образования шлама, засоряющего форму. Кроме того, аноды следует помещать в шламозадерживающие мешки из тонкой капроновой или стеклянной ткани.

Подготовка анодов перед установкой на место и сама установка осуществляется в следующем порядке.

К аноду, вырубленному по ширине и изогнутому в соответствии с профилем данного места формы, припаивают многожильный электропровод с плотной хлорвиниловой изоляцией, так, чтобы изоляция провода была возможно ближе к аноду.

Оголенную часть провода, припаянную к аноду, покрывают изоляционным лаком или парафином, поверх которого наносят плотный слой озокерита толщиной по крайней мере 3–4 мм. Такая изоляция необходима для защиты анода в месте контакта от растворения в процессе электролиза.

Вспомогательные аноды обычно устанавливают после наращивания металла необходимой толщины; их располагают перед углублениями, не затянувшимися металлом, или там, где отложение металла имеет недостаточную толщину.

Аноды прикрепляют озокеритом к просушенному металлу, отложившемуся в форме. Приклеивание анода озокеритом должно быть надежным и может производиться в нескольких местах; края озокеритовой массы должны плотно прилегать к металлу на форме. До крепления анодов на них надевают шламозадерживающие чехлы.

На рисунке 26 показаны примеры расположения вспомогательных анодов, в открытых формах – для барельефов (а, б, г) и в закрытых формах – для объемной скульптуры (б, д, е, ж).


Рис. 26. Примеры специальных случаев расположения анодов:

– свинцовая трубка: 2 – озокерит.

Число разнообразных случаев, которые могут представиться на практике, огромно. Для рационального подхода к вопросу об улучшении распределения силовых линий путем экранирования или введения дополнительных анодов нельзя ограничиваться выбором одного из указанных типичных случаев. Необходимо иметь возможность измерять распределение силовых линий.

Декоративная отделка изделий

ЗНАЧЕНИЕ ДЕКОРАТИВНОЙ ОТДЕЛКИ

Декоративная отделка изделий производится тонированием – оксидированием, т. е. созданием химическим способом тончайших пленок на поверхности металла, которые изменяют его цвет.

Другой метод декоративной отделки осуществляется гальваническим способом путем нанесения пленок другого металла на поверхность отделываемых изделий. Тот и другой способы отделки являются завершающим процессом.

Тонирование – оксидирование изделий – уменьшает первоначальный блеск чистого металла, смягчает переходы от выпуклостей к углублениям, но одновременно может подчеркнуто выделить формы, делая рельефную поверхность изделия более выразительной.

Часто прибегают к комбинированной отделке изделий, применяя гальваническую, декоративную отделку в цвет бронзы, серебра или других металлов с последующим химическим оксидированием. По окончании декоративной отделки изделие следует покрыть прозрачным лаком – нитролаком, который готовят растворением кинопленки (предварительно смыв эмульсию в горячей воде) в ацетоне. Для этого сухую кинопленку режут на мелкие кусочки, которые засыпают в ацетон. Примерно на 100 г ацетона берут 250–300 мм обычной кинопленки.

Покрывать изделие можно мягкой кисточкой или погружая его в нитролак. Можно применять и другой способ покрытия, заключающийся в натирании поверхности изделия шерстяной тряпочкой раствором пчелиного воска в скипидаре.


ПОДГОТОВКА ИЗДЕЛИИ К ОТДЕЛКЕ

Основным условием для получения качественной декоративной отделки как при химическом, так и при электрохимическом способах является безукоризненная предварительная подготовка изделий перед покрытием.

Подготовку изделий перед покрытием всегда следует проводить по такой технологической схеме: предварительно с изделий удалить грубые налеты жира, машинного масла, особенно с изделий, полученных техникой гальванопластики, так как они всегда имеют следы воска, гипса, графита, остающиеся от гальванопластических форм. Для удаления грубых налетов жира и различных загрязнений изделия промывают в бензине или ацетоне, после чего их следует опустить в горячий раствор (80–90 °C) гидроксида натрия или гидроксида калия, который предварительно растворяют в холодной воде, из расчета 10–15 г на 1 л. Обезжирив изделия в горячей щелочи, их промывают в горячей воде, а затем в холодной проточной воде в посуде под водопроводным краном.

При наличии темных пятен на изделиях после обезжиривания их можно счистить мелким песком с водой (при этом не царапая поверхность металла) или протравить в 30-процентном растворе азотной кислоты. Хорошо обезжиренные изделия должны полностью смачиваться водой и не иметь расползающихся сухих островков.

К подготовленным изделиям нельзя прикасаться руками, так как жир, имеющийся на руках, снова может зажирить изделия. Поэтому подготовку изделий по их обезжириванию следует вести или: в резиновых перчатках или лучше к изделиям заранее должна быть прикреплена медная проволока, которая в дальнейшем послужит проводником при завеске изделий в гальваническую ванну.


ХИМИЧЕСКОЕ ОКСИДИРОВАНИЕ МЕДИ И СПЛАВОВ НА МЕДНОЙ ОСНОВЕ

Декоративное оксидирование гальванопластических изделий из меди, а также изделий из бронзы и латуни можно отделывать многими окисляющими средствами. Результаты получаются различные, в зависимости от применяемых растворов, их концентрации, температуры и т. п. При оксидировании изделий из бронзы и латуни играет важную роль состав бронзы и латуни.


ОКСИДИРОВАНИЕ БРОНЗЫ И ЛАТУНИ

Исследования по оксидированию скульптуры и различных изделий из латуни и бронзы показали, что цвет и качество оксидных пленок в значительной мере зависит от состава сплава этих металлов.

Так, при почти одинаковых количествах в бронзах меди, олова и цинка (87 % меди, 8 % олова и 5 % цинка) при отсутствии свинца оксидные пленки образуются значительно труднее. На бронзах же с присадками свинца в пределах от 0,5 до 2,5 % образование оксидной пленки облегчается и повышается ее качество.

При проведении опытов по оксидированию были исследованы различные оксидированные составы. При работе с сульфидом аммония было установлено, что бронзы, а также латуни, например марки Л-62, содержащие значительное количество цинка (12–22 %), оксидируются значительно труднее, чем бронзы, содержащие от 4 до 8 % цинка, и латунь, содержащая цинка не более 10 %.

Таким образом, наличие в сплаве свыше 10 % цинка затрудняет оксидирование сульфидом аммония.

Другой раствор – «серная печень» (приготовляется специально 2 ч. массы поташа с 1 ч. массы серы). Этот старинный оксидирующий рецепт был усовершенствован следующим образом: после растворения кристаллов «серная печень» в горячей воде ее добавляют в сульфид аммония. В зависимости от количества добавляемого раствора «серной печени» к сульфиду аммония можно получить оксидную (сульфидную) пленку от светло– до темно-коричневого и почти черного цвета. При этом происходят реакции:

2 Cu + Na2S2 = Cu2S + Na2S (коричневая пленка)

Cu + Na2S2 = CuS + Na2S (пленка черного цвета)

При этом оксидная пленка получается качественная – равномерного цвета и прочная.

Еще одним составом, применявшимся для оксидирования, был 10-процентный водный раствор тиокарбоната. При использовании тиокарбоната оксидные пленки получаются на всех видах бронз, за исключением бронз и латуней, содержащих значительные присадки цинка.

Наконец, для оксидирования испытывался раствор тиоантимоната натрия («соль Шлипе» – двойная соль пятисернистой сурьмы и сульфида аммония). Лучшим составом оказался раствор, состоящий из 2,5 г тиоантимоната натрия в литре 4-процентного раствора гидроксида натрия. При погружении бронзовых изделий в этот раствор образуется равномерно распределенная оксидная пленка коричневого цвета с легким красноватым оттенком.

Бронзы и латуни с повышенным содержанием цинка и в этом растворе оксидируются труднее

Из всех изученных оксидирующих растворов универсальным оказался раствор из нитрата серебра и нитрата меди. При этом было установлено, что наилучшие результаты получаются при использовании 1-процентного раствора нитрата серебра и 10-процентного нитрата меди, взятых в соотношении 1:1.

Раствор наносится кистью и тщательно растирается. В зависимости от требуемого цвета процесс оксидирования повторяется. При этом раствор дает хорошие результаты на бронзах и латунях с присадками цинка.

Резюмируя проведенные опыты, можно сделать следующие выводы:

а) при сульфидном оксидировании (с добавлением «серной печени») недопустимо наличие в составе сплава более 10 % цинка. В этом случае оксидирование затруднено, а иногда просто невозможно;

б) присутствие олова влияет на цвет оксидной пленки;

в) наличие свинца в количестве от 0,5 до 2,5 % облегчает образование оксидных пленок и улучшает их качество. Следовательно, образование и цвет оксидных пленок зависят от состава сплавов бронз и латуней.

Наиболее распространенным является раствор «серной печени», дающей темно-коричневые шоколадные цвета.

Как указывалось выше, для получения «серной печени» берут 1 ч. массы серы и 2 ч. массы карбоната калия или соды. Серу расплавляют в железной банке и добавляют к ней измельченный сухой карбонат калия. Расплавленную смесь перемешивают 15–20 мин и после остывания хранят в закрытой банке. По мере надобности от спекшейся массы откалывают кусочек и растворяют в горячей воде, примерно берут 1 г «серной печени» на 100 мл воды.

Раствор «серной печени» можно наносить ватным тампоном, тряпочкой или погружать изделия в раствор.

В зависимости от выдержки изделий на воздухе цвет их может быть более светлее или темнее. Изделия по нанесении раствора должны быстро промываться в воде.

Для получения цвета старой бронзы изделия обрабатывают раствором из следующих веществ (в г/л):

Хлорид кальция… 34

Нитрат меди… 120

Сульфат меди… 60

Хлорид аммония… 20

Все эти соли растворяют в горячен воде и горячим раствором несколько раз смачивают поверхность изделия. Наносить раствор следует после высыхания раствора, нанесенного ранее (г/л).

Рецепт № 1 (коричневые тона)

1. Сульфат меди… 500

Хлорид цинка… 500

На изделие наносят смесь в виде кашицы. Покрытию дают высохнуть, затем смывают его водой.

2. Гипохлорид калия (или натрия)… 6

Сульфат меди… 28

Раствор подогревают и смачивают им изделия

3. Сульфат меди… 25

Сульфат никеля… 25

Гипохлорид калия… 12

Перманганат калия… 7

Изделие погружают в раствор на 0,5–2 мин и нагревают до кипения. Большие скульптуры обливают горячим раствором или наносят его щеткой.

Раствор дает тона от светло-коричневого до темно-коричневого.

Если изделие долго держать в растворе, оно получает черную окраску. Длительная обработка раствором создает грубую поверхность.

Рецепт № 2 (светло-коричневый цвет)

Хлорид натрия… 100

Нитрат аммония… 100

Нитрат меди… 10

Раствор нагревают до 100 °C и погружают в него изделие. При погружении изделие встряхивают.

Рецепт № 3 (коричнево-медная окраска)

1. Ацетат меди… 30

Хлорид железа… 30

Хлорид аммония… 10

Раствор наносят кистью, затем изделие нагревают до почернения, промывают и сушат. Для получения коричневой окраски в раствор вводят медный купорос.

2. Нитрат калия… 10

Хлорид натрия… 10

Хлорид аммония… 10

Уксусная кислота (5-процентная)… 1

Изделие натирают горячим раствором.

3. Сульфат меди… 300

Перхлорат калия KClO4…160

Температура раствора 80 °C. После нанесения раствора изделие протирают мягкой латунной или очень жесткой волосяной щеткой, снова наносят на него раствор, затем промывают поверхность изделия водой.

Рецепт № 4 (бронзовый цвет)

1. Сульфат никеля… 20

Соль хлорноватистой кислоты… 40

Сульфат меди… 180

Перманганат калия… 2

2. Хлорид аммония… 120

Оксалат калия… 40

Уксусная кислота (5-процентная)… 1

Рецепт № 5 (окраска от коричневой до черной)

«Серная печень»… 10—20

Сульфид калия или сульфид натрия… 6

Хлорид аммония… 20

Рецепт № 6 (окраска от светло-коричневой до темно-коричневой)

Ацетат аммония… 50

Ацетат меди… 30

Хлорид аммония… 0,5

Изделия погружают на 5—10 мин в кипящий раствор. Без добавления в раствор хлорида аммония процесса окрашивания не происходит. При большом содержании хлорида аммония изделия чернеют от света. Если добавить к раствору 4 г сульфата меди, то изделие приобретает темный шоколадный тон; при меньшем количестве сульфата меди – более светлые тона.


ПАТИНИРОВАНИЕ СКУЛЬПТУРЫ

Закон от 31 октября 1976 г. «Об охране и использовании памятников истории и культуры» предусматривает охрану памятников истории, искусства, архитектуры. Немаловажную помощь в их охране и уходе могут оказать и школьники.

По вопросу ухода и поддержанию внешнего вида памятников и различных произведений скульптуры из бронзы и меди за последние годы были сделаны углубленные исследования патин. Патины, придающие красивый вид скульптурам, представляют собой коричневые или зеленоватые пленки, образовавшиеся искусственно или под действием атмосферных условий, и по существу являются продуктами «благородной» коррозии меди. Патины образуются при длительном пребывании предметов на воздухе и представляют тонкий и твердый слой минералов различного состава, например: куприт – оксид меди (I) Сu2O; тенорит– оксид меди (II) СuО; малахит – основной карбонат меди СuСO3· Сu(ОН)2; халькозин – сульфид меди Cu2S и другие минералы, образующиеся в виде соединений меди.

Исследованиям подверглись многочисленные памятники Советского Союза. Как выяснилось, наиболее прочными оказались патины коричневого цвета, у которых внутренний слой представляет оксид меди (I) (Сu2O). Патины черного цвета также относятся к наиболее механически прочным и по прочности близки к коричневым, как и наиболее красивые, зеленые патины.

Кроме того, зеленая патина хорошо защищает медную и бронзовую скульптуру от коррозии в любых атмосферных условиях в течение многих десятилетий без какой-либо дополнительной защиты. Образование естественной зеленой патины является процессом естественным, поэтому ее образование на поверхности черной или коричневой пленок следует рассматривать не как разрушение, а как ценный декоративный процесс.

За бронзовыми памятниками и различными бронзовыми декоративными украшениями следует ухаживать, это будет способствовать естественному образованию зеленой патины на их поверхности. Уход должен заключаться в промывке бронзы несколько раз в год горячей водой с протиркой скульптуры волосяными щетками, а лучше всего моющими средствами – «Новость», «Кристалл» и т. п. с последующим очень тщательным ополаскиванием большим количеством воды и тщательной протиркой поверхности тканью, не оставляющей ворса.

Поверхности новых или реставрированных памятников должны оставаться чистыми (без отделки оксидными пленками), с тем чтобы на них постепенно образовывалась естественная патина зеленого цвета. При патинировании каких-либо гальвано-пластических изделий или бронзовых личного пользования рекомендуются специальные составы.

Рецепт № 1

1. Светло-коричневую пленку на бронзе и меди можно получить погружением предмета на 2–3 мин в раствор, состоящий из следующих веществ (г/л):

Сульфат меди… 60

Перманганат калия… 7,4

Температура раствора 90–95 °C. Раствор можно наносить кистью.

2. По другому рецепту можно окрасить бронзу в темно-коричневый цвет. Для этого растворяют 195 г карбоната меди в 1 л концентрированного гидроксида аммония и после этого раствор разбавляют в десять раз. Температура раствора 80–90 °C. Изделие погружают в раствор.

3. Темно-коричневая пленка на меди, бронзе и латуни образуется при погружении изделия в раствор, состоящий из селенистой кислоты 7,4 г/л, к которой добавляют гидроксид натрия до pH 3,0.

4. Зеленые пленки могут быть получены распылением из краскопульта или аэрографа раствора, состоящего из 104 г/л сульфата аммония, 3,7 г/л сульфата меди и 1,5 г/л концентрированного гидроксида аммония. Распыление повторяют пять раз с интервалами 10–15 мин для сушки. Недопустимо попадание воды на поверхность изделия ранее 3–4 ч.

Электрохимические и химические способы декоративной отделки изделий

Выше мы привели различные рецепты химической декоративной отделки медных и бронзовых изделий, полученных техникой гальванопластики.

В условиях школы, на станциях юных техников или дома можно производить декоративную отделку гальванопластических изделий и различных металлических предметов электрохимическим способом, покрывая их пленкой других металлов.

Мы опишем несколько способов декоративных отделок, дающих наиболее интересный эффект: серебрение, окрашивание изделий в яркие и пестрые цвета, декоративное хромирование, имитирующее агат, химическое никелирование, отделку «кристаллит», а также декоративную отделку изделий из алюминия и его сплавов путем электрохимического оксидирования и окрашивания полученной оксидной пленки в органических (анилиновых) красителях, которые применяют для окраски шерстяных тканей.


ГАЛЬВАНИЧЕСКОЕ СЕРЕБРЕНИЕ

Многие изделия, изготовленные из меди, латуни, могут быть покрыты серебром. Для этого готовят электролит следующего состава (г/л):

Хлорида серебра… 40

Гексацианоферрата калия… 200

Карбоната калия… 20

Температура электролита 20–80 °C. Плотность тока 1,0–1,5 А/дм2. Анод из серебра.

Приготовление хлорида серебра

Для получения из нитрата серебра хлорида серебра к раствору нитрата серебра приливают раствор хлорида натрия (в темном помещении). После образования творожистого осадка жидкость сливают, а хлорид серебра несколько раз промывают водой, затем переносят в раствор гексоцианоферрата калия.

При отсутствии нитрата серебра его готовят из чистого высокопробного серебра. Для приготовления нитрата серебра берут 10 г металлического серебра и измельчают его. Измельченное серебро помещают в фарфоровую чашку, содержащую 50 см3 азотной кислоты (ρ = 1,25). Чашку нагревают на песочной бане, размешивая жидкость стеклянной палочкой.

Серебро растворяется, и при реакции выделяются бурые ядовитые газы – оксида азота (IV), поэтому процесс растворения серебра следует проводить в интенсивном вытяжном шкафу (в условиях химического кабинета). Нагревание ведут до полного растворения металлического серебра и прекращения выделения газов. Раствор охлаждают, затем, перемешивая, добавляют 3–4 ч. дистиллированной воды. Если для приготовления нитрата серебра применяется легированное серебро с присадкой меди, то раствор нитрата меди удаляют промыванием хлорида серебра, который готовят из нитрата.


ХИМИЧЕСКОЕ СЕРЕБРЕНИЕ

Для химического серебрения раствор готовится следующим образом: 20 г нитрата серебра растворяют в небольшом объеме дистиллированной воды, затем переводят его в хлорид серебра с добавлением 20 г раствора хлорида натрия в небольшом объеме дистиллированной воды; при этом вливание раствора поваренной соли в раствор нитрата серебра производят в темной комнате. Выпавший осадок хлорида серебра в виде белых хлопьев несколько раз промывают водой, затем переносят его в предварительно приготовленный 5-процентный раствор тиосульфата натрия. Для серебрения медных и латунных изделий их смачивают указанным раствором с добавкой мела или зубного порошка.

Щеткой натирают изделия этой кашицей. По окончании серебрения изделие промывают сначала струей холодной воды, затем горячей или теплой водой и, наконец, промывают в 2—3-процентном растворе уксусной кислоты.


ОКРАШИВАНИЕ МЕДНЫХ ИЛИ ОМЕДНЕННЫХ ИЗДЕЛИЙ В ЯРКИЕ ЦВЕТА

Интересные декоративные эффекты на изделиях можно получить электрохимическим способом, нанося тончайшие пленки оксида меди.

ОКРАШИВАНИЕ МЕДИ В ЯРКИЕ ЦВЕТА

Окрашивание меди в яркие цвета производится двумя способами: химическим и электрохимическим. Эти методы обработки позволяют получить широкую гамму цветов на меди и медных гальванических покрытиях.

Тонкие прозрачные пленки в зависимости от толщины слоя имеют различные цвета: цвета побежалости на металлах, цвета мыльных пузырей, цвета тончайшего слоя бензина на поверхности воды и т. п. Толщина указанных цветных пленок составляет сотые и десятые доли микрона.

Цвет тонких пленок обусловлен явлениями интерференции света, падающего на пленку и отражающегося как от верхней, так и от нижней поверхности пленок: благодаря различной скорости прохождения света отраженный луч может усиливаться или затухать. Когда на пленку падает белый луч, одна часть его усиливается, другая – затухает, в результате чего пленка получает в зависимости от ее толщины тот или иной цвет.

Химическое окрашивание. Ванна для декоративной отделки меди и омедненных изделий в яркие цвета содержит (г/л):

Тиосульфат натрия… 125

Ацетат свинца… 40

При составлении ванны каждый компонент растворяют отдельно и смешивают перед самым употреблением.

Изделия, смонтированные на проволоке, погружают в ванну, слегка передвигая их в растворе до тех пор, пока не получится требуемый цвет, затем быстро промывают в воде. В процессе окрашивания осаждается сульфид свинца. Этот раствор в кипящем состоянии дает в первые несколько секунд золотистое окрашивание, затем (через 0,5 мин) окраска изменяется и переходит в синий цвет. Для получения синего цвета следует поддерживать температуру раствора до 60 °C, а для получения золотистого цвета – 35–40 °C. Цвета появляются последовательно.


Окрашивание изделий из латуни может производиться в растворе гидроксида натрия, натриево-калиевой соли винной кислоты, сульфата меди. Для придания золотистого оттенка изделие можно обрабатывать в 15-процентном растворе серной кислоты.

Раствор составляют следующим образом: все три компонента в отдельности растворяют в воде, затем раствор гидроксида натрия смешивают с раствором сегнетовой соли и, наконец, в раствор вводят сульфат меди. Температура раствора должна быть не ниже 18–20 °C.

Электрохимическое окрашивание поверхностей художественных изделий в различные цвета производят путем нанесения тончайшей пленки оксида меди (I) на катоде (изделие) из водных растворов органических соединений меди. Этот способ позволяет производить окрашивание в различные яркие цвета в зависимости от режима обработки изделий. Электролиз при окрашивании изделий происходит при очень низких плотностях тока (табл. 7).

Существенным фактором для получения качественного, равномерного цвета является предварительная подготовка поверхности изделия. Равномерную окраску трудно получить на слишком тонкой пленке. Для того чтобы избежать неравномерности интерферирующего оттенка, возникающей вследствие различной светопоглотительной способности поверхности металла, можно применять гальваническое нанесение подслоя из меди. Кроме того, рекомендуется полирование, крацевание или пескоструйная обработка.

Различные оттенки пленки могут быть получены не только вследствие структурной неравномерности металла, но и в связи с посторонними включениями в основной металл.

Различные способы механической обработки поверхности металла также влияют на оттенки пленки.

Видоизменение цвета пленки, зависящее от времени выдержки изделия в электролите, может быть представлено в виде следующих двух циклов:


С каждым последующим циклом на интерферирующие цвета все большее влияние оказывает собственный цвет оксида меди (II).

После девяти циклов глаз перестает улавливать изменение интерферирующих цветов. Оксидные пленки начинают приобретать темно-красный цвет (в то время переливающийся всеми цветами), который уже больше не подвергается циклическим изменениям.

В промежуточные отрезки времени (30 с, 70 с, 190 с и т. д.) можно получить цвета самых разнообразных оттенков, образующихся в результате смешения цветов.

Для получения тонких цветных окисных пленок наиболее удобными являются растворы, дающие образование оксида меди (II) с умеренной скоростью.

Для того, чтобы получить такой раствор, следует проследить скорость смены цветов на катоде. Если скорость образования оксида меди (II) на катоде слишком велика для того, чтобы можно было остановить процесс сразу по получении нужного цвета, рост пленки можно задержать, например, снижением щелочности раствора, понижением температуры, разбавлением раствора или комбинацией этих приемов.

Для цветного электрохимического окрашивания существуют разнообразные электролиты, состоящие в большинстве случаев из органических соединений[9]9
  При составлении растворов следует органические соединения и сульфат меди вливать в раствор гидроксида натрия.


[Закрыть]
(г/л):


Для вышеприведенных растворов принимаются режимы, приведенные в таблице 7.


Электрохимическое окрашивание можно производить также в электролите следующего состава (г/л):

Сульфат меди… 60

Сахар-рафинад… 90

Гидроксид натрия… 40

Раствор, содержащий сульфат меди и сахар, следует вливать в раствор щелочи. Плотность раствора при 16 °C 1,10. Аноды – медные. Режим работы следующий: температура 25–40 °C, катодная плотность тока 0,01 А/дм2. Изделия после погружения в ванну выдерживаются без тока в течение 1 мин.

По мере уменьшения объема электролита в раствор добавляется дистиллированная вода. Свежеприготовленный электролит может работать длительное время без корректирования, пока концентрация электролита не снизится до 67 %, что можно определить измерением его плотности.

Для получения более блестящих поверхностей в электролит добавляют 20 г карбоната натрия. Однако электролит без карбоната натрия более стоек. Снятие цветного оксидного слоя производится в 5-процентном растворе аммиака. Для лучшего предохранения окрашенного слоя от коррозии и механических повреждений изделия рекомендуется покрывать прозрачным лаком (нитролаком, глифталевым, перхлорвиниловым и др.).

Существуют и другие составы электролитов. Например, следующий состав (г/л):

Сульфат меди… 110—115

Лимонная кислота… 100—105

Гидроксид натрия… 120—125

Температура комнатная; катодная плотность тока от 0,08 А/дм2 и выше.

По другому способу изделия из стали или имеющие медный подслой окрашиваются в щелочной медной ванне такого состава (г/л):

Сульфат меди… 10—30

Гидроксид натрия… 50—70

Глицерин… 20—65

Хлорат натрия… 1—4

Температура комнатная; катодная плотность тока 0,005—0,15 А/дм2.

Существуют и другие составы электролитов для цветного окрашивания, например (г/л):

1. Молибдат аммония… 10

Тиосульфат натрия… 10

2. Молибдат аммония… 10

Аммиак (25-процентный раствор)… 7

3. Тиосульфат натрия… 240

Ацетат свинца… 25

Сульфат калия… 30

4. Сульфат меди… 25

Сульфат никеля… 25

Соль хлорноватистой кислоты… 12

Перманганат калия… 7

Для получения зеленой окраски со слабым оливковым оттенком предлагается электролит следующего состава (г/л):

Сульфат меди… 60

Сульфат цинка… 45

Молибдат аммония… 30

Температура электролита комнатная; напряжение не менее 1,5 В; катодная плотность тока 0,4–0,4 А/дм2.


ХИМИЧЕСКОЕ НИКЕЛИРОВАНИЕ

Химическое никелирование производится без электрического тока. В процессе никелирования происходит восстановление никеля из его солей. Этим способом можно никелировать изделия из стали, чугуна, меди и ее сплавов, серебра, различных алюминиевых сплавов, а также из керамики и пластических масс.

Химическое никелирование дает возможность наносить равномерный слой никеля при любой конфигурации изделий. Получаемое покрытие представляет собой соединение никеля (93–95 %) с фосфором (5–7 %).

В настоящее время известны различные составы для химического никелирования.

Кислые растворы могут быть применены и для покрытия изделий из меди и медных сплавов (бронза, латунь), но при этом необходим кратковременный контакт изделий с металлом, имеющим большой электроотрицательный потенциал, например алюминием, железом (см. табл. 1).

Положительные результаты при никелировании изделий из цветных металлов (алюминия и сплавов на медной основе) получаются также и в щелочных растворах.


    Ваша оценка произведения:

Популярные книги за неделю