412 000 произведений, 108 200 авторов.

Электронная библиотека книг » Микель Альберти » Мир математики. т 40. Математическая планета. Путешествие вокруг света » Текст книги (страница 6)
Мир математики. т 40. Математическая планета. Путешествие вокруг света
  • Текст добавлен: 15 октября 2016, 04:08

Текст книги "Мир математики. т 40. Математическая планета. Путешествие вокруг света"


Автор книги: Микель Альберти


Жанр:

   

Математика


сообщить о нарушении

Текущая страница: 6 (всего у книги 8 страниц)

Творческие способности и умения мастеров со всего света заслуживают восхищения как с художественной точки зрения, так и с точки зрения технологий. Паулус Жердес, исследователь этноматематики из Мозамбика, изучил узоры и формы, применяемые мастерами плетения из лозы. Среди геометрических задач, связанных с лозоплетением, выделяется следующая: каким должен быть угол сгиба, если нужно обернуть один прут вокруг другого прута такой же толщины? Ответ – 60° – определяется при помощи тригонометрических расчетов. На практике этот угол определяется складыванием лозы вдвое, как показано на рисунке.


Богатство орнаментов в лозоплетении.


Мячи для игры в сепактакрау

Мячи для игры в сепактакрау во всей Юго-Восточной Азии изготавливаются из ротанга, который также используется для изготовления мебели. Ротанг напоминает ивовый прут, но в сечении эти стебли ротанговой пальмы не округлые, а плоские. Ротанг гибкий, но очень прочный, и сломать его нелегко даже при ударах ногами, как во время игры в сепактакрау.


Мастер демонстрирует мяч для игры в сепактакрау.

Мастера, изготавливающие плетеные мячи, не используют никаких схем и не проводят никаких вычислений, но наблюдая за ними во время работы, сложно поверить, что почти идеальную сферу можно изготовить без помощи математики.

Впрочем, математика все же используется, хоть и не в явной форме.

В математике сфера определяется как множество точек, расположенных на одинаковом расстоянии от точки, называемой центром. Однако при изготовлении мячей для игры в сепактакрау это определение бесполезно. Суть метода плетения идеальных мячей (если пренебречь неизбежными погрешностями и неровностями самого ротанга) заключается не в определении центра и радиуса сферы, а построении многогранника постоянной кривизны. Мастер начинает работу с того, что сплетает пять стеблей ротанга в форме как можно более правильного пятиугольника. Затем мастер выбирает несколько вершин пятиугольника и продевает в них новые стебли. Концы этих стеблей связывают, и получается окружность, определяющая диаметр мяча.

Постепенно по ходу плетения появляются пятиугольные грани – сначала как промежутки между прутьями, которые постепенно заполняются. По сути, полученный мяч по форме представляет собой икосаэдр с отсеченными вершинами – пирамидами с пятиугольным основанием. Разрезав эти пирамиды горизонтально пополам, получим 20 пятиугольных отверстий. Закрыв эти отверстия гранями, имеем полуправильный многогранник – усеченный икосаэдр, имеющий 60 вершин, 90 ребер и 32 грани (20 из них имеют форму шестиугольников, 12 – форму пятиугольников). Именно этот многогранник и плетет мастер. Ротанг распрямляется, и в результате мяч обретает постоянную кривизну. Пересечения трех стеблей из пучков в шесть стеблей определяют 20 шестиугольных граней мяча.

Убедитесь в этом сами.




Шары темари

Японские шары темари имеют китайское происхождение. Изначально их изготавливали из оленьих шкур для придворных, которые использовали темари для игр. Когда придворные дамы начали ткать шары из шелка, темари обрели новую роль и стали использоваться в качестве украшений. Даже проводились конкурсы на лучший шар темари с самым сложным узором и искусным сочетанием цветов.

Искусство плетения шаров темари восходит к 1000 году нашей эры и передается из поколения в поколение, от матери к дочери. Со временем темари становились все более популярными, возникали новые техники их изготовления. С появлением резиновых мячей интерес к темари надолго угас, но сегодня это традиционное искусство вновь обрело былую популярность, и в Японии даже организованы специальные общества, посвященные темари.


Японские шары темари.

В центре темари находится шар из пенопласта или мягкого пластика, куда удобно втыкать булавки. Узоры на ткани шаров преимущественно геометрические и отличаются невероятной сложностью.

При изготовлении шаров темари очень полезной оказывается раздвоенная линейка в форме буквы с углом раствора в 72°, которая, по сути, представляет собой две линейки с соединенными концами. Этот инструмент нужен потому, что большинство узоров темари представляют собой замощения сферы, основанные на додекаэдре. Это означает, что мастерам нужно работать с правильными пятиугольниками и системой из пяти радиальных осей. Если мы разделим полный круг (360°) на пять частей, то получим угол раствора линейки – 72°.

Одна из первых задач, которую требуется решить при изготовлении темари, касается разделения поверхности шара на восемь равных частей. Для этого нужно воспользоваться основным различием между плоскостью и криволинейной поверхностью, то есть сферой. На плоскости сумма углов треугольника всегда равна 180°, а на сфере она может составлять 270°.

Поверхность темари делится на восемь частей следующим способом. Сначала на шаре булавкой отмечается произвольная точка. Затем вокруг шара оборачивается лента так, что она проходит через отмеченную точку дважды. Далее эта точка отмечается на ленте, и лента обрезается. Так определяется длина окружности шара. Теперь лента складывается пополам так, и на ней отмечается место сгиба. Затем лента сгибается еще раз, и метки ставятся на каждой из ее половин. Таким образом отметки на ленте указывают ее четверть, половину и три четверти длины.

Теперь нужно приколоть ленту к шару булавкой и обвязать ее вокруг шара. Воткнем в шар еще одну булавку посредине ленты. Эта булавка укажет «южный полюс», предыдущая – «северный полюс». Повернув шар так, чтобы лента располагалась перпендикулярно оси, проходящей через полюса, воткнем булавки туда, где находятся отметки на ленте. Таким образом, в шар будет воткнуто в общей сложности шесть булавок, которые укажут вершины шести равносторонних сферических треугольников. Однако углы этих треугольников будут равны не 60, а 90°. На поверхности сферы углы равносторонних треугольников прямые. Три перпендикулярные оси (большие круги), определяемые этими шестью булавками, делят поверхность сферы на восемь равных частей.


Эти оси могут стать основой для простого узора из цветных нитей. Отметив другие меридианы или параллели, мы разделим сферу на большее число частей, как показано на фотографии слева на стр. 115. В узоре на этом шаре выделен экватор шара, а из полюсов проведены меридианы так, что образуется 24 двуугольника (по 12 каждого цвета) в 15° каждый. Остальные два шара, изображенные на фотографии, разделены на пятиугольные грани, подобные додекаэдру.

Основой для узора на шаре темари может быть не только додекаэдр, но и любое другое платоново тело.

* * *

МУЗЫКА ГАМЕЛАНА

Гамеланы, народные оркестры островов Бали и Ява (Индонезия), состоят из одного или двух больших гонгов, двух барабанов, как минимум четырех пар тарелок, двух групп маленьких гонгов по 8-14 в каждой и флейт. Наиболее характерная секция гамелана – металлические ксилофоны разных размеров, состоящие из 7-12 брусков, на которых играют специальными молоточками.



Композиции, исполняемые гамеланами, делятся на ярко выраженные циклические секции, описываемые степенями двойки. Эти секции состоят из 2, 4, 8, 16 или 32 тактов. Степени двойки также определяют скорость исполнения: орнаментирование исполняется в 4 или 8 раз быстрее основной мелодии, а та, в свою очередь, в 4 или 8 раз быстрее, чем упрощенные версии мелодии. Удвоение скорости исполнения способствует сохранению ритма и придает музыке характерную динамичность.

* * *

Салфетки и оригами

Во всех ресторанах крупнейшего архипелага мира, Индонезии, бумажные салфетки складывают особым образом. В любом индонезийском варунге салфетки складываются своим способом, но официантки во всех ресторанах, от запада Суматры до востока Папуа, умеют складывать салфетки в характерном индонезийском стиле.


Стол в индонезийском варунге.


Схема складывания салфеток в трех разных кафе.

Квадратная салфетка складывается так, что линии сгиба делят прямой угол при одной из ее вершин на три равные части. Таким образом получается симметричный четырехугольник с прямым углом, углом в 30° и двумя углами в 120°.


Салфетка, сложенная в индонезийском стиле.

Долгое время я думал, что официанты складывают салфетки так же, как я, то есть прикладывают угол салфетки к середине противоположной стороны:


Схема складывания салфетки, в которой угол накладывается на серединный перпендикуляр так, что нижняя вершина остается на своем месте.

Получится прямоугольный треугольник. Один из его катетов равен половине гипотенузы, следовательно, угол этого треугольника равен 30°. Когда мне довелось увидеть, как официантки складывают салфетки, я решил, что мое предположение справедливо – они явно прикладывали угол салфетки к середине противоположной стороны.

Однако я ошибался. Расспросив официанток, я понял, что они в самом деле применяли геометрический метод, но далекий от моих предположений, – они старались согнуть салфетку так, чтобы разделить угол при вершине в соотношении 1:2. Вместо того чтобы прикладывать угол салфетки к середине противоположной стороны, они прикладывали сторону к центру салфетки, не складывая ее. Иными словами, они проводили биссектрису оставшейся части угла, полученного при сгибе. Этот метод был внешне неотличим от моего, и я смог понять разницу, только тщательно расспросив официанток.

Математическая идея, на которой основан этот метод, такова: 3 = 1 + 2. Обозначив через R оставшуюся часть угла, полученного при сгибе А, получим:

90° = R + 2·A.

Так как мы хотим, чтобы согнутый угол совпадал с оставшимся углом, прямой угол салфетки окажется разделен на три части:

Проекция математических идей заключается в том, чтобы при помощи математики объяснить события, которые необязательно имеют математическую природу либо действительно описываются математически, но не так, как кажется. Не стоит пытаться математически объяснить мысли и действия других людей, иначе легко попасть в неловкое положение: человек, который нам покажется несведущим в математике, может оказаться гораздо более компетентным, чем многие вокруг.

Глава 5
Этноматематика в повседневной жизни

Народная логика

Даяки (Борнео)

Альфред Рассел Уоллес был британским натуралистом, который в середине XIX века объехал Малайский архипелаг. Современник Дарвина, Уоллес изучал флору и фауну Зондских островов и разработал теорию эволюции, весьма схожую с дарвиновской. Его труд «Путешествие на Малайский архипелаг» представляет собой одновременно отчет о результатах исследования и документальное свидетельство о жизни и обычаях некоторых племен и народов региона. Встречи с местными жителями, описанные натуралистом, помогают понять некоторые способы их мышления.

Уоллес упоминает о встрече с членами племени даяков, жившего во внутренней части острова Борнео. В то время охота за головами была чрезвычайно распространенным обычаем среди племен Юго-Восточной Азии, но туземцам были не чужды доверие и честность. Сегодня в Юго-Восточной Азии, особенно в Малайзии, Таиланде и Индонезии, достаточно часто местные жители утвердительно отвечают на вопросы, если не знают на них ответа. Уоллес отмечает, что получить от даяков точную информацию и узнать их личное мнение было непросто. Даяки считали: если они скажут, что чего-то не знают, то случайно могут солгать! Следовательно, в разговоре с даяками крайне важно знать, известен ли им предмет разговора.


Полный подсчет (Индонезия)

Уоллес посвящает целую главу рассказу о том, как раджа острова Ломбок (входит в архипелаг Зондских островов) проводил перепись населения. С точки зрения математики перепись заключается в том, чтобы установить взаимно однозначное соответствие между натуральными числами и жителями области или региона – сосчитать их. Раджа хотел определить, сколько у него подданных, причем ему нужна была не статистическая оценка, а именно точное количество. Размер податей на Ломбоке зависел от численности населения, при этом налог должен был уплатить каждый житель острова, так что раджа хотел знать, сколько денег он получит от подданных.

Он повелел найти способ, чтобы люди пересчитали себя сами, и от переписи не скрылся бы никто. При этом раджа понимал: нельзя просто приказать членам всех семейств пересчитать друг друга. Перепись нужно было провести так, чтобы люди не догадались, что это перепись, и тем более не поняли, для чего она нужна, – только так можно было обеспечить точность результатов.

Раджа решил воспользоваться культурным контекстом. Он созвал всех вождей, священников и князей и сообщил им, что видел во сне великого духа вулкана. Тот велел, чтобы раджа по горным тропам поднялся к вершине вулкана и получил там весть от духа. Так и было сделано. Раджа отправился на встречу с духом, а процессия из знатных вельмож ожидала его у подножия. Спустя три дня правитель вернулся и передал вождям и жрецам слова духа.

Тот предвещал, что населению острова угрожают ужасная чума и болезни, и для спасения нужно точно следовать указаниям духа. Дух приказал изготовить двенадцать священных крисов (кинжалов с волнистым клинком, распространенных в Юго-Восточной Азии) – по числу деревень. Для изготовления клинков каждая деревня должна прислать пучок серебряных игл – по одной игле на человека.

В случае если деревню поразят болезни, раджа отправит туда выкованный для нее крис. Если число присланных игл действительно соответствовало количеству жителей, болезнь немедленно отступит, но если деревня прислала неточное число игл, священный кинжал окажется бессильным. Так и было сделано. Когда на какую-то из деревень обрушивалась беда, жителям посылали один из священных кинжалов.

Если несчастья прекращались, значит кинжал возымел силу. Если же беды продолжались, значит люди выслали радже неверное число иголок.

Нет никаких сомнений, что точность результатов переписи удалось обеспечить благодаря знаниям местных верований и посредством косвенных угроз. Свою роль сыграла и логика, согласно которой невиновные объявлялись виноватыми: если все было хорошо, это была заслуга божества, если же дела шли плохо, в том была вина человека. В этом случае люди оказывались виновны в том, что неверно провели подсчеты.

Народ кайова (США)

Североамериканские индейцы известны во всем мире благодаря знаменитым вестернам. В культуре белого человека люди считаются хозяевами земли, на которой живут, царями природы, которую они меняют, как им захочется. Мир и Вселенная в некотором роде находятся в распоряжении человека и должны подчиняться его желаниям. В культуре индейцев мир воспринимается совершенно иначе. С их точки зрения человек принадлежит миру и земле, а его отношения со Вселенной должны быть гармоничными и равноправными. Животные, холмы и долины, реки и озера – все наделено жизненной силой, которую следует уважать. Природа священна и заслуживает высочайшего почтения.

Значит ли это, что логика белого человека и логика индейца отличаются? Возможно, что в некоторых аспектах это и в самом деле так, однако различные философские взгляды необязательно означают различия в логике. Далее приведена адаптированная версия рассказа индейцев кайова об одном любопытном персонаже-обманщике, которого мы назовем С.

С. повстречался с неизвестным Икс. Тот сказал С.:

– Я тебя не знаю. Но я о тебе слышал. Ты – тот, кто всех обманывает.

– Да, это я. Но я оставил снадобья дома и не могу обмануть тебя.

– И что с того? Если ты обманщик, то можешь обмануть меня и без твоих снадобий.

– Нет, без них не могу. Были бы они у меня с собой, я бы обманул тебя. Если хочешь, одолжи мне коня, я отправлюсь на поиски, найду снадобья, вернусь и обману тебя.

– Я одолжу тебе коня. Но ты должен вернуться со снадобьями.

С. вскочил на коня и поскакал вдаль. Отъехав подальше, он незаметно ударил коня, чтобы тот остановился.

С. вернулся к Иксу и сказал:

– Твой конь не хочет скакать. Быть может, он меня боится? Одолжи-ка мне свою шляпу.

Икс одолжил ему шляпу, но конь вновь остановился. Тогда С. сказал Иксу:

– Этот конь меня боится. Дай-ка мне твою куртку.

Затем С. таким же манером выпросил у индейца попону и кнут. Отъехав подальше, С. обернулся и сказал Иксу:

– Я забрал все твои вещи. Я уже обманул тебя, и мне не нужно никакого снадобья.

Этот рассказ вполне можно считать лекцией по логике. Проанализируем некоторые выражения с точки зрения формальной логики. Начнем с того, что дадим определение обманщику. Если лжец – это тот, кто никогда не говорит правду, то обманщик иногда говорит правду, а иногда – нет. С. говорит правду, когда признается, что обманывает всех, но лжет, когда говорит, что ему нужно снадобье и что он оставил его дома.

Противоречит ли это тому, что С. говорит дальше, то есть что без снадобий он не может обманывать? Это логическая импликация:

р: нет снадобья => q: не могу обманывать.

Составив таблицу истинности для этой импликации, мы увидим, что ее результатом всегда будет «истина», за исключением одного случая – когда предпосылка верна (1), а следствие ложно (0).


Икс, собеседник С., по-видимому, знает об этом, когда говорит, что для обмана не нужно никакого снадобья, то есть импликация, выраженная С., ложна. В этом и состоит суть рассказа и его логики. С., тем не менее, настаивает, что без снадобий он не может обманывать. Доверчивость Икса становится причиной дальнейших событий.


Родственные отношения

Симметрия проявляется не только в том, что можно увидеть. Она неявно присутствует и в жизни общества, особенно в отношениях родства или свойства. Равенство людей, связанных родственными отношениями, нельзя понять без симметрии. Отсутствие симметрии в отношениях между родителями и детьми определяет их социальное неравенство. Если А – отец или мать В, то В не может быть отцом или матерью А. Для братьев и сестер подобное отношение не выполняется: если X – брат или сестра Y, то – брат или сестра X. Братья и сестры принадлежат к одному и тому же поколению, а следовательно, их предки и остальные члены общества, по крайней мере предположительно, должны обращаться с ними одинаково: в равной мере предоставлять им приют, питание и поддержку, обучать, наделять их правами и обязанностями.

В академической математике отношения изучаются потому, что на их основе определяются социальные классы. Члены класса характеризуются наличием общих черт. Рассмотрим в качестве примера отношение, определяемое выражением «старше, чем». Допустим, что субъект А связан с субъектом В, и запишем А ~ В, что означает «А старше В». Какими свойствами обладает это отношение? Начнем с того, что ответим на вопрос: связан ли субъект А сам с собой? Иными словами, выполняется ли отношение

А ~ A?

Нет, так как человек не может быть старше самого себя. Это отношение не обладает рефлексивностью. Если субъект А связан с субъектом В, то связан ли В с А?

Иными словами, если А ~ В, то В ~ А?

Это также неверно, так как если «А старше В», то не может быть, что «В старше А». Следовательно, это отношение не является симметричным. Если субъект А связан отношением с В, а тот – с субъектом С, что можно сказать об отношении между первым и третьим субъектами? Верно ли, что если А ~ В и В ~ С, то А ~ С?

На этот раз ответ – да, так как если «А старше В» и «В старше С», то «А старше С», таким образом, отношение обладает транзитивностью. Можно сделать вывод: отношение «старше, чем» не является рефлексивным и симметричным, но обладает свойством транзитивности.

Пример рефлексивного, симметричного и транзитивного отношения – отношение «быть одного возраста с». Оно очевидно обладает рефлексивностью, так как любой человек будет одного возраста с самим собой. Оно симметрично, так как если А одного возраста с В, то В одного возраста с А. Оно также транзитивно: если А одного возраста с В, а В одного возраста с С, то А и С одного возраста.

Большинство отношений, обладающих рефлексивностью, симметричностью и транзитивностью, являются отношениями эквивалентности, поэтому совокупности субъектов или элементов, связанных такими отношениями, называются классами эквивалентности.

Классы эквивалентности – это то, с чем каждый день имеют дело все люди (хотя при этом они используют не термины, а обычные слова). Когда мы говорим «яблоко», то имеем в виду вид фруктов, но говорим о нем как о классе эквивалентности на множестве всех фруктов. Если мы говорим «ранетка», то имеем в виду класс эквивалентности на множестве яблок. «Является яблоком» и «является ранеткой» – отношения эквивалентности на множестве фруктов и яблок соответственно.

Существуют ли отношения эквивалентности среди родственных связей? В следующей таблице приведены свойства, которыми обладают отношения кровного родства и свойства (выделены серым цветом). Пол людей в таблице не учитывается, то есть отношения «является братом» и «является сестрой» равнозначны.


Так как никакое из этих отношений не обладает всеми тремя свойствами, то ни одно из них не является отношением эквивалентности. Ближайший кандидат – отношение «быть братом»: оно симметрично и транзитивно, но не обладает рефлексивностью.

В нашей культуре геометрической моделью структуры родства является генеалогическое дерево. На нем изображены отношения кровного родства и брака. На следующем дереве браки обозначены горизонтальными линиями.


Отношения между дедами, отцами, сыновьями и внуками, связывающие разные поколения, составляют вертикальную ось системы. Отношения кровного родства на уровне каждого поколения, то есть отношения, обозначенные на схеме горизонтальными линиями, – это связи между родными и двоюродными братьями и сестрами. Отношения свойства – это связи между супругами и их родственниками.

Совокупность отношений кровного родства и свойства определяет другие отношения, которые на генеалогическом древе обозначены диагоналями. Это родственные связи между дядьями и племянниками, тестями, тещами, невестками и зятьями.

Если говорить о поле, наша система обладает двойственностью в том смысле, что в несимметричных отношениях (таких большинство) присутствуют дополняющие элементы. В отношениях между родными и двоюродными братьями и сестрами, между супругами и их родственниками дополняющие элементы необязательны. Если А – родной или двоюродный брат, супруг или родственник супруга В, то В – родной или двоюродный брат, супруг или родственник супруга А. Но в асимметричных отношениях дело обстоит иначе:

дед – внук

отец – сын

тесть – зять

дядя – племянник.

Генеалогическое древо – геометрическая модель отношений родства в том виде, в каком они понимаются в нашей культуре. Теперь составим алгебраическую модель отношений кровного родства (за исключением родных и двоюродных братьев, дядей и племянников), охватывающую пять поколений (деды, отцы, наше поколение, дети и внуки). Представители различных поколений обозначены числами: 0 обозначает поколение, к которому принадлежит читатель, отрицательные числа – предшествующие поколения (-1 – отцы, – 2 – деды), положительные числа – последующие поколения (1 – дети; 2 – внуки).

Будем предполагать, что читатель принадлежит к поколению 0. Тогда операция (—1) * (1) означает «дед моего внука», то есть я, то есть 0. Проведя аналогичные рассуждения, заполним таблицу.


Операция *, определенная в этой таблице, эквивалентна сумме цифр в соответствующем столбце и строке. Композиция отношения с самим собой обозначается символом (°) и может представлять собой исходное либо какое-то другое отношение.

Отец ° отец = дед.

Сын ° сын = внук.

Брат ° брат = брат.


Родственные отношения народа варяпири (Австралия)

Варлпири – аборигены, живущие в Австралии. Сложная структура их родственных отношений определяет модели поведения, взаимоотношений, общественной и политической организации, а также проведение ритуалов. Для варлпири, как и для других народов, все сущее связано между собой в единой картине мира, определенной мифологическими предками, которые сотворили горы и реки, флору и фауну и дали всему названия. Предки варлпири также указали, что является священным и какие ритуалы и церемонии следует проводить.

Структура родственных отношений варлпири описывается рядом правил. Каждый абориген принадлежит к одной из восьми групп. Так, группа, к которой принадлежат дети от брака, отличается от групп, к которым принадлежат родители, и определяется по материнской линии. Если мы обозначим группы числами от 1 до 8, то дочь женщины из группы 4 будет принадлежать группе 2, ее дочь – группе 3, дочь последней – группе 1. Аналогично определяются взаимосвязи между группами 5, 6, 7 и 8. Следовательно, по материнской линии существует два непересекающихся цикла четвертого порядка, {1, 4, 2, 3} и {3, 7, 6, 8}.


Циклы, определяемые по материнской линии в структуре родственных отношений австралийских аборигенов варлпири.

Еще одно правило заключается в том, что браки не могут заключаться в пределах одной группы. В следующей геометрической модели структуры родства браки обозначены пунктирными линиями.


Браки в структуре родственных отношений варлпири.

Так как группы, к которым принадлежат мужчины, определяются на основе женских, то если мужчина из группы 1 женится на женщине из группы 5, их сын будет принадлежать к группе 7. Следовательно, он женится на женщине из группы 3, а сын от их брака вновь будет принадлежать к исходной группе 1. По отцовской линии определено четыре цикла второго порядка: {1, 7}, {2, 8}, {3, 6} и {4, 3}.


Циклы, определяемые по отцовской линии в структуре родственных отношений варлпири.

Таким образом, имеем два цикла четвертого порядка по материнской линии и четыре цикла второго порядка по отцовской линии, которые в сумме охватывают все восемь групп структуры родственных отношений. Упомянутые восемь групп могут объединяться разными способами и образовывать множества, для которых определяются различные аспекты жизни в обществе. К примеру, группы, описывающие права наследования, отличаются от групп, описывающих допустимые браки или объединения для проведения каких-либо работ.

Формальное математическое описание этой структуры есть не что иное, как практическое применение понятия, которое в теории групп называется группой изометрии восьмого порядка. Чтобы проиллюстрировать эту идею, покажем, как изометрии квадрата образуют группу изометрии восьмого порядка.

Изометрия – это преобразование, не изменяющее форму и размер объектов.

На плоскости определены три изометрических преобразования: параллельный перенос, поворот и отражение (осевая симметрия). Параллельный перенос попросту меняет положение фигуры, поворот заключается во вращении фигуры вокруг неподвижной точки, называемой центром, отражение представляет собой осевую симметрию относительно отрезка. Какие из этих преобразований можно применить к квадрату так, чтобы результат преобразования совпадал с исходной фигурой?

Наименьший угол поворота, при котором квадрат остается неизменным, равен 90°. Такой поворот представляет собой преобразование четвертого порядка:

* * *

ГЕОМЕТРИЯ В ИЗМЕРЕНИИ ПРОСТРАНСТВА И ВРЕМЕНИ

Осознаем ли мы что-то так же четко, как ход времени? Сегодня время измеряется в секундах, минутах, часах, днях, месяцах, годах и единицах, кратных и дробных указанным. Не так давно расстояния также измерялись по времени в пути. Для измерения интервалов времени меньше дня или ночи мореплаватели изготавливали различные приспособления. Одним из них был пустой кокос с небольшим отверстием в нижней части. Кокос помещался в таз с водой, постепенно наполнялся и полностью погружался в воду примерно за один час.

Еще одно из таких устройств применяется до сих пор – это песочные часы. В идеальном варианте песчинки падают одна за другой через узкое отверстие, соединяющее два стеклянных конуса. Это наводит на мысли о времени как о дискретной величине, которую можно измерить отдельными песчинками. Однако мы представляем время как непрерывную величину, которая описывается движением радиуса окружности, закрепленного одним концом в ее центре. Измерение времени тесно связано с окружностью и ее делением на 60 частей. Эту систему мы унаследовали от народов Месопотамии и используем как для определения времени, так и для ориентирования в пространстве.

* * *

если мы выполним его четыре раза, то любая фигура вернется в исходное положение.

Если мы обозначим его через (тождественное преобразование), то четыре возможных поворота будут обозначаться так: G41, G42, G43 и G44I. Квадрат также остается неизменным при отражении (зеркальной симметрии) одного из следующих видов: (а) вертикальном; (Ь) горизонтальном; (с) относительно восходящей диагонали; (d) относительно нисходящей диагонали. Все эти виды симметрии имеют порядок, равный двум: если мы применим их дважды к одной и той же фигуре, то получим исходную фигуру. Обозначив через S указанные разновидности зеркальной симметрии, получим: SH, SF, SD1 и SD2. Композиция любого из этих преобразований с самим собой будет тождественным преобразованием I:

Sн°SнI, Sv°SvI, SD1°SD1 = I у SD2°Sd2  = I

Все подобные преобразования будут принадлежать группе восьмого порядка, и в этом – их сходство со структурой родственных отношений у варлпири. Два цикла четвертого порядка по материнской линии соответствуют поворотам четвертого порядка, четыре цикла второго порядка по отцовской линии – четырем видам зеркальной симметрии, также второго порядка.

Возможно, варлпири не знают, что их структура родственных связей соответствует объекту, который в западной математике называется группой изометрии восьмого порядка. Однако варлпири определили аналогичное понятие самостоятельно и выстраивают социальные, политические, религиозные и родственные отношения в соответствии с ним. Конечно, система отношений варлпири не является результатом практического применения западной математики. Аборигены использовали эту изометрическую систему задолго до того, как на западе были описаны подобные отношения.


Равновесные ставки

Азартные игры существуют во всех культурах и представляют собой один из видов социального взаимодействия. Ставки делаются на один из множества возможных исходов некоторого события, которое, по крайней мере отчасти, является случайным, то есть его результат нельзя достоверно предсказать заранее. К подобным событиям относятся скачки, игра в кости и множество других азартных игр. Сам факт участия в игре означает, что игрок знаком с ее правилами и ограничениями и, кроме того, понимает, что исход игры является случайным. Именно элемент случайности так привлекает к игре людей. Большие суммы выигрываются при ставках на исходы, маловероятные как в математическом, так и в социальном смысле (когда никто или почти никто не ставит на такой исход).


    Ваша оценка произведения:

Популярные книги за неделю