Текст книги "Кто вы?"
Автор книги: Николай Петрович
сообщить о нарушении
Текущая страница: 4 (всего у книги 13 страниц)
Даже для схематичного ответа на эти вопросы мы вынуждены обратиться к модели атома. Электроны, вращаясь вокруг ядра, могут находиться только на орбитах, расстояние которых от ядра строго фиксировано. Переход их с одной орбиты на другую всегда связан со скачком в пространстве. Величины этих скачков различны у различных атомов. Чем на более далекой от ядра орбите вращается электрон, тем большей энергией он обладает. Каждой орбите соответствует, таким образом, определенный энергетический уровень электрона.
Под действием внешних сил, например при столкновении с другими атомами, электрон может переходить с одного уровня на другой. Но при этом не должен нарушаться закон сохранения энергии, справедливый и для микромира. При переходе на более высокий энергетический уровень электрон должен получить энергию, равную разности энергий этих уровней. При переходе на более близкий к ядру уровень электрон должен отдать энергию, опять-таки равную разности энергий этих уровней.
Электрон, как и все материальные тела, стремится занять положение с минимальным энергетическим потенциалом, то есть перейти на орбиты, близкие к ядру подобно тому как брошенный вверх камень падает вниз или вода стекает в более низкое место.
Внимание, читатель! Мы подходим к тайнику, который с большим трудом удалось открыть блестящим мыслителям Земли – Планку, Эйнштейну и Бору: отдавать свою энергию электрон, «прыгающий» на более близкую к ядру орбиту, может только в виде излучаемых им электромагнитных колебаний. Как просто! Частота этих колебаний или длина волны излучаемых волн зависит только от разницы этих уровней и не зависит от структуры атома.
При большой разнице этих уровней излучаются энергоемкие рентгеновы лучи. При меньшей – излучаются световые волны. И наконец, при малой разнице уровней – радиоволны.
Любой источник света: Солнце, звезды, молния, электрическая лампочка, светлячок – содержит атомы с электронами, поднятыми на верхние энергетические уровни. Они излучают свет при переходе их на нижние. У атомов много возможных (или разрешенных) энергетических уровней. Поэтому, «прыгая» с разных уровней на один и тот же нижний, электроны будут испускать световые лучи разной частоты или разного цвета. Эти цвета сливаются и дают то, что воспринимает наш глаз: солнечный свет, или обычный белый свет. Он, следовательно, есть смесь цветов от темно-красного до фиолетового (отсюда и название «белый шум» в радиотехнике: хаотическая смесь колебаний всех частот). Если часть этих составляющих отсутствует, то свечение приобретает ту или иную окраску. Этот же принцип получения света, за счет «прыгающих» вниз (конечно, в энергетическом смысле) электронов, лежит в основе лазера, но с существенной модификацией.
В лазере электроны «прыгают» не с разных энергетических уровней на разные более низкие энергетические уровни, а все с одного верхнего на один и тот же более низкий. Но это еще не все. Этот коллективный прыжок совершается строго одновременно, или синхронно. Проносится мгновенная лавина электронов.
Поэтому элементарные синусоиды, излучаемые каждым прыгуном, точно повторяют друг друга во времени. Такие колебания называются синхронными, или совпадающими по фазе, а также когерентными.
Мне кажется, что сейчас самое время ввести понятие фазы. Нужно оно для измерения сдвига во времени между двумя (или несколькими) колебаниями равной частоты. Обычно период колебаний разбивают на 360 градусов, и сдвиг между колебаниями φ измеряется в градусах. Как мы видели, ноги идущего человека «колеблются» в противофазе, то есть имеют сдвиг на 180 градусов, или на полпериода.
В нашем примере с одновременно прыгающими электронами с одной орбиты на другую сдвиг их фаз равен нулю (φ = 0). Поэтому имеет место простое суммирование колебаний, излучаемых отдельными электронами. Это позволяет получить от лазера очень мощный световой импульс. Так как все электроны прыгают с одной и той же энергетической ступеньки, то излучаются колебания одной и той же частоты. Поэтому лазер дает не белый свет, а одноцветный; в зависимости от величины ступеньки он будет либо красный, либо зеленый и т. д.
Неотъемлемой частью лазера является так называемая активная среда, в которой тем или иным способом создается состояние, когда число электронов на верхних уровнях больше, чем на нижних. Такой средой может быть твердое вещество, жидкость или газ. Для одновременного, а не случайного (спонтанного), как при получении белого света, перехода электронов нужна внешняя синхронизирующая сила. Ею может быть, например, свет с длиной волны, соответствующей разности энергий уровней перехода. Освещая активную среду, луч заставит электроны синхронно прыгнуть на нижний уровень. При этом они будут излучать свет той же длины волны. Но этот световой поток может быть существенно более мощный.
Описанный эффект есть не что иное, как усиление света. Если же к такому усилителю добавить как бы обратную связь, то есть часть усиленной волны использовать для управления «активной средой», то получим генератор световых колебаний. Он и получил название «лазер».
Да не обвинит меня строгий читатель в попытке гальванизировать мумию вечного двигателя.
В самом деле, излучаемый световой поток частично возвращается в генератор и обеспечивает следующий цикл излучения и т. д. и т. д. Ошибка в этих рассуждениях в том, что не учитывается затрата энергии на непрерывную подготовку активной среды. За счет этой внешней энергии, часто называемой энергией подкачки, и работает лазер.
С точки зрения наших задач лазер обладает тремя ценными свойствами.
Это, во-первых, возможность получения светового потока большей мощности по сравнению с любыми другими земными источниками света.
Во-вторых, высокая направленность излучения. Так, пучок лазера, направленный на Луну, осветит область, диаметр которой не более 40 километров.
В-третьих, гигантская несущая частота светового луча позволяет одновременно передавать с его помощью невиданный поток информации. Этот поток может быть в миллионы раз больше, чем в радиоканалах. Последнее очень существенно для нашей задачи (см. ниже).
В настоящее время лазеры генерируют колебания в диапазоне волн от 300 до 0,3 микрона, а излучаемая мощность достигает в непрерывном режиме десятков ватт, в импульсном – многих миллионов ватт.
Уже эти мощности позволяют выходить в космос через световое окно и освещать наших ближайших космических соседей. На Земле уже принят луч лазера, посланный к Луне и отраженный от нее.
Но ведь искусственное солнце только делает первые шаги.
В будущем это, по-видимому, грозный конкурент радиоволнам для межзвездной связи.
Мы установили, что две щели в доспехах Земли пропускают в обе стороны свет и радиоволны. Использованием этих окон в режиме «вовне» мы займемся в следующей главе. Здесь же нас интересует режим «извне», то, что поступает к нам в световое окно и известно всякому зрячему обитателю Земли. А что шлют нам звезды в радиоокно?
Две вселенные в одной
Тысячелетиями световое окно было для землян единственной щелью в окружающие бездны космоса.
Тысячелетиями астрономы несли непрерывную вахту у этого окна.
И вдруг революция! Открыта вторая щель – радиоокно. Через него люди увидели новую потрясающую картину. Имя ей – радиовселенная.
Первые радиовестники из космоса были приняты американским инженером Янским. Он изучал помехи земным радиолиниям на волне 15 метров и наткнулся на новое явление. В его первой публикации (1932 г.) мы читаем: «Полученные данные… указывают на присутствие трех отдельных групп шумов: группа 1 – шумы от местных гроз; группа 2 – шумы от дальних гроз; группа 3 постоянный шум неизвестного происхождения.
Направление третьей группы шумов постепенно изменяется в течение дня, делая почти полный оборот за 24 часа. Есть указания, что источник этих шумов каким-то образом связан с Солнцем».
Впоследствии оказалось, что в данном случае Янский напрасно подозревал наше светило. Источник оказался в миллионы раз дальше. Помехи исходили из центра Млечного Пути, который сильнее проявляет себя на радиочастотах, чем в оптическом участке.
Работа Янского осталась почти незамеченной. Во всем мире нашелся только один последователь – американский радиоинженер Рибер. Он собственными силами построил у своего дома первую параболическую антенну и провел серию наблюдений. Им, в частности, было открыто радиоизлучение Солнца (1940 г.).
Исследования Рибера привлекли внимание астрономов. Однако начавшаяся вторая мировая война приостановила эти работы.
Любопытный факт был обнаружен в Англии 26–28 февраля 1942 года. Работа радиолокатора дальнего обнаружения была нарушена действием очень сильных помех. Вначале считали, что эти помехи создает противник. Но более глубокий анализ показал, что они результат гигантской солнечной вспышки, которая была зарегистрирована оптически 28 февраля 1942 года.
Развитие радиоастрономии началось после войны. За эти годы получено много поразительных результатов. Было установлено, что источниками радиоизлучения являются различные космические объекты – Солнце, звезды, многие туманности, отдельные области Галактики, межзвездное вещество, Луна и т. д.
Различают два вида радиоизлучения – тепловое и нетепловое. Первое, связанное с тепловым движением заряженных частиц вещества, увеличивается с повышением температуры излучателя. Всякое тело на Земле и в космосе является источником теплового излучения. Оно имеет широкий спектр частот. Интенсивность излучения его в разных участках спектра различна, а величина хаотически меняется во времени и очень напоминает тепловые шумы радиоприемника.
Но каждое нагретое тело излучает не только радиоволны, но и свет и тепло. В зависимости от температуры доля этих трех излучений меняется. Высокая температура – тело излучает много света и тепла, радиоволн же очень мало. Слабо нагретые предметы, например человеческое тело, излучают в основном тепло (инфракрасный участок спектра).
При нетепловом излучении радиоволн действуют другие силы. Это могут быть гигантские электрические разряды, ускоренное и замедленное движение частиц за счет влияния магнитных полей, синхротронное излучение быстрых электронов в магнитном поле и т. д. Распределение энергии по спектру при нетепловом излучении существенно отличается от теплового: она может быть максимальной в радиодиапазоне и почти не наблюдаться в оптическом.
Какие же плоды сняты с радиоастрономической ветви уже сегодня?
Во-первых, радиометодами получена (пока, правда, не полная) картина радиовселенной. Она не только дополняет оптическую, но и имеет самостоятельную ценность. Здесь обнаружены объекты, которые оптически вообще невидимы.
Во-вторых, радиоволны в ряде случаев испытывают меньшее поглощение в космической среде, чем оптические. Например, скопления межзвездной пыли прозрачны для радиоволн и непрозрачны для световых. Следовательно, радиоастрономия как бы раздвинула пределы доступной нам вселенной.
Что мы обнаруживаем в картине радиовселенной?
Первое – это радиошумы так называемого космического фона (непрерывно распределенные по всему небу, они наблюдаются в метровом и дециметровом диапазонах). Величина этого фона меняется с изменением частоты наблюдения и участков наблюдаемого неба. Выдвинуты гипотезы, объясняющие происхождение этого излучения. Одна из компонент фона приписывается туманностям, связанным с горячими звездами. Другая компонента, равномерно распределенная по небу, по-видимому, связана с излучением так называемых релятивистских, или очень быстро движущихся в магнитном поле Галактики электронов.
На непрерывном фоне космического шума выделяются отдельные, так называемые дискретные (по пространству), источники шума. Таких источников обнаружено на небе около десяти тысяч. Из них изучена только небольшая часть.
В солнечной системе самое мощное излучение естественно принадлежит нашей звезде. Их два вида: тепловое радиоизлучение спокойного Солнца и мощные излучения возбужденного Солнца. Обнаружены также радиоизлучения Меркурия, Венеры, Марса, Сатурна и Юпитера.
Самым мощным дискретным источником радиоизлучения за пределами солнечной системы является источник в созвездии Кассиопеи. Он обозначается Кассиопея-А. Излучение его почти такой же интенсивности, как у «спокойного Солнца». Читатель, не будьте равнодушны к этому равенству! Вдумайтесь в этот факт! Ведь источник отстоит от Земли в сотни миллионов раз дальше, чем Солнце. Свет от Солнца бежит к нам приблизительно 8 минут, а от Кассиопеи-А – 10 тысяч лет! И, несмотря на это, наши приборы регистрируют примерно одинаковую их интенсивность. А она падает обратно пропорционально квадрату расстояния (см. следующую главу).
Всего в два раза уступает Кассиопее-А по величине излучения радиоисточник в созвездии Лебедя. Значит, если бы наше зрение реагировало не на свет, а на радиоволны (ведь у них единая природа – электромагнитная), то мы могли бы любоваться одновременно тремя солнцами почти равной яркости.
Третий по яркости радиоисточннк – Телец-А в созвездии Крабовидной туманности. Эта молодая туманность имеет захватывающую, почти детективную историю.
В 1054 году вспыхнула поразительно яркая звезда, которая была видна даже днем. Звезда светила около полугода и затем угасла. Этот факт и примерное положение ее на небе были занесены в китайские и японские летописи. Указанное положение этой вспышки совпадает с наблюдаемой в настоящее время Крабовидной туманностью. Наблюдения установили, что Крабовидная туманность расширяется во все стороны с колоссальной скоростью – более 1000 километров в секунду. Зная скорость, легко подсчитать, что эта туманность начала свое расширение около 900 лет тому назад. (Удивительно совпадает с записями в летописях, не правда ли!) Отсюда следует вероятная гипотеза, что Крабовидная туманность есть результат грандиозной катастрофы, имевшей место 900 + 5000 лет тому назад. «Скромная» добавка в 5000 лет связана с временем распространения световой вспышки по трассе Крабовидная туманность – Земля. Такие сверхмощные взрывы получили название вспышек сверхновых звезд (вспышки значительно меньшей силы называют вспышками просто новых звезд).
В нашей звездной системе – Галактике это очень редкие явления. Так, за последнюю тысячу лет наблюдались три такие вспышки: в 1054, в 1572 и в 1604 годах. Как и вспышка 1054 года, две последующие также образовали сильные источники радиоизлучения.
Такого типа радиоисточники, являющиеся следствием взрыва сверхновых звезд, советский астрофизик И. С. Шкловский, автор ряда блестящих исследований, назвал радиотуманностями. (Заметим, что термин «радиотуманность» вдвойне удачен: хорошо отражает природу разбегающихся остатков сверхновых и одновременно напоминает о далеко не ясных еще процессах их сверхмощного радиоизлучения.)
Далее, обнаружено излучение за пределами нашей звездной системы в галактиках Андромеды, Магеллановых Облаков и других. У них обычно наблюдается излучение короны. Обнаружены, кроме того, так называемые «радиогалактики», то есть системы, радиоизлучение которых намного превышает радиоизлучение обычных «нормальных» галактик. Наша Галактика и в этом смысле рядовая и относится к нормальным.
Перечисленные выше источники излучают радиоволны в широком непрерывном спектре частот. Поразительным результатом радиоастрономии было открытие узких линий радиоизлучения Галактики. Одним из источников такого излучения является водород, самый распространенный во вселенной элемент. Мы уже разбирали явление излучения электрона при переходе его на орбиту с более низким энергетическим уровнем. Аналогичное явление имеет место и в возбужденном атоме водорода. Электрон под действием внешних причин «прыгает» на более низкую энергетическую ступеньку и излучает при этом электромагнитное колебание на волне длиной в 21 сантиметр. Излучение этого электрона ничтожно. Однако одновременно их «прыгает» так много, что суммарное их излучение уверенно принимается земными радиотелескопами. Открытие это дало новое оружие для исследования вселенной. Более того, так как водород буквально вездесущ во вселенной, то каждая высокоразвитая цивилизация должна знать эту истину, должна владеть этим единым для всех миров стандартом частоты. Так возникла мысль, что именно на этой волне и надо искать разумные сигналы. Но к этому вопросу мы вернемся, заметим лишь, что первая установка для поиска разумных сигналов на нашей планете работала именно на волне в 21 сантиметр. Позже были открыты линии радиоизлучения и на других волнах: 18 сантиметров, 5 и др.
Последние годы ознаменовались открытием новых загадочных объектов радиовселенной – квазизвездных радиоисточников. Им дали сокращенное имя – квазары. Как источники радиоизлучений, они очень мощны, хотя оптически тождественны весьма слабым объектам звездообразного типа. Квазары находятся где-то у сегодняшних границ наблюдаемой нами части вселенной и, следовательно, очень быстро удаляются. Так, квазар ЗС-9 удален от нас на 10 миллиардов световых лет (!) и удаляется со скоростью 240 000 километров в секунду. (Как видите, эта скорость составляет 0,8 скорости света!) Приходящий от него свет покинул источник, когда солнечная система вообще не существовала. По одной из гипотез квазар – это необычайно гигантская сверхзвезда, ядро возникающей новой галактики. Ее диаметр в несколько раз превосходит диаметр орбиты Земли, а масса составляет миллионы масс Солнца! (Известные до сих пор звезды по диаметру и массе превосходили Солнце не более чем в сотни раз.) Природа квазаров еще не разгадана. Но уже сегодня их наблюдение позволило заглянуть в еще более «далекое прошлое» вселенной. Есть ли это предельная дальность проникновения людей в прошлое нашего мира на сегодня?
Отнюдь нет! Радиоастрономическими методами обнаружено так называемое реликтовое тепловое космическое излучение. Мы знаем реликтовые живые организмы – растения и животных, – сохранившиеся почти без изменений со времен далеких геологических эпох до наших дней. Например, знаменитый комодский дракон, или варан, гигант из семейства ящериц, был обнаружен на острове Комодо, расположенном к востоку от острова Ява. Длина его 3,5 метра и вес около 100 килограммов.
Но что значит реликтовое электромагнитное колебание? Почему оно есть реликт далеких эпох вселенной? Вспомним модель вселенной, о которой говорилось в первой главе. Мы сейчас живем, правда совершенно не ощущая это в повседневной жизни, в эпоху расширения, или разбегания, вселенной. А ему предшествовала, по-видимому, эпоха сжатия, при которой вещество имело невообразимо высокую плотность и температуру. Это состояние мира получило название «горячая вселенная».
В таком состоянии вещество дает вполне определенное радиоизлучение на различных частотах. И вот такого типа излучение и было обнаружено в 1965 году. Возникло оно много миллиардов лет назад, задолго до образования галактик и квазаров, и распространяется в космических просторах до сих пор. Этот факт усилил позиции гипотезы о том, что расширению мира предшествовало сжатие. Вот такие потрясающие сведения исторического прошлого уже открылись нам через радиоокно.
Наконец, последний год принес новый триумф радиоастрономии: открыт новый вид излучения. Событие это настолько взбудоражило обитателей нашей планеты, что было бы несправедливо не посвятить ему отдельный параграф.
Сенсация-68
Десятки лет радиотелескопы, принимавшие излучение небесных тел, давали на выходе только непрерывные изрезанные кривые. Они очень напоминали запись тепловых шумов приемника. Какой из этого делался вывод?
Небесные тела непрерывно излучают электромагнитные колебания. Их интенсивность под действием ряда факторов меняется по сложному закону.
И вдруг невероятное событие – записаны четкие периодические импульсы! Найдено небесное тело, которое «работает» в совершенно новом, импульсном режиме. Источник некоторое время излучает энергию, затем перестает излучать и молчит дольше, чем излучал. Затем снова излучает, снова отдыхает и т. д.
Весть об этом с быстротой молнии облетела весь мир. Радиоастрономы всех стран бросились к своим установкам для проверки сенсации. Ожесточенные дискуссии, почти переходящие в рукопашные схватки, о возможной природе пульсаров – такое им нарекли имя – стали основной формой сосуществования ученых мужей многих направлений. И это несмотря на то, что английский профессор Г. Хьюиш и его юная аспирантка Жаклин Белл, открывшие эти импульсы, в течение полугода хранили в глубокой тайне эти результаты, тщательно выверяя их достоверность.
Открытие было сделано в обсерватории Кембриджского университета летом 1967 года с помощью сложной антенны, содержащей 2048 диполей (диполь – это элементарная антенна типа простейшей телевизионной). Антенна была настроена на волну 3,5 метра. Размер каждого диполя равен этой же величине.
Первая публикация об этом открытии была сделана в английском журнале «Природа» лишь в феврале 1968 года.
Вначале был открыт только один такой импульсный источник. Первая мысль, которая захватила и лишила сна открывателей: «Это сигналы разумных существ!» Они даже дали им условное имя – «зеленые человечки».
Однако смысловых элементов в сигналах не обнаруживалось, налицо были просто периодические импульсы. Но можно было считать, что это сигналы, например, космического маяка на некоем небесном теле (предположение о том, что источником импульсов является космический корабль или искусственный спутник, отпало, так как координаты излучателя не менялись).
Вскоре были открыты еще несколько подобных источников. И как ни грустно это писать, на смену гипотезе о разумном происхождении сигналов пришли более реальные гипотезы о возникновении их естественным путем.
Типичная запись импульсов пульсара дана на приведенном рисунке. Она сделана на радиоастрономической станции ФИАН СССР в районе Серпухова и относится к пульсару СР 1919. Импульсы периодически повторяются, но их амплитуда не остается постоянной.
Самой удивительной особенностью пульсаров является очень высокая стабильность периода повторения импульсов.
Экспериментально получены следующие величины периодов для четырех пульсаров.
Из этих данных следует, что стабильность периода повторения импульсов соизмерима со стабильностью вращения Земли вокруг Солнца, то есть со стабильностью нашего солнечного времени.
Импульсы, генерируемые пульсаром, имеют широкий спектр частот. Чем дальше отстоят частоты в этом спектре, тем больше различие в скорости их распространения в межзвездной среде. При этом низкие частоты запаздывают по отношению к высоким. Измерения дали величину этого запаздывания: оно порядка нескольких секунд. Используя эти данные и зная среднюю плотность электронов в межзвездной среде, можно определить расстояние до пульсаров. Расчеты показали, что эти удивительные источники разбросаны в нашей Галактике. Их расстояния от Солнца лежат в пределах от нескольких сот до тысячи световых лет (по первым предварительным оценкам). Много это или мало? Смотря для кого. Меня всегда поражали астрономы своим удивительным умением забыть начисто наши мизерные земные масштабы и мыслить категориями вселенной. Они могут непринужденно шагать и тащить с собой упирающегося собеседника от галактики к галактике и привести его на самую окраину Метагалактики (если эта окраина принципиально существует).
Переходя оживленную улицу в разгар таких бесед, я сначала опасался за моих спутников-астрономов. Но потом понял, что эти увлеченные люди, переводя свой мозг на масштабы вселенной, земной масштаб поручили некой своей вспомогательной сфере. И она вполне успешно справляется с земными делами. Так вот, для этих людей расстояние до пульсаров в сотни световых лет выглядит сущей мелочью. Они считают, что пульсары находятся почти рядом с нашей солнечной системой.
Вместе с тем ведь принимаемый в наше время импульс от пульсара, например, СР 0834 (расстояние до него оценивается в 360 световых лет) покинул свой источник, когда земляне не ведали ни электротехники, ни радиотехники, ни тем более радиоастрономии. Пока импульс преодолевал расстояние «всего лишь в 360 световых лет», неутомимо создавая колебания в межзвездной среде, обитатели нашей планеты очень многому научились.
Излучение импульсов пульсарами происходит с перерывами. Так, источник СР 1919 на волне 3,5 метра излучает импульсы приблизительно в течение одной минуты, затем следует трехминутная пауза и т. д. На других волнах наблюдается другой характер периодичности.
Делаются попытки отождествить пульсары с видимыми оптически объектами. Так, пульсар в Крабовидной туманности надежно отождествлен с оптически видимой звездой. Измерениями установлено: в такт с излучаемыми радиоимпульсами меняется и его световое излучение. Звезда периодически мигает!
Перед наукой встала одна из увлекательных задач – дать объяснение открытому явлению. До сих пор ни в оптическом диапазоне, ни в каких-либо других диапазонах астрономы не наблюдали такого импульсного излучения. Следовательно, на обнаруженных телах имеет место некий новый загадочный процесс излучения. На небе открыты сфинксы, к которым прикованы взоры ученых многих стран.
Появилось несколько гипотез, пытающихся дать объяснение явлению.
Согласно одной из них пульсар – угасающая звезда типа белого карлика, в которой происходят упругие радиальные колебания. Они воздействуют на окружающую карлика плазму и возбуждают в ней мощные импульсные сигналы. В этой модели высокая стабильность периода повторения импульсов хорошо объясняется большой массой колеблющегося тела. Но гипотеза эта быстро отпала.
Согласно другой теории излучение (непрерывное) происходит с некоторой области небесного тела, а наблюдаемая периодичность импульсов есть результат вращения этого тела.
Такими телами могут, например, быть так называемые нейтронные звезды с плотностью вещества много выше, чем у белых карликов. Радиус нейтронных звезд может составлять несколько километров. На позициях этой модели хорошо объясняются предвестники импульсов, которые наблюдаются у всех пульсаров.
Грубая схема объяснения такая. В окружающую плазму выбрасывается некий материал, который вызывает в ней колебания. При обратном падении этого материала в плазму он снова вызывает возбуждение, но более слабое. Таким образом и создается предвестник для последующего импульса. Заметим в скобках, что существование нейтронных звезд пока обосновано только теоретически. Малые размеры звезды позволяют ей иметь период вращения, равный периоду повторения импульсов пульсара. Белый карлик из-за существенно больших размеров не может принципиально иметь столь малый период вращения.
Математических теорий этих моделей пока не создано.
Сфинксы ждут своих Эдипов!
Память мира
Мы установили, что радиоокно сверху донизу заполнено излучениями самого различного вида. Это буквально лаборатория, в которой можно изучать многообразие колебаний и волн. Их источники хаотически разбросаны во всей познанной человеком части вселенной. Вся сумма излучений содержит богатейшую информацию о ее строении, о процессах, происходящих сейчас, и процессах, которые произошли в давно прошедшие времена.
Наблюдаемая как в световое окно, так и в радиоокно картина мира отнюдь не есть мгновенный снимок вселенной, отнесенный к фиксированному моменту времени. Этот момент времени только фиксирует момент нашего наблюдения на планете Земля. А мы наблюдаем уже пройденный путь мира, и чем дальше расположен объект от земного наблюдателя, тем в более древнюю историю мы заглядываем. Это напоминает глубокое почвенное сочетание, в котором удается одновременно наблюдать слои (часто с остатками животного и растительного мира) разных геологических эпох. Чем глубже лежит слой, тем более древнюю геологическую эпоху Земли он хранит.
Излучение от ближайшей звезды – альфы Центавра бежит к нам 4 года и 3 месяца. Путь от удаленных звезд нашей звездной системы – Галактики составляет около 100 тысяч световых лет. О событиях на одной из ближайших к нам галактик – туманности Андромеды мы узнаем спустя 1800 тысяч лет. Наконец, от наиболее удаленных от нас объектов – квазаров, обнаруженных на сегодня, радиоволна финиширует у нас приблизительно через 10 миллиардов лет после старта. Таким образом, невообразимо гигантские просторы вселенной, заполненные межзвездным газом, в котором бегут электромагнитные колебания, являются запоминающим устройством с колоссальным временем запоминания. Это память Природы, которая хранит поступающие от редко разбросанных в ней объектов световые и радиоколебания. Время этого хранения прямо пропорционально расстояниям.
В земных экспериментах мы тоже иногда прибегаем к запоминанию или задержке сигналов с помощью расстояний. Для этого используются радиоканалы или проводные каналы связи. Получаемые здесь времена задержки ничтожны – малые доли секунды.
Небесная память имеет более богатый ассортимент: от величины порядка одной секунды (ближайшее небесное тело Луна) до 10 миллиардов лет.
Для нашей проблемы – установление радиоконтакта с иными цивилизациями – наличие этих электромагнитных исторических «сечений» вселенной имеет существенное значение.
Как мы уже отмечали, установление контакта требует перекрытия во времени цивилизаций. Существование же цивилизаций ограничено целым рядом факторов. Поэтому сигналы исчезнувшей до нашего времени цивилизации, казалось бы, полностью потеряны. Но ведь вселенная располагает колоссальными запоминающими устройствами! Если та или иная цивилизация, достигнув высокого развития, искала себе подобных с помощью радиоволн, то даже после ее исчезновения сигналы могут еще находиться в пути. Они могут еще двигаться, как говорят, «в трубах».
Следовательно, есть принципиальная возможность переписать их с небесной памяти на земную (магнитную ленту, фотопленку) и расшифровать. Тут могут быть не только позывные, тут могут быть мысли и опыт пославших их «зеленых человечков».