355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Микель Альберти » Мир математики. т 40. Математическая планета. Путешествие вокруг света » Текст книги (страница 4)
Мир математики. т 40. Математическая планета. Путешествие вокруг света
  • Текст добавлен: 15 октября 2016, 04:08

Текст книги "Мир математики. т 40. Математическая планета. Путешествие вокруг света"


Автор книги: Микель Альберти


Жанр:

   

Математика


сообщить о нарушении

Текущая страница: 4 (всего у книги 8 страниц)

Но для действий с большими числами этот метод не очень удобен. Конечно, его можно улучшить и применять для умножения любых чисел, даже довольно больших, но, как это часто бывает, теоретические улучшения вовсе не обязательно будут достаточно эффективными для практического использования. Так что для действий с большими числами все же лучше использовать вычислительные устройства.

В одном из стихов главы 27 трактата Лао-цзы «Дао дэ цзин» говорится: тот, кто умеет считать, не пользуется чоу. Чоу – это инструмент для счета, состоявший из деревянной доски и нескольких бамбуковых палочек. Чоу был создан в V–III веках до н. э., так что это приспособление можно назвать одним из древнейших инструментов для вычислений.

Чоу представлял собой доску размером 8 x 8 клеток, в которых помещались бамбуковые палочки, обозначавшие числа. Изначально число палочек соответствовало числу единиц (до 10), но затем была создана упрощенная система, в которой поперечно лежащие палочки обозначали 5 или 10 единиц. Таким образом, числа от 1 до 5 обозначались вертикально расположенными палочками, числа 6, 7, 8 и 9 – горизонтальной палочкой (она обозначала 5), под которой выкладывалось необходимое количество вертикальных палочек. Число 10 было представлено горизонтальной палочкой, последующие десятки – дополнительными горизонтальными палочками.

Для обозначения чисел 60, 70, 80 и 90 вертикальные палочки выкладывались сверху, чтобы отличить их от 6, 7, 8 и 9. Возникал вопрос: как расположить палочки для обозначения сотен, тысяч и последующих степеней 10? Китайцы решили эту задачу при помощи доски, столбцы которой обозначали различные степени 10.

В этой системе нулю соответствовала пустая клетка.


Представление чисел 6104 и 84 071 на чоу.

При умножении в уме вычислялись суммы и произведения небольших чисел, представленных в таблице. Суть этого метода, как и метода, применявшегося на африканских рынках, заключалась в разложении чисел на разряды и неявном использовании свойства дистрибутивности, которое в те времена еще даже не имело названия. К примеру, чтобы умножить 285 на 43, между строками, где записывались числа, следовало оставить пустую строку для промежуточных расчетов. Следующие действия выполнялись в уме.


Суть метода заключалась в разложении 285 и 43 на сотни, десятки и единицы:

285·43 = (200 + 80 + 5)·(40 + 3) = 40·200 + 40·80 + 40·5 + 3·200 + 3·80 + 4·5 = 12 255.

Эта же доска использовалась для решения уравнений и систем уравнений. Кроме того, считается, что именно доска чоу стала прообразом записи чисел в столбцы.

Некоторые считают чоу предшественником абака, который был изобретен намного позже, примерно в XIV веке, и до сих пор используется во всем мире, особенно в странах Юго-Восточной Азии (в Сингапуре и Таиланде) и Восточной Азии (в Китае, Корее и Японии).

Абак представляет собой вытянутый прямоугольник, как правило, изготовленный из дерева, с поперечной перекладиной и множеством вертикально расположенных спиц, на которые насажены семь деревянных шариков. Два шарика расположены над поперечной перекладиной, оставшиеся пять – под ней. Число спиц составляет от восьми до 20 и более.


Учитывая, что на каждой спице с помощью шариков обозначаются единицы от 0 до 10 и каждая спица соответствует степени 10, на абаке с 20 спицами можно представлять очень большие числа – до 1020 – 1.

Бамбук или дерево, из которых можно было изготовить инструменты для счета, подобные чоу и абаку, были доступны не во всех странах. Как вы уже знаете, шумеры несколько тысяч лет назад использовали для представления цифр и чисел камешки.

В Америке индейцы майя применяли систему счисления, схожую с китайской, и обозначали числа камнями. Также майя ввели особый символ для нуля. Намного южнее на Американском континенте можно встретить еще один необычный инструмент для счета, весьма непохожий на чоу и абак. Однако, подобно чоу и абаку, этот инструмент имел небольшие размеры и потому был очень удобным в переноске.

Речь – о кипу инков, первых приспособлениях для передачи информации о числах.


Кипу

Кипу – это пучки веревок, с помощью которых инки фиксировали числа. Анализ сохранившихся экземпляров позволяет понять, как именно производились подсчеты.

Абак содержит деревянные костяшки, надетые на рейку или спицу; в кипу же числа обозначались узлами. Каждый узел соответствовал цифре или числу в зависимости от положения на веревке и цвета.


Инкское кипу.

Как правило, кипу изготавливались из шерсти или хлопка. В жизни инков веревки играли важную роль: они применялись при постройке мостов, уплате податей, а также выполняли много других функций. Считается, что кипу использовались для фиксирования данных о налогах и урожае (это немного напоминает современные бухгалтерские записи), но истинное значение кипу так до конца и не расшифровано.

В кипу свой смысл имел способ, которым были завязаны узлы, а также их цвет и расположение относительно других узлов и веревок. Вытянутое кипу представляло собой канат, с которого свисало множество веревок. Кипу «расчесывались», то есть веревки отделялись друг от друга, чтобы можно было увидеть, какие узлы на них завязаны, как выглядит кипу в целом, и попытаться разгадать его смысл.

Инки не имели письменности, и среди всех артефактов инкской культуры, дошедших до наших дней, именно кипу напоминают письменность больше всего. Возможно, некоторые кипу имели не только математический смысл, но описывали события из истории и общественной жизни.

Главная веревка кипу была толще остальных, на нее навязывались другие, более тонкие, а на них уже вязались узлы. На эти тонкие веревки, в свою очередь, могли навязываться веревки третьего, четвертого и следующих порядков, образуя древовидную структуру. Число веревок могло доходить до нескольких сотен или даже тысяч штук. Некоторые веревки второго порядка расходились в противоположные стороны от главной. Когда кипу раскладывалось на плоскости так, чтобы главная веревка проходила вдоль горизонтальной оси, одни веревки второго порядка указывали вверх, другие – вниз. Тонкие веревки навязывались на главную на определенном расстоянии, чтобы кипу было легче прочесть. Аналогичным образом на них навязывались веревки второго и последующих порядков. Веревки также различались по цветам, так что кипу могли быть раскрашены во множество цветов. Если узлы обычно обозначали цифры, то цвета могли указывать контекст и помогали различать товары или группы людей, к которым относились цифры.

В кипу использовалась десятичная позиционная система счисления, подобная нашей. Американский математик и исследователь-этноматематик Марсия Ашер изучила множество кипу и разделила их узлы на три группы: простые, сложные и «восьмерки». Простой узел – простейшая разновидность узла, известная всем. Сложный узел был продолжением простого: если в простом узле на веревке делалась одна петля, то в сложном – две и более. В узле-«восьмерке» делались две петли в противоположных направлениях. В эту классификацию следует включить еще одну разновидность узлов – пустой, или отсутствующий узел, который обозначал ноль.


Будем обозначать узлы точно так же, как и профессор Ашер: жирной точкой – простой узел, маленьким крестом – сложный. Вместо буквы Е (первой буквы английского слова eight – «восемь») будем обозначать узлы-«восьмерки» буквой О. Узлы на каждой веревке объединены в группы по интервалам. Каждому интервалу соответствует целая степень 10, отсчитываемая от конца веревки.


На концах веревок простые узлы не завязывались. В принципе, можно было использовать сложные узлы и узлы-«восьмерки», однако обозначать единицу сложным узлом не имело особого смысла. Поэтому единицы, которые отмечались на концах веревок, обозначались «восьмерками». Представим несколько чисел на воображаемой кипу, применив указанные выше обозначения.


Кипу были средством записи чисел в десятичной позиционной системе. Использовались ли они как инструмент вычислений, неизвестно.

Глава 3
Божественная математика

Азиатская архитектура

На протяжении тысячи лет Средневековья в Европе почти не наблюдалось никакого прогресса, и только итальянское Возрождение и великие географические открытия вывели континент из летаргического сна. Благодаря путешественникам европейцы узнали, что за пределами Европы лежит множество других земель с несметными богатствами. Там живут неизвестные народы со своей собственной культурой, верованиями, картиной жизни. Там растут неизвестные растения, ткут диковинные ткани, создают поразительные узоры и образцы архитектуры. А значит, мы можем сказать сегодня, во всех этих новых странах существовала и математическая мысль.

Основой азиатской архитектуры той эпохи был буддизм – не просто религия, а целая жизненная философия, основанная на четырех истинах: существует страдание; причина страдания – желание; чтобы прекратить страдания, следует избегать желания; чтобы избежать желания, нужно следовать Восьмеричному Пути.

Большая ступа в индийской деревне Санчи – это буддийское религиозное сооружение I века до н. э. Ступы строились в разных целях: изначально они представляли собой гробницы, а позднее превратились в хранилища реликвий, к примеру костей или фрагментов тела Будды. Устанавливали ступы на священных местах или в память о важных событиях, и паломники обходили их по часовой стрелке.

Большая ступа в Санчи имеет форму полусферы диаметром примерно 40 метров. Как и все подобные сооружения, она увенчана кубом с длиной стороны почти 6 метров, стоящим на приплюснутой вершине полусферы. Над кубом возведен свод, образованный тремя круглыми камнями, которые уменьшаются в размерах. Эти камни нанизаны на ось, проходящую через их центры.

Мы не знаем, как архитекторам удалось придать Большой ступе такую форму. По одной из гипотез, они начертили большой круг основания при помощи длинной веревки, равной его радиусу. И действительно ли купол ступы имеет форму полусферы, как нам кажется? Его стены в точке касания с землей должны располагаться перпендикулярно ей, но в случае с Большой ступой это правило не выполняется.

Как архитекторы построили куб на вершине купола, ведь для этого нужно было уметь строить прямые углы? Может быть, индийские архитекторы использовали метод древних египтян? В те времена уже было известно, что треугольник, длины сторон которого пропорциональны 3, 4 и 5, прямоугольный, и это свойство применяется в современной архитектуре при вычерчивании прямых углов на земле в самых разных частях света – в Аргентине, Испании и Швеции. Еще один практический способ построения прямых углов выглядит так: нужно построить равнобедренный треугольник и соединить вершину, в которой сходятся две равные стороны, с серединой основания. Построенный отрезок будет высотой треугольника. Этот метод аналогичен описанному в главе 1, в части о построении прямых углов в основаниях египетских пирамид.


Большая ступа в деревне Санчи в индийском штате Мадхья-Прадеш.

Так или иначе, ступы постепенно принимали все более сложную форму. Ступа Боднатх в Непале также имеет форму полусферы, но ее основание представляет собой мандалу. Мандалы – геометрические изображения, связанные с астрологией и состоящие из концентрических фигур. Они обычно имеют круглую или квадратную форму и образованы концентрическими неправильными многоугольниками, построенными на основе квадрата.

В отличие от Большой ступы в Санчи ступа Боднатх оканчивается ступенчатым пирамидальным сводом, который образован 13 квадратами, лежащими друг на друге. Каждый из этих 13 уровней обозначает очередной этап на пути к нирване.


Ступа Боднатх в Непале. Внизу – план здания.


Свод над кубом – характерная особенность ступ и схожих с ними сооружений – дагаб. Они могут иметь форму круга (как ступа в Санчи), пирамиды (как ступа Боднатх) или конуса (как дагаба в шри-ланкийском Анурадхапуре). Заметим, что все эти геометрические фигуры кверху сужаются.

Возможно, именно остроконечные вершины этих сооружений вдохновили строителей пагод, в которых круг уступает место квадрату и правильным многоугольникам. Многоэтажные пагоды появились в Непале, но такие же храмы строились в Китае и Японии. Большая пагода Диких гусей в китайском Сиане датируется VII веком и имеет семь этажей квадратной формы. Пагода в храме Фогонг в Инсяне датируется XI веком и также имеет семь этажей в форме восьмиугольников.

Архитектура храма Боробудур на острове Ява (Индонезия) объединяет в себе сразу три образа: храм одновременно представляет собой ступу, мандалу и копию священной горы Меру – обиталища богов. Таким образом, этот храм, построенный в IX веке, одновременно и буддийский, и индуистский. По форме он напоминает ступу, так как состоит из нескольких уровней, образующих полусферу. Но эта полусфера не имеет единой структуры, а состоит из нескольких элементов меньших размеров, расположенных на террасах. А по расположению террас храм Боробудур – это еще и мандала. Первая терраса до сих пор находится под землей. 10 уровней оканчиваются ступой в форме колокола, на которой установлена статуя Будды.



Ступы храма Боробудур на индонезийском острове Ява. Внизу – план храма.


Скульптурный комплекс, высеченный в цельной скале, представляет собой своеобразный архитектурный диалог кругов и квадратов. Единственный ритуал, который может совершить паломник, – это обойти храм по периметру основания, представляющего собой квадрат стороной около 100 метров.

Числа, описывающие элементы храма, связаны неожиданными соотношениями. Во-первых, Боробудур представляет собой не одну большую ступу – три его верхних уровня состоят из множества мелких ступ, расположенных на восходящих окружностях рядами в 32, 24 и 16 ступ. Венчает сооружение большая ступа.

На каждой ступе установлена статуя Будды, а помимо них в храме можно увидеть еще 304 изображения основателя буддизма.

Барельефы на стенах располагаются рядами в 120, 128 и 72 изображения, всего их в храме 2700. Если с точки зрения геометрии центром диалога являются круг и квадрат, то с точки зрения арифметики главную роль в описании храма играют числа 2, 3, 5 и 7, которые служат основаниями или показателями степеней:

120 = 23·3·5

128 = 27

72 = 23·32

504 = 23·32·7.

Некоторые из этих чисел также можно выразить в виде произведения последовательных натуральных чисел:

120 = 4·5·6

72 = 8·9

504 = 7·8·9.

Также в храме Боробудур можно заметить, что некоторые круги делятся на 16, 24 и 32 равные части. Если построить квадрат, вписанный в круг, и провести его диагонали либо серединные перпендикуляры, то круг окажется разделен на четыре равные части. Серединные перпендикуляры и диагонали разделят круг на восемь равных частей. Быть может, архитекторы при расположении архитектурных элементов храма руководствовались именно этими линиями? В таком случае достаточно провести биссектрисы углов, пусть даже примерно, чтобы разделить круг на 16 частей, после чего повторить построение еще раз и разделить круг на 32 части.


Деление квадрата и круга на 2, 4 и 8 равных частей.

Чтобы разделить круг на 24 равные части, нужно разделить его на три либо на кратное трем число частей, к примеру на 6 или 12. Существует простой метод деления круга на 12 частей. Суть его такова. Сначала нужно построить круг, вписанный в квадрат. Для этого можно сначала провести окружность, а затем – четыре перпендикулярные касательные, которые и образуют квадрат. Далее стороны квадрата делятся на четыре равные части, и строится сетка. Наконец, каждая точка пересечения сетки с окружностью соединяется с диаметрально противоположной точкой. В результате круг оказывается разделен на 12 одинаковых секторов. Теперь, чтобы разделить круг на 24 равные части, достаточно провести биссектрисы в каждом секторе.


Деление круга на 12 равных частей.

Но эта модель возможна лишь при построениях на бумаге, а чтобы расположить 24 ступы среднего уровня храма Боробудур на одинаковом расстоянии друг от друга, архитектор мог измерить длину окружности и разделить ее на 24 равные части, то есть он работал с линией, а не с кругом.

Храм Ангкор-Ват в Камбодже, датируемый XII веком, – величайшее достижение кхмерской культуры и один из крупнейших храмов мира. Он расположен в нескольких километрах к северу от города Сиемреап. Ангкор-Ват в переводе означает «храм столицы». Основную роль в схеме сооружения играют квадраты и прямоугольники. Изначально храм должен был стать гробницей короля Сурьявармана II и местом поклонения индуистскому богу Вишну, хотя считается, что размеры, расположение, форма и скульптуры храма носят космологический смысл.

Ангкор-Ват сохранился до наших дней только потому, что был возведен из камня. Другие храмы и первые пагоды, построенные из дерева, со временем полностью исчезли в джунглях. Прямоугольная изгородь вокруг основного сооружения Ангкор-Вата представляет собой прямоугольник длиной 341 метр и шириной 270 метров.


Храм Ангкор-Ват в Камбодже. Внизу – план храма.


План храма Ангкор-Ват (Камбоджа).

Так как храм должен был стать прежде всего гробницей, он, как и подавляющее большинство подобных сооружений, обращен на запад. В его архитектуре воплощена индуистская космология, в которой в центре концентрических континентов, окруженных морем, находится гора Меру. Если войти в храм 21 июня, то можно увидеть, что центральная башня указывает путь, который Солнце проходит на небе.

Именно этот день древние индийцы считали первым днем года. Расстояние от входа в храм до центрального алтаря составляет 1728 хат (кхмерская единица измерения), что соответствует продолжительности первого золотого века Вселенной в индийской космологии – 1728 лет. Храм Ангкор-Ват донес до наших времен всю кхмерскую мудрость той эпохи. Он не только украшен искусными барельефами, но и служит великолепным воплощением различных математических понятий: мы видим в нем узоры, симметрию, параллельные и перпендикулярные линии, прямоугольники и квадраты, меры и числа.

Из Индии буддизм распространился по всей Азии, и в VI веке через Китай попал в Японию, где в то время уже существовал синтоизм – местная религия, в которой обожествлялись явления природы. Буддизм настолько гармонично дополнил систему верований японцев, что большинство из них исповедуют синтоизм и буддизм одновременно. Если в синтоизме рассматриваются скорее приземленные, практические вопросы (урожай, домашнее хозяйство, успешный труд), то буддизм посвящен более трансцендентным ритуалам, к примеру похоронным.

В большинстве областей Японии можно увидеть и синтоистские святилища, и буддийские храмы – их нетрудно отличить друг от друга по входной группе. Вход в синтоистский храм называется тории и представляет собой сооружение из двух вертикальных колонн, соединенных сверху двумя перекладинами. Тории традиционно изготавливаются из дерева и обычно окрашиваются в ярко-красный цвет.


Вход в синтоистское святилище Фусими Инари в Киото.

Чем больше размеры тории, тем сложнее их внешний вид. Так, тории у входа в святилище Ицукусима на небольшом одноименном острове представляют собой три вертикальные плоскости, одна из которых располагается перпендикулярно двум другим, параллельным между собой. Если дополнить эти плоскости горизонталью моря π, куда погружена нижняя часть тории, то общая структура будет состоять из четырех плоскостей π1, π2, π3 и π, связанных следующими отношениями параллельности и перпендикулярности:

Эта структура состоит из 12 огромных деревянных столбов.


Большие тории святилища Ицукусима.

Чтобы попасть в комплекс синтоистских святилищ Фусими Инари в окрестностях Киото, нужно преодолеть свыше тысячи тории, расположенных на четырехкилометровой тропе, проложенной по холму. На некоторых участках тории отстоят друг от друга всего на несколько миллиметров. Эта череда ворот-плоскостей создает трехмерное пространство, призму из криволинейных, но параллельных друг другу стен, которая тянется вдоль холма к его вершине. Призма заканчивается, достигая предела – главного святилища.


Архитектура аборигенов Нового Света

Культура ацтеков зародилась в Северной Америке в I–VI веках нашей эры. Город Теотиуакан, церемониальный центр ацтеков, был построен согласно плану, описывавшему различные астрономические явления, и представлял собой модель небесной сферы. Центральная улица соединяла огромные ступенчатые пирамиды, на верши которых располагались храмы, где совершались человеческие жертвоприношения. Чтобы попасть в них, нужно было подняться по длинным лестницам.

Пирамиды ацтеков имели квадратное основание и состояли из четырех уровней. Крупнейшая и древнейшая пирамида указывала ось, вдоль которой садилось Солнце в день летнего солнцестояния. Она имела сторону основания длиной около 213 м и была более 60 м в высоту. Эта пирамида – единственная в Теотиуакане, имеющая наклонные грани, во всех остальных пирамидах грани уровней расположены вертикально.

Индейцы майя жили в одно время с ацтеками, но артефакты их культуры сохранились лучше. Как и ацтеки, майя сообразовывали архитектуру своих зданий с астрономическими наблюдениями. Они первыми в Америке открыли метод построения куполов. Пирамиды майя также имели ступенчатую форму и достигали 70 м в высоту. Однако их основания не имели форму идеальных квадратов. Пирамида Кукулькана в Чичен-Ице, известная как «замок», имеет квадратное основание и девять ступенчатых уровней, которые оканчиваются храмом в форме куба. К храму ведут четыре лестницы из 91 ступеньки, по одной лестнице на каждой грани пирамиды. Любопытно, что 4·91 = 364. Это почти равно числу дней в году, поэтому некоторые усматривают в лестницах пирамиды модель календаря.

Прибыв в Перу около 1300 года, конкистадоры обнаружили огромную империю инков, простиравшуюся вдоль всей горной цепи Анд. Их технологии были самыми совершенными во всей Мезоамерике – возможно, потому, что инки больше других народов уделяли внимание практическим вопросам. Уже в X веке им были известны методы изготовления тканей и выплавки золота и меди, оросительные системы и террасное земледелие.

В XIII веке столицей государства инков был город Куско, располагавшийся на «царском пути в горах» – окруженной стенами дороге длиной 6 тысяч километров, которая соединяла города империи. Увидев эту дорогу, испанцы не могли сдержать восхищения. Сооружения инков строились из огромных каменных блоков, уложенных с точностью до миллиметра.

Инки не испытывали особого пристрастия к прямым углам – так, окна и дверные проемы в их жилищах имели трапециевидную форму. Каменная кладка стен также не образовывала сетку из прямых углов, скорее наоборот – в ней можно увидеть самые разные углы, а каменная кладка выполнена столь искусно, что стала символом культуры инков. Для нее характерна удивительная параллельность линий: каждая грань каждого камня так точно стыкуется с соседней, словно мастер шлифовал их друг о друга до тех пор, пока они не стали идеально совпадать. Грани и ребра каменных блоков, невидимые для нас, параллельны, что, по всей видимости, было результатом искусной работы мастеров.


Инкская каменная кладка в Куско (Перу).


Исламская архитектура

Большая мечеть в Самарре (Ирак) была построена в IX веке и на протяжении столетий оставалась крупнейшей в мире. Сегодня от нее сохранились лишь остатки прямоугольной изгороди, стен мечети и впечатляющий минарет спиралевидной формы высотой 50 м. Изгородь мечети, как и других сооружений того времени, была построена так, что соотношение ее сторон составляло 3:2. Снаружи вдоль стен располагались 44 контрфорса в виде цилиндрических колонн. Колонны, расположенные вдоль боковых сторон, имели полукруглые основания, четыре угловые колонны – основания в форме трех четвертей круга.

В этой мечети мы находим те же геометрические элементы, что и в других храмах, – это прямоугольники, квадратное основание минарета, параллельные и перпендикулярные линии, вдоль которых располагаются колонны внутреннего двора.

Однако в мечети в Самарре круг и квадрат сочетаются, образуя спираль.

Спираль как символ встречалась уже в буддийских ступах (см. иллюстрацию в начале этой главы), однако минарет мечети в Самарре представляет собой спираль, устремленную в небо. Чтобы подняться на его вершину, нужно семь раз обойти вокруг центральной оси по винтовой лестнице. Угол наклона лестницы не постоянен – предпоследний виток наклонен сильнее прочих. Сама лестница представляет собой не цилиндр, а конус, и сходится к вершине.


План мечети в Самарре (Ирак).

Подняться на минарет непросто: на винтовой лестнице нет перил, идти по внешней части ступеней опасно, и у некоторых может закружиться голова. Подниматься ближе к центру лестницы безопаснее, и в этом случае становится заметной любопытная особенность всех винтовых лестниц: в отличие от обычных ступеней, имеющих постоянный наклон независимо от того, по какой их стороне мы идем, наклон винтовых лестниц меняется, хотя все их ступени одинаковы. Связано это с тем, что ступени винтовой лестницы во внешней части шире. Каждая ступенька отстоит от предыдущей на одинаковую высоту (расстояние по вертикали), однако расстояние между соседними ступеньками по горизонтали во внешней части увеличивается. При этом отношение расстояний по вертикали и по горизонтали уменьшается, и наклон становится меньше, но длина пройденного пути возрастает. Таким образом, если подниматься по внутренней части винтовой лестницы, путь будет короче, но тяжелее, а если пойти по внешней части, путь окажется длиннее, но потребует меньше усилий.


Священные подношения

До сих пор мы говорили о математических идеях, имеющих отношение к культовым сооружениям. Далее мы рассмотрим вопрос, крайне важный во всех религиях, – вопрос жертвоприношений. Все верующие обращаются к своему богу или богам в молитвах и в большинстве регионов совершают подношения – пищу или подарки, чтобы утихомирить гнев божества, успокоить демонов или злых духов или попросить об удаче в делах.

Если и есть в мире место, где вся жизнь вращается вокруг религии, так это индонезийский остров Бали. В то время как в остальной Индонезии преобладает ислам, жители Бали унаследовали от индийцев индуизм. На острове повсеместно расположены бесчисленные храмы и алтари самых разных размеров. Здесь не найдется ни одного дома, где не было бы алтаря. Алтари и храмы строятся на святых местах и в потенциально опасных участках, к примеру на пересечениях дорог или автомагистралей.

День жителя Бали начинается с сесажена. Это непродолжительный ритуал, который, как правило, выполняют женщины три раза в день перед едой. Они произносят молитву и ставят на пол рядом с домашним алтарем, у входа в дом или на перекрестке подношения – еду, приготовленную накануне. Эти подношения называются «чана» и представляют собой крошечные порции вареного риса, немного мяса, печенье, цветы, благовония и святую воду. На этот импровизированный банкет, пользуясь случаем, всегда слетаются птицы.

* * *

ДЕНЬГИ И МАТЕМАТИКА

Банкноты всех стран имеют одно общее свойство: они должны быть очень хорошо защищены от подделки. Для этого в бумагу внедряются металлические элементы, на которых могут быть записаны идентификационные коды. На катарской банкноте в 1 динар можно увидеть цепочки сплетенных друг с другом многоугольных узлов, обладающие симметрией восьмого порядка, и парусник, воспроизведенный в двух местах с сохранением всех пропорций. Симметрией обладают арки, изображенные на банкноте, и их опоры, волны и сабли, на которые они опираются, а неправильный шестиугольник белого цвета, изображенный на денежной купюре, получается отсечением углов квадрата.

На монетах Брунея изображены спиралевидные узоры, типичные для народов, живущих в джунглях Борнео. Первое, с чем мы сталкиваемся за границей, – это местная математика, зафиксированная на монетах и банкнотах страны.


Аверс катарской банкноты в 1 динар и брунейская монета в 10 сен.

* * *

Подношение божеству следует совершать со всем старанием. Боги заслуживают уважения, и оно должно проявляться не только в общении с ними, но и в том, как и в какой посуде подносятся дары. Емкости для подношений изготавливаются из нежных листьев банана и коксовых пальм, которым заранее придаются определенная форма и размеры.


Чана в ритуале сесажен на острове Бали (Индонезия).

Эти емкости могут иметь самые разные формы – наиболее популярные вы можете видеть на фотографии. Эти формы появились не случайно. Каждый день женщины всех возрастов складывают и сплетают из листьев коробочки и конверты для даров. Но как женщинам удается складывать коробочки квадратной формы и сворачивать конверты с заданным углом?

К счастью, нам не нужно высказывать гипотезы и делать предположения – мы располагаем информацией из первых рук. Чуть дальше вы сами увидите, как именно женщины с острова Бали складывают эту квадратную посуду.

Сначала они нарезают нежные листья кокосовой пальмы на полоски одинаковой ширины вдоль волокон. Приняв за единицу измерения расстояние от конца указательного пальца до большого пальца, они делают на листе четыре пометки. Затем лист складывается так, чтобы последняя метка совпала с первой. Несколько листов банана, нарезанных на полоски того же размера, складываются в большой лист, который вставляется внутрь четырехугольного листа кокосовой пальмы. Посуда готова.


1. Мерка.


2. Полоски листьев кокосовой пальмы с четырьмя отметками.


3. Листья сгибаются.


4. Полоска бананового листа длиной в одну единицу.


5. Несколько полосок банановых листьев складываются и образуют дно посуды.


6. Дно укладывается в посуду. Посуда готова.

Женщины знают, что посуда имеет квадратную форму: во-первых, это очевидно, во-вторых, посуда сложена из четырех равных частей, что, однако, обеспечивает равенство всех четырех сторон, но не равенство углов. Если быть точным, то посуда имеет форму ромба, а квадрат получается только после вставки банановых листьев.

Так как полоски банановых листьев по длине равны стороне квадрата, высота ромба становится равной его стороне, и он принимает форму квадрата. Из бесконечного множества всех возможных ромбов (четырехугольников с равными сторонами) только один является квадратом и, более того, имеет наибольшую площадь.


Описанный выше метод сам по себе не гарантирует правильность решения. Однако женщина, складывая посуду, применяет на практике следующую теорему: ромб, высота которого равна его стороне, – квадрат.

Доказать эту теорему несложно. Высота определяет прямоугольный треугольник, в котором угол, противолежащий высоте, будет углом ромба. Так как катет этого прямоугольного треугольника (высота ромба) равен его гипотенузе (стороне ромба), длина второго катета равна нулю. Высота и сторона ромба параллельны.


    Ваша оценка произведения:

Популярные книги за неделю