Текст книги "Мир математики. т 40. Математическая планета. Путешествие вокруг света"
Автор книги: Микель Альберти
Жанр:
Математика
сообщить о нарушении
Текущая страница: 5 (всего у книги 8 страниц)
Следовательно, две стороны, сходящиеся в вершине, перпендикулярны – это отличительное свойство квадрата.
Из таких же полосок меньших размеров, подготовленных должным образом, изготавливается множество узоров, которые прилагаются к подношениям. Они также образованы из геометрических фигур, а некоторые из них напоминают цветы и складываются посредством сгибов и поворотов полосок на одинаковые углы.
На рисунках ниже показан процесс изготовления посуды из прямоугольника, вырезанного из бананового листа. Длина этого прямоугольника должна быть примерно в два раза больше его ширины. На нем отмечаются центр и серединный перпендикуляр, после чего прямоугольник складывается так, что его нижние углы накладываются друг на друга. В результате верхняя сторона приобретает форму кривой и образуется «карман», куда и складываются подношения.
Серединный перпендикуляр, отмеченный на прямоугольном банановом листе формата 2:1.
Первый сгиб вдоль диагонали прямоугольника.
После второго сгиба вдоль диагонали получается конверт, куда вкладываются подношения.
Иными словами, нужно согнуть прямоугольник вдоль нижних частей двух диагоналей, как показано на рисунке ниже. Так как в полученном прямоугольном треугольнике один катет в два раза длиннее другого, тангенс угла сгиба будет в два раза больше соотношения между катетами.
Однако описанный способ далеко не единственный, и в зависимости от местных обычаев или способностей мастера посуда может принимать самую разную форму. Кроме того, подобным образом складывается не только посуда, но и декоративные украшения, например спираль из тонких волокон листьев. Четыре сплетенных волокна, которые образуют спираль, изображенную на фотографии, имеют ширину 3 мм.
Ее витки направлены вокруг оси. Спираль опирается на ось только в начальной и конечной точке. Углы при вершинах спирали почти прямые и образуются скручиванием волокна на пол-оборота до сгиба. Волокна листьев переплетены, как показано на следующей схеме. Угол а определяет угол между двумя последовательными вершинами (он равен 180° – α) и число секторов на каждом обороте спирали.
Будем повторять аналогичные действия, и поверхность примет следующий вид.
Плетеная спираль, вид сверху.
В Японии верующие вешают у входов в синтоистские святилища и алтари деревянные таблички, на которых записывают свои пожелания и просьбы. Студенты просят об успешной сдаче экзамена, семьи и супружеские пары – о счастливом браке, а коммерсанты – об удаче в делах.
В XVII–XVIII веках в Японии можно было видеть удивительный математический феномен: на алтарях вешались сайгаку – большие деревянные таблички с математическими задачами, как правило по геометрии. Одни из них были простыми, другие, напротив, очень сложными. Эти задачи придумывали и решали монахи, самураи и представители других социальных групп. Древнейшая сайгаку датирована 1691 годом и хранится на алтаре Гион в городе Киото. Последняя сайгаку была найдена в 2005 году в алтаре Убара в городе Тояма и датируется 1879 годом.
Хотя задачи сайгаку решаются по большей части евклидовыми методами, сами эти таблички как разновидность неакадемической математической деятельности, связанная с культурной традицией, подтверждают важность культурного контекста, в котором сплавляются воедино математика и творчество. При этом сама творческая деятельность, то есть формулировка задач и поиск решений, носит ярко выраженный этноматематический характер.
Таблички у входа в храм Хида Кокубундзи в Такаяме.
Чаще всего в сайгаку речь идет о вписанных геометрических фигурах. К примеру, требуется определить отношение радиусов трех окружностей, касающихся друг друга и вписанных в еще одну, большую окружность; определить размеры квадратов, вписанных в равносторонний треугольник; вписать ряд окружностей в эллипс или ряд сфер в большую сферу.
В 1781 году Фудзита Садасуке написал книгу «Математика в деталях» и помог своему сыну Каджену подготовить первую книгу, посвященную сайгаку. Она получила название «Священная математика» и была опубликована в 1789 году. В книге Фудзиты Садасуке приведен простой вариант задачи, где нужно найти расстояние между двумя точками, в которых окружности, касающиеся друг друга, касаются прямой.
Обозначив радиусы окружностей через R и r, искомое расстояние – через d и применив теорему Пифагора, имеем:
(R – r)2 + d2 = (R + r)2 => d = √(R·r)
Интерес вызывает не задача сама по себе, а ее связь с пифагоровыми тройками.
Тройка целых чисел называется пифагоровой, если эти числа удовлетворяют теореме Пифагора, то есть квадрат одного из них равен сумме квадратов двух других. К примеру, пифагоровыми являются тройки (3, 4, 3), (6, 8, 10), (5, 12, 13) и (119, 120, 169). Пифагорова тройка называется примитивной, если два меньших числа в ней взаимно простые. Примитивными являются тройки (3, 4, 3), (5, 12, 13) и (119, 120, 169), но не (6, 8, 10), так как 6 и 8 – четные числа.
В еще одной задаче из книги Садасуке требуется доказать, что тройка чисел (а, b, с) пифагорова, если p и q одновременно не являются нечетными и удовлетворяют следующим соотношениям:
а = 2pq
b = p2 – q2
c = p2 + q2.
Значение а очень похоже на ответ к предыдущей геометрической задаче. Чтобы значение а было ответом к предыдущей задаче, необходимо, чтобы квадратные корни радиусов R и r были целыми числами. Допустим, что это в самом деле так: R = р2, r = q2. Предположим, что разность R – r равна другому целому числу, s.
Тогда следующая тройка чисел будет примитивной пифагоровой тройкой:
2pq = d
р2 – q2 = R – r
p2 + q2 = R + r.
Таким образом, алгебраическая задача о пифагоровых тройках эквивалентна геометрической. По всей видимости, таков традиционный японский метод определения примитивных пифагоровых троек. Наконец, еще в одной задаче требуется найти все примитивные пифагоровы тройки для радиуса r <= 41. Решения этой задачи таковы:
(3, 4, 5), (5, 12, 13), (8, 15, 17), (7, 24, 25), (12, 35, 37), (20, 21, 29), (9, 40, 41).
Если мы построим между двумя описанными выше окружностями еще одну, то получим интересную задачу – она приводится в сайгаку 1873 года, подвешенной на алтаре Катаямахико в префектуре Окаяма. Каким отношением связаны радиусы трех окружностей, касающихся друг друга и прямой, на которую они опираются?
И вновь к решению нас приведет теорема Пифагора. Пусть радиусы окружностей удовлетворяют соотношению r1 > r2 > r3 которое мы узнаем, применив теорему Пифагора. Для этого выделим треугольник, образованный вершинами окружностей и радиусами, которые проведены к общей касательной к окружностям.
Мы получим новые прямоугольные треугольники, в которых можно применить теорему Пифагора. Обозначив через d1 и d2 основания прямоугольных треугольников с гипотенузами r1 + r3 и r2 + r3 получим:
(r1+ r2)2 = (r1 – r2)2 + (d1 + d2)2
(r1+ r3)2 = (r1 – r3)2 + d12
(r2 + r3)2 = d22 + (r2 – r3)2
Выразив d1 и d2 из второго и третьего равенства и подставив полученные выражения в первое равенство, имеем:
Полученное соотношение является двойственным к теореме Пифагора, что можно заметить, записав квадратные корни как степени с дробным показателем:
Как найти значения трех радиусов, удовлетворяющих этому соотношению?
Имеет ли задача тройки целых или рациональных решений? Если мы рассмотрим числа, обратные квадратам натуральных чисел, то получим окружности, обладающие следующими свойствами:
Они будут иметь вид, представленный на рисунке.
Божественные розы
Соприкасающиеся окружности стали источником вдохновения не только для средневековых японских монахов и самураев, но и для архитекторов европейских готических соборов. Эта композиция, в которой главная роль отведена кругу, представляет собой символ христианства той эпохи. Важнейший элемент художественной выразительности в готике – роза и различные решетки. Их узоры представляют собой огромный круг диаметром несколько метров, в который вписаны другие круги и ряды окружностей. В большинстве случаев все эти фигуры соприкасаются между собой, а также касаются большого круга. Роза в церкви Санта-Мария-дель-Пи в Барселоне составлена из кругов, куда вписаны четыре соприкасающихся круга, которые также касаются круга, описанного вокруг них.
Фрагмент розы в церкви Санта-Мария-дель-Пи в Барселоне.
Все элементы этих геометрических роз имеют свое символическое значение. Оригинальные рисунки и витражи соборов на протяжении веков не раз реставрировались, и лучше всего дух оригинала удалось сохранить в Шартрском соборе и соборе Парижской Богоматери. Женское начало традиционно связывается с ночью, Луной, прошлым и оттенками синего цвета. В Шартрском соборе женское начало представлено в розе на северном фасаде, в центре которой изображена дева Мария. Мужское начало, напротив, связывается с южной стороной, Солнцем, настоящим, желтым и красным оттенками. Именно поэтому изображение Христа в Царствии Небесном расположено в центре розы на южном фасаде собора.
Геометрия также составляет основу символических изображений персонажей.
Подобие форм или пропорции указывают на связи между деталями изображений, в которых каждый элемент играет свою роль. Не случайно и то, что розы делятся на 6, 8, 12, 16 или 24 круговых сектора или же представляют собой последовательность концентрических окружностей.
В испанском городе Сабадель в провинции Барселона есть мастерская, которая занимается исключительно витражами в свинце. Сначала мастера выполняют рисунок на бумаге в масштабе 1:10, а затем изготавливают витраж в натуральную величину. Раньше переход от чертежей к витражам выполнялся на глаз и при помощи пантографа, но сегодня в этом процессе используются новые технологии. Проектор позволяет воспроизвести выполненные на бумаге непрозрачные фигуры в натуральную величину на другой плоской поверхности.
Чтобы придать витражам желаемую форму, между соседними стеклами нужно оставлять зазор в 1,2 мм. Вместо того чтобы проводить линию с нужным зазором параллельно контурам фигуры, мастера используют ножницы с тройным лезвием, и необходимый зазор получается автоматически.
Ножницы с тройным лезвием обеспечивают нужный зазор постоянной ширины в 1,2 мм.
Два элемента рисунка соединяются с нужным зазором в 1,2 мм.
Перенос кривых также осуществляется автоматически с помощью гибкого лекала – резиновой полоски с металлическим сердечником, сохраняющей придаваемую ей форму. Гибкое лекало позволяет легко преобразовать дуги окружностей объемных фигур в отрезки той же длины на плоскости.
Гибкое лекало сохраняет придаваемую ему форму.
Еще одна геометрическая задача, с которой сталкиваются витражисты, заключается в воспроизведении пропорциональных кривых. Эта задача решается при помощи циркуля, как показано на следующей странице. Кривые пропорциональны, если заключенный между ними отрезок перпендикуляра, пересекающего обе кривые, имеет постоянную длину.
Циркуль указывает расстояние между двумя соответствующими точками пропорциональных кривых.
Циркуль указывает такое же расстояние между двумя другими точками пропорциональных кривых.
Обход кривых, расположенных на одинаковом расстоянии друг от друга, при помощи циркуля.
Пропорциональны ли две параллельные кривые? Параллельны ли две пропорциональные кривые?
В случае с ломаными линиями понятия параллельности и пропорциональности эквивалентны, так как любая ломаная есть часть многоугольника, а стороны подобных многоугольников параллельны. Это же верно и для дуг окружности. В таких случаях мысленное представление параллельных и пропорциональных кривых одинаково. Впрочем, если мы рассмотрим предельный случай, то заметим, что интуитивные представления о параллелизме и пропорциональности отличаются. К примеру, две следующие кривые параллельны в том смысле, что перпендикуляр, проведенный к первой из них в любой ее точке, будет перпендикуляром и ко второй, а часть этого перпендикуляра, заключенная между кривыми, всегда будет иметь одинаковую длину – иными словами, эти кривые располагаются на одинаковом расстоянии друг от друга. Но ни одна из них не является уменьшенной или увеличенной копией другой, как в случае с пропорциональными кривыми.
Кривая, параллельная данной, не сохраняет углы исходной кривой.
На следующем рисунке можно четко увидеть, чем отличается исходная кривая или ломаная от линии, параллельной ей и расположенной на определенном расстоянии. Существуют две траектории, или кривые, параллельные углу прямоугольника, – внешняя и внутренняя. На внешней траектории угол исчезает, на внутренней образуется петля.
Внутренняя и внешняя параллели углу прямоугольника.
Продолжение описанной выше задачи можно увидеть в решетке церкви Сан-Феликс в городе Сабадель: в каждую из четырех внутренних окружностей вписано еще по четыре окружности.
Фрагмент розы в церкви Сан-Феликс в городе Сабадель в провинции Барселона.
Вы видите окружность, в которую вписаны четыре окружности меньшего размера, касающиеся друг друга. Их центры определяют квадрат. В каждую из четырех окружностей вписано еще четыре окружности по такой же схеме. Если мы продолжим неограниченно вписывать окружности по этому правилу, получим последовательность. Общее число окружностей в этой последовательности, С(n), будет определяться как сумма степеней 4:
C(n) = 1 + 4 + 42 + 43 +… + 4n = (4n+1– 1)/3
Однако мастеров интересовало не столько число окружностей, сколько соотношение между их радиусами. Если мы обозначим через R радиус большой окружности, то радиусы r четырех вписанных в нее окружностей будут равны:
2R = 2r + 2r√2 = > r = R/(1 + √2)
Подобная задача приведена в последней из обнаруженных на сегодняшний день сайгаку (мы уже говорили, что эта табличка была найдена в городе Тояма в 2005 году). Задача заключается в том, чтобы определить соотношение между r – радиусами восьми окружностей, расположенных в форме кольца и вписанных в другую, большую окружность, и R – радиусом большой окружности. В обобщенном варианте задачи требуется найти соотношение радиусов в случае, когда в большую окружность вписано не четыре и не восемь, а n окружностей, расположенных в форме кольца. Применив методы тригонометрии, получим решение:
Как видите, в Средние века математическая мысль существовала не только в Старом Свете. Архитектурные стили в самых разных частях мира строятся на диалоге круга и квадрата, поскольку эти геометрические фигуры играют главную роль во всех культовых сооружениях. На основе круга и (или) квадрата, параллельных и перпендикулярных прямых построены египетские пирамиды, вавилонские зиккураты, храмы, мавзолеи и другие религиозные сооружения.
Также на основе квадратов и кругов создаются самые разные трехмерные фигуры – полусферы буддийских ступ в Индии и Непале, увенчанные кубами, ступенчатые пирамиды доколумбовой Америки и даже спираль, устремленная в небо, в исламских мечетях Ближнего Востока.
Способ выражения верований – важнейшая часть культуры. Архитектура придает отношениям человека с богами осязаемую форму, и в религиозной архитектуре особую роль играет математика. В некоторых культурах математика также определяет обряды для верующих всех социальных групп. Например, на острове Бали женщины каждый день изготавливают емкости для подношений богам в форме различных геометрических фигур. При этом островитяне на практике воплощают математические идеи, воспринятые от родителей. Это знания, передаваемые из поколения в поколение, не связаны с формальной академической средой.
Человек, уважающий богов, не действует наобум. Он со всем тщанием подходит и к строительству храмов, и к посуде для подношений – если есть в жизни место совершенству, то именно в сфере религии. В свете всего вышесказанного можно утверждать, что совершенство во всех культурах связывается с геометрией, а математические идеи, созданные в разных культурах и описывающие эту взаимосвязь, объединяются понятием «этноматематика».
Глава 4
Как геометрия делает красивое прекрасным
Нельзя сказать, что использование геометрии само по себе делает вещи красивее. Но в названии этой главы мы хотим подчеркнуть, что во всех культурах высоко ценились качественно сделанные вещи, а качество во многих случаях достигалось именно благодаря математической точности. Именно в этом смысле Эрнст Гомбрих говорит о роли геометрии в искусстве в своей книге «Чувство порядка», посвященной декоративно-прикладному творчеству.
Действуйте геометрически
Аэропорты всего мира за несколько лет превратились в настоящие торговые центры. В них можно найти буквально все: киоски, аптеки, бары, рестораны, магазины часов, одежды, подарков и электроники. Пассажирам, ожидающим вылета, доступны самые разные товары.
Но магазинами дело не ограничивается: в некоторых аэропортах, в частности в сингапурском аэропорте Чанги, пассажиры могут посетить бесплатные выставки.
В одном из вестибюлей аэропорта были установлены панели экспозиции под названием «Go Geometric» («Действуйте геометрически»). В выставке подчеркивалась связь культуры и геометрии. Кроме того, посетителям предлагалось самим создать или воссоздать геометрические узоры, которые можно встретить в образцах архитектуры и декоративно-прикладного искусства народов Азии.
Выставка «Go Geometric» в сингапурском аэропорту Чанги.
На одном из стендов можно было напечатать на бумаге марку с особым узором – бесконечным узлом, одним из символов Будды. Этот узел так назван, потому что представляет собой линию, которую можно провести, не отрывая карандаша от бумаги. Обычно он используется в украшении самых разных предметов – так, его упрощенная версия украшает тарелку, изображенную на иллюстрации.
Стенд выставки в аэропорту Чанги и описи бесконечного узла на бумаге.
Почему этот узел называется бесконечным? Очевидно, потому, что он представляет собой циклическую линию. Если мы пройдем вдоль нее, начиная из любого места, то в конце концов вернемся в начальную точку. Эта линия непрерывная и замкнутая. Форма узла определяется сеткой, на которой он изображен, и расположением самой линии узла относительно сетки.
Две фигуры называются топологически эквивалентными, если одну из них можно получить из другой путем непрерывной деформации (без разрезов), и число отверстий в фигуре при этом не меняется. Так, топологически эквивалентны кольцо и рама картины. Аналогично, топологически эквивалентными являются бесконечный узел, изображенный выше, и следующая фигура. Кроме того, обе эти фигуры обладают осевой симметрией второго порядка (относительно поворота на 180°).
* * *
ТОПОЛОГИЯ
Топология – раздел математики, изучающий формы, но не размеры, то есть не длины, углы, площади или объемы. С точки зрения топологии все объекты мягкие и деформируемые. Если путем непрерывной деформации, то есть без разрезов и склеек, двум объектам можно придать одинаковую форму, такие объекты называются топологически эквивалентными. К примеру, все многоугольники топологически эквивалентны кругу. Это же можно сказать о многогранниках и сфере. Топологически эквивалентными также являются футболка и лист бумаги с четырьмя отверстиями. В топологии определяющим свойством фигуры является число ее отверстий. Кольцо топологически эквивалентно чашке, так как и кольцо, и чашка имеют одинаковое число отверстий, в отличие от стакана, в котором отверстий нет. Точно так же эквивалентными будут ложка и вилка, так как в них нет отверстий.
Цилиндр и кольцо топологически эквивалентны.
* * *
Цикл, обладающий осевой симметрией второго порядка, проходит через три вершины сетки на каждой стороне квадрата. Это же верно и в случае, когда на каждой стороне находится всего одна вершина.
Если число вершин сетки на каждой стороне квадрата четное, имеем другую разновидность цикла, с осевой симметрией четвертого порядка (относительно поворота на 90°).
За исключением случая, когда на каждой стороне располагается всего одна вершина, различные циклы такого типа (обладающие осевой симметрией четвертого порядка) можно определить для любого числа вершин на стороне квадрата, как четного, так и нечетного. Для сетки размером 4 x 4 это будут две вершины, для сетки размером 7 x 7 – три.
Если число вершин сетки на каждой стороне квадрата четное (сетка состоит из нечетного числа клеток), то не существует цикла, проходящего через все вершины и подобного исходному узлу.
Чтобы получить бесконечный узел, проходящий через все вершины сетки, нужно, чтобы число вершин на каждой стороне квадрата было нечетным, или, что аналогично, число клеток сетки – четным.
Теорема 1: Если сетка состоит из четного числа клеток, полученный узел будет бесконечным, подобно исходному, и будет обладать осевой симметрией второго порядка (относительно поворота на 180°).
Теорема 2: Для любого числа клеток сетки n2 при n = 2·k или n = 2·k + 1 определимы k циклов с осевой симметрией четвертого порядка.
Ранее мы показали, что в сетке из 49 клеток (n = 7 = 2·3 + 1) можно определить три цикла, обладающих осевой симметрией четвертого порядка. В сетке из 16 клеток (16 = (2·2)2) можно определить два таких цикла.
Вариации на тему симметрии
Геометрические узоры встречаются повсеместно и практически у всех народов. Первые геометрические петроглифы появились еще в древнейшие времена – их примеры найдены в пещере Бломбос (ЮАР) или в Раскрашенной пещере на Канарских островах (Испания). Узоры, созданные еще до нашей эры в Древнем Египте, Древней Греции и Византии, имеют более формальный характер. Уже в нашу эру римляне использовали геометрические узоры в мозаиках (расцвет этого вида искусства наблюдался в Венеции до начала эпохи Возрождения). В то же время был создан чисто геометрический римско-византийский узор, обладающий самоподобием (в этом он схож с фракталами).
Римско-византийский узор (ок. 700 года).
Основу этого узора составлял квадрат, разделенный на 16 клеток. Диагонали делят каждую клетку на два равнобедренных прямоугольных треугольника. Один из них окрашивался в серый цвет, другой делился на четыре подобных ему треугольника. Один из этих маленьких треугольников окрашивался в светло-серый цвет, три оставшихся вновь делились на четыре равнобедренных прямоугольных треугольника. Далее каждый из этих трех треугольников окружался еще тремя, таким образом получалось 3·3·16 = 9·16 = 144 новых треугольника. Эти действия могли повторяться бесконечно. На каждом этапе число треугольников утраивалось.
Этот узор обладает зеркальной симметрией вида cm, определяемой параллельными осями симметрии вдоль восходящих диагоналей каждой клетки.
Но есть культура, в которой искусство рисования геометрических узоров достигло поистине невероятных высот. Арабские узоры и мозаики встречаются на территории от Марокко до Индии и от Испании до Танзании. Их удивительную симметрию можно увидеть не только в мечетях, дворцах и медресе, но и в гостиницах, аэропортах и на самолетах. Исламские узоры берут начало в арабских узорах, созданных до 1000 года нашей эры.
Арабский узор (ок. 1200 года)
Этот арабский узор, которым можно целиком замостить плоскость, образован повторением шестиугольника с осевой симметрией относительно поворота на 60°. Основу узора составляет сетка из равносторонних треугольников, сочетание которых и образует основную фигуру, или лейтмотив.
Некоторые узоры отличаются тем, что построены на треугольных, а не прямоугольных сетках, поэтому обладают осевой симметрией относительно поворота на 60° и 120°. Прямой угол в узорах также присутствует, но играет второстепенную роль. В исламской культуре геометрия узоров усложнилась с появлением двойных линий – лент, сплетающихся в виде узлов. Эти узоры двумерны, но мастера, умело играя с особенностями нашего восприятия, создают эффект трехмерности. Равносторонние треугольники сетки образуют бесконечное множество составных фигур, среди которых выделяются шести– и двенадцатиконечная звезда, как в архитектурном ансамбле Альгамбра в Гранаде.
Узор в Альгамбре времен династии Насридов (Гранада, Испания, IX век).
* * *
СИММЕТРИЯ И НЕВОЗМОЖНЫЕ МИРЫ
Мы знаем, что стороны улиц наших городов представляют собой параллельные прямые. Но мы не удивляемся, когда видим, как вдали, на горизонте, эти прямые сходятся в одной точке. Из-за особенностей нашего зрения далекие предметы кажутся нам меньше. Сочетание симметрии и технологий может порождать новые миры – невозможные, но отчасти реалистичные. Достаточно взять любую фотографию, отразить ее половину по вертикали или горизонтали и приложить к оригиналу. На двойном изображении мы увидим две параллельные улицы, симметричные друг другу.
Улица в японском городе Канадзава и симметричная ей.
* * *
К сожалению, о том, как были выполнены мозаики Альгамбры, и о том, как строились правильные девятиугольники в то время, известно очень немногое (в XVIII веке Гаусс доказал, что построить правильный девятиугольник при помощи циркуля и линейки невозможно). Остается лишь строить догадки. Впрочем, далее вы увидите, что в некоторых культурах для рисования узоров до сих пор используют те же методы, что и в далеком прошлом.
Индийские орнаменты колам
Каждое утро женщины с юга Индии, особенно из штатов Тамилнад и Керала, проводят у дверей своих домов ритуал: они рисуют на земле рисовой мукой или мелом ряд геометрических фигур, которые затем могут раскрашивать в яркие цвета. Эти фигуры – колам – отличаются большим разнообразием и могут иметь вид как маленьких и простых изображений цветов, так и сложнейших геометрических узоров.
Колам – это не просто искусство. Линии и фигуры в нем обычно строятся на сетке точек, заранее размеченных на земле. Кроме того, колам состоят из меньших фигур, как правило, симметричных и повторяющихся по заданной схеме, которая также определяется формой исходной сетки из точек. На фотографии изображен колам с двумя перпендикулярными осями симметрии, начерченный на основе восьмиугольной сетки из точек.
Женщины рисуют колам в городе Ченнаи, штат Тамилнад (Индия).
Как правило, узоры колам рисуют женщины, вместе с другими работами по дому. Но иногда к ним присоединяются и мужчины – просто для эстетического удовольствия.
Только в одном случае колам должен рисовать мужчина – во время особого ритуала, посвященного богине-матери Бхагавати в штате Керала. Этот ритуал называется Бхагавати севаи, и проводить его может только жрец-мужчина, который и должен нарисовать особый колам – падман (лотос).
Существует два основных вида узоров колам. К первому относятся узоры, подобные изображенному на предыдущей странице. Они состоят из двумерных фигур, заполняющих сетку из точек. Узоры второго типа состоят из одной или нескольких непрерывных линий, которые проходят через все точки сетки и образуют одну или несколько фигур.
Все колам начинаются с построения на земле сетки из точек, расположение которых зависит от свободного места. Колам могут заранее изображаться на бумаге, особенно если речь идет об очень сложных узорах или фигурах больших размеров. Проводить линии, соединяющие точки, нужно без ошибок – исправления не допускаются. Узоры колам не имеют особых названий и обозначаются по принципу подобия – «звезда», «лотос», «кокосовая пальма», «повозка» и так далее. Линии, соединяющие точки, имеют форму восьмерок, или знака бесконечности.
Колам, составленный из элементов меньшего размера, изображенных одной линией.
Сходство со знаком бесконечности не случайно – в этом регионе непрерывные линии подобной формы обозначают бесконечный цикл жизни: рождение, расцвет, увядание.
Тщательно изучив боковые кривые на изображенном выше коламе, мы увидим, в каких случаях их можно изобразить одной линией. Четыре боковые фигуры представляют собой прямоугольники и изображены на сетках точек размерами 2 x 7. Все точки соединены одной линией. Аналогично можно соединить точки в сетках размерами 2 х 3 и 2 х 5.
Но провести такую линию на сетке 2 х 4 не удастся. В этом случае потребуются две линии, симметричные по вертикали и горизонтали.
Можно ли соединить все точки сетки одной линией, зависит от того, сколько столбцов в сетке – четное это или нечетное число. Пронумеруем столбцы слева направо и увидим, что кривая на сетках размером 2 х З, 2 х 5 и 2 х 7 проходит через столбцы под номерами: {1, 2, 3}, {1, 2, 4, 3} и {1, 2, 4, 6, 7}. Для четного числа столбцов подобное невозможно.
Чтобы построить непрерывную линию, проходящую через все точки сетки двух строк А и В и N столбцов (где N нечетное, то есть имеет вид N = 2·k + 1), нужно следовать алгоритму:
N = 2·k + 1:
к четное: {А(1), В(2), А(4), В(6), …, А(2·k), В(N)};
к нечетное: {А(1), В(2), А(4), В(6), …, А(2·k), A(N)}.
Некоторые колам образованы одной кривой, подобно бесконечному узлу, но большинство узоров состоят из нескольких линий.
Колам из трех линий.
Этот колам образован тремя кривыми. Две из них одинаковы: одна получается из другой поворотом на 90°. Обе эти кривые симметричны относительно поворота на 180°. Третья кривая образует фигуру, симметричную относительно поворота на 90°. Она построена на двойной сетке из 25 точек, которые расположены в виде двух квадратов размерами 3 х 3 и 4 х 4, причем первый находится внутри второго.
Колам.
Традиция изображать колам на юге Индии насчитывает несколько веков, и ее истоки, возможно, лежат в культурах Центральной Африки. В этих узорах математическая мысль состоит не столько в симметричности итоговых фигур, сколько в четких методах построения. Именно женщины являются хранителями многовековой традиции и математических знаний, которые ежедневно используются в домашнем хозяйстве. Методы изображения колам передаются от матери к дочери, совершенствуются и достигают таких высот, что ими восхищаются математики всего мира.
Лозоплетение
В одиннадцатой главе трактата «Дао дэ цзин» отмечается, что полезность колес, сосудов и окон проистекает из их пустоты. В самом деле, люди с доисторических времен стремятся отделить небольшие участки бесконечного пространства, которое нас окружает, создавая границы: для колеса нужна окружность, для сосуда – сферическая поверхность, для окна – плоская стена с отверстием в нем.
В разные годы были созданы самые разные плоские и криволинейные поверхности из бесконечного множества материалов и бесконечным множеством способов. Чаще всего для создания поверхностей и объемных тел применялось плетение волокон растений – этим методом создаются как плоские поверхности – циновки рогожи, стены и крыши домов, так и объемные фигуры – корзины, клетки, загоны для птицы и мячи для игры в сепактакрау (разновидность волейбола в Юго-Восточной Азии, но игра происходит не руками, а ногами).