Текст книги "Биологические основы старения и долголетия"
Автор книги: Михаил Виленчик
сообщить о нарушении
Текущая страница: 7 (всего у книги 16 страниц)
В 1984 году группа французских ученых из Института исследований рака (А. Мациейра-Коэлхо с сотрудниками) подтвердила наши (А. Н. Хохлова и автора этих строк) данные, опубликованные в 1978 году. Речь идет о появлении низкомолекулярной ДНК в культурах фибробластов человека, если эти фибробласты исчерпали свой митотический потенциал (т. е. исследовали культуры, находившиеся на последних пассажах). Как и мы, французские коллеги исключили возможность образования такой ДНК в процессе лизиса клеток (вследствие действия на ДНК щелочи, детергента или клеточных ферментов). Они также обнаружили существенные изменения хроматина у "старых" фибробластов. Но что особенно интересно, если клетки в течение длительного времени обрабатывали гидрокортизоном, то по крайней мере у ядрышка старение структуры хроматина значительно задерживалось. Это может быть молекулярным механизмом задержки старения, поскольку уже относительно давно известно, что под влиянием гидрокортизона митотический потенциал фибробластов, продолжительность жизни их культур in vitro существенно возрастают.
Недавно для исследования тонких изменений структуры хроматина в фибробластах человека использовали специальный анализатор его изображений, полученных на электронных микрофотографиях с помощью телевизионного сканирующего устройства. Таким образом, можно было судить о плотности нитей хроматина, их длине и ширине. Группа того же крупнейшего в мире специалиста по культивированию клеток и их старению in vitro А. Мациейра-Коэлхо, проводившая эти исследования, пришла к заключению, что наблюденные ими изменения хроматина отражают деградацию ДНК в процессе старения клеток in vitro, т. е. согласуются с изменениями ДНК, которые мы, а затем они (а также ученые в США и Японии) наблюдали с помощью методов центрифугирования и других физико-химических методов.
Данные зарубежных исследователей находятся в согласии и с другими нашими данными – о накоплении повреждений ДНК при старении клеток в организме. Правда, изучались не полностью идентичные клетки. Мы исследовали фибробласты, взятые из тканей эмбрионов-абортусов и из кожи здоровых взрослых людей различного возраста; группа А. Мациейра-Коэлхо исследовала клетки доноров разного возраста, хранившиеся в замороженном состоянии в клеточном банке Национального института старения США. Авторы обнаружили прямую корреляцию между возрастом людей – доноров исследованных клеток и выраженностью изменений хроматина в этих клетках (которые, как отмечалось, они рассматривают как показатель деструкции ДНК).
Мы подробно говорим о возрастных изменениях ДНК, поскольку они имеют существенное значение не только для понимания молекулярных механизмов старения, но и важны практически.
Правда, пока использовать эти данные на практике не удается, это дело будущего, хотя значимость их становится все более очевидной в связи с теперь уже актуальной и в онкологии, и в гигиене проблемой индивидуальной чувствительности людей к канцерогенным агентам, загрязняющим окружающую среду. Кстати, все сказанное здесь может служить и доказательством взаимосвязи молекулярно-клеточных аспектов проблем биологии долголетия и экологии.
Как подчеркивается в аннотации к книге известного советского ученого Г. Н. Кассиля "Внутренняя среда организма" (М., Наука, 1978, 1983), одна из ведущих проблем современной биологии – учение о гомеостазе или динамическом постоянстве внутренней среды и основных физиологических функций организма генома и животных. В советской физиологии и геронтологии сложилась прочная и плодотворная традиция рассматривать старение как нарушение гомеостаза. Автор старался продолжить и развить эту традицию, распространив понятие гомеостаза и на молекулярно-клеточный уровень. При таком подходе обнаруживается, что даже ДНК является лишь динамически постоянной структурой, а поддерживаемое в клетке равновесие (динамическое) между возникновением повреждений ДНК и их залечиванием (репарацией) в старости может нарушаться.
Кроме молекулярных систем репарации ДНК, имеются и другие молекулярные системы защиты и регуляции. Эти системы работают и на внутриклеточном уровне, и на тканевом, и на уровне целостного организма. Мы сосредоточили внимание на первых, хотя будем касаться и более высоких уровней защиты и регуляции. Читателю, который хотел бы познакомиться подробнее с проблемой роли нарушения гомеостаза в старении, автор рекомендует прочитать упомянутую выше очень интересно написанную книгу Г. Н. Кассиля "Внутренняя среда организма", а также труды других ведущих отечественных физиологов и биохимиков, изучающих проблемы старения (И. А. Аршавский, Г. Д. Бердышев, Б. В. Ванюшин, В. М. Дильман, А. И. Зотин, В. Н. Никитин, Д. Ф. Чеботарев, В. В. Фролькис).
Накопление повреждений ДНК в клетках других организмов
Целый ряд исследований возрастных изменений ДНК был проведен в опытах на клетках мышей, крыс или собак. О результатах, полученных методом седиментации в градиенте щелочной сахарозы, уже было вкратце сказано. Здесь поясню, что накопление повреждений ДНК наблюдали, начиная с возраста мышей, который был далек от старческого. Этот результат, в согласии с тем, что мы наблюдали на клетках человека, показывает: физические изменения генетического вещества начинают накапливаться до того, как значительно нарушится его функция, и до того, как начнет снижаться жизнеспособность организма и возрастать вероятность развития тяжелых заболеваний. Но есть веские основания полагать, что накопленные повреждения ДНК подготавливают почву для развития таких изменений для старения в целом.
Приведем пока только один из фактов, свидетельствующих о биологической роли образования и накопления в ДНК щелочно-лабильных участков. Напомню, что такого типа повреждения, как мы рассчитали теоретически, с большой частотой должны возникать спонтанно. Эта частота возрастает после действия на клетки тепла или ионизирующего излучения, а под влиянием времени такого типа повреждения накапливаются в различных клетках млекопитающих.
Рональд Харт с сотрудниками из отдела радиологии медицинского центра в Колумбийском университете исследовали количество щелочелабильных связей в мозге, печени и почках мышей двух семейств, хотя и близких таксономически, но различающихся по продолжительности жизни в 2,5 раза. В обоих случаях наблюдали накопление однонитевых разрывов и щелочелабильных связей в ДНК печени и почек стареющих мышей, причем в печени скорость возрастного накопления повреждений ДНК была больше. Скорость накопления повреждений ДНК и в печени, и в почках короткоживущего вида была больше, чем в ДНК тех же органов относительно долгоживущего вида (точнее, эти скорости были обратно пропорциональны величине продолжительности жизни). Таким образом, можно полагать, что существует определенный предел количества накапливаемых с возрастом повреждений ДНК, и в органах короткоживущих животных этот предел достигается быстрее, чем, в частности, и определяется более короткое время их жизни.
К настоящему времени исследован большой ряд клеток из различных органов человека и животных (мыши, крысы, собаки, крупный рогатый скот), а также растительные и бактериальные клетки. Данные всех этих исследований, во-первых, подтверждают теоретически выведенное нами положение: неустойчивость первичной структуры ДНК – общебиологическая закономерность.
Во-вторых, они приводят к заключению о существовании другой общебиологической закономерности (как необязательном следствии первой) – со временем спонтанные повреждения могут накапливаться в клетках. Второе заключение, очевидно, следует пока считать предположительным. И спускаясь к еще менее доказанному предположению, отмечу вероятное существование такой кинетики возрастных изменений ДНК, что определенные повреждения ДНК, как было сказано, в значительном количестве накапливаются уже в клетках молодого организма. Добавлю еще, что есть данные, свидетельствующие о замедлении в пожилом и старческом возрасте скорости накопления таких повреждений ДНК.
Почему это происходит? Ведь скорость возникновения повреждений ДНК со временем, скорее, возрастает, а не уменьшается (например, вследствие увеличения активности ДНКазы или концентрации эндогенных Н2О2, перекисей липидов и других генотоксических метаболитов). На феноменологическом уровне такой парадокс можно было бы объяснить тем, что клетка может накопить лишь такое число повреждений, которое совместимо с сохранением ее жизнедеятельности. Если это число превысит критическое, клетка гибнет. Но мы ведь определяли повреждения ДНК только в жизнеспособных клетках. Учитывая гетерохронность (неравномерность развития во времени) процесса старения даже на клеточном уровне и считая, что такая гетерохронность сохраняется и на уровне ДНК, можно предположить, что замедление скорости накопления повреждений ДНК в пожилом возрасте – кажущееся: гибель клеток с числом повреждений ДНК, близким к критическому, будет уменьшать число повреждений ДНК, регистрируемых в популяции клеток.
Однако возможно, скорость накопления повреждений ДНК в геноме клеток пожилых и старых организмов действительно уменьшается, несмотря на увеличение концентрации эндогенных генотоксически агентов и уменьшение способности клеток к репарации ДНК (о чем подробнее будет рассказано позднее). До сих пор мы не принимали во внимание то важное обстоятельство, что ДНК находится в ядре клетки в упакованном состоянии. Ведь линейный размер ядра клетки млекопитающих составляет несколько мкм, а длина молекул ДНК хромосом, как принято сейчас считать, состоящих из одной молекулы, в десятки тысяч раз больше. Но чем плотнее упакована ДНК, тем, очевидно, она менее доступна для ДНКаз и даже для низкомолекулярных генотоксических факторов. Следовательно, если в процессе старения упаковка отдельных участков ДНК станет более плотной, то скорость не только репарации, но и образования повреждений ДНК действительно уменьшится.
Таким образом, мы подошли к вопросу о том, как изменяется в процессе старения не только первичная структура ДНК, но и организация ДНК в более высокие структуры. Разная степень упаковки ДНК характеризует уже высшие структуры ДНК. Следующий же за первичной является вторичная структура ДНК. Итак, вопрос состоит в том, происходит ли изменение с возрастом вторичной структуры ДНК? Возможны два типа изменений конформации двойной спирали ДНК: она может расплетаться (с образованием денатурированных или однонитевых участков) или не расплетаться, а только изменять свою форму (конформацию).
15-20 лет назад проводилось много исследований, целью которых было определение денатурационных изменений ДНК при старении. Для этого выделяли ДНК из тканей организмов различного возраста, а затем изучали в растворе так называемые кривые плавления ДНК, т. е. выявляли изменения способности ДНК поглощать кванты ультрафиолетового излучения (в максимуме поглощения ДНК) с увеличением температуры раствора. Денатурированная ДНК обладает примерно на 1/3 большей такой способностью, чем нативная (целостная) ДНК. Поэтому, сравнивая кривые плавления «молодой» и «старой» ДНК, можно было судить об изменении количества денатурированных участков в двойной спирали или, наоборот, о степени ее нативности. В ряде работ было сообщено о том, что при старении мышей или крыс в ДНК различных их органов происходит накопление денатурированных участков.
Мы тоже ставили подобные опыты, но не нашли существенных изменений. И после анализа физико-химических свойств ДНК и доступных методик ее выделения пришли к заключению: даже если в ДНК с возрастом и накапливаются денатурированные участки, обнаружить это явление современными методами физико-химического анализа невозможно.
Дело в том, что в процессе выделения ДНК и ее очистки от белков она неизбежно должна повреждаться, а места повреждения, в свою очередь, должны быть причиной образования в ДНК денатурированных участков. Но на таком фоне невозможно определить "тонкие" возрастные изменения (а мы полагали, что они действительно тонкие, ведь если бы изменения ДНК были резкими, то клетка неизбежно погибла бы, и от ее ДНК должны были бы остаться лишь низкомолекулярные компоненты).
Относительно недавно разработан принципиально иной способ оценки количества денатурированной ДНК – иммунохимический. Он основан на способности лимфоцитов синтезировать антитела к денатурированной ДНК. Такие антитела были определены в сыворотке крови людей трех возрастных групп: детей (10–11 лет); взрослых молодых (19–22) и пожилых людей (65–68 лет). Неожиданно оказалось, что люди всех возрастных групп содержат необычно большое количество антител к однонитевой ДНК, но особенно много таких антител было у людей первой и третьей групп. У них содержание антител примерно в 2 раза больше, чем у взрослых молодых людей.
Эти данные, кроме того, что они подтверждают грустные замечания великих поэтов ("старость – есть второе детство" или "хладея, мы движемся к началу своему"), интересны еще и потому, что приводят к принципиально новому заключению о физиологической роли денатурированных участков ДНК и(или) антител к ним.
Если исходить из традиционной точки зрения (которую для простоты изложения мы рассматривали до сих пор), то нарушения во вторичной структуре ДНК должны возникать лишь случайно и накопление их с возрастом должно происходить постепенно. Но тогда количество денатурированных участков ДНК (и следовательно, концентрация антител к ним) в сыворотке взрослых людей должно было бы быть больше, чем в сыворотке детей. Наблюдается же обратная закономерность. Правда, в своих рассуждениях мы предполагали, что количество антител в сыворотке крови определяется в основном количеством денатурированной ДНК в клетках. Но это может быть и не так. Например, частичная денатурация ДНК может происходить и в сыворотке. А главное, количество синтезируемых антител может и не изменяться параллельно с изменением количества такой ДНК.
Таким образом, анализ возможных изменении с возрастом количества денатурированной ДНК не привел нас к однозначному заключению о характере этих изменений. Но при этом неожиданно приоткрылась, возможно, важная функция такой ДНК и(или) антител к ней. Однако, как уже отмечалось, нативная ДНК может не только денатурировать, но и менять свою конформацию, оставаясь двойной спиралью.
Конформационные изменения ДНК
Метод кругового дихроизма (КД) чувствителен к изменениям структуры ДНК такого рода, поэтому В. М. Лобачев, Т. М. Третьяк, А. М. Кузин и автор этих строк его использовали для ответа на вопрос: изменяется ли конформация двойной спирали ДНК в процессе старения? ДНК, выделенная из печени и мозга очень старых крыс (возраст 38 месяцев), имеет спектры, практически идентичные спектрам КД тех же ДНК, облученных ионизирующей радиацией (рис. 9). Оптические активности положительной и отрицательной полос спектров КД ДНК, выделенной из тканей старых животных, или ДНК, облученной в дозе 200 гр, были снижены примерно на 20 % по сравнению с ДНК молодых животных, и это различие было статистически достоверно.
Рис. 9. Спектры кругового дихроизма (КД) ДНК, выделенной из тканей молодых и старых крыс, в сравнении с КД ДНК тимуса теленка.
А. 1. ДНК мозга молодых (возраст 3 мес.) крыс. 2. ДНК мозга старых (возраст 38 мес.) крыс. 3. Облученная ДНК мозга молодых крыс (доза – 1000 ГР).
Б. 1. ДНК печени молодых крыс. 2. Облученная ДНК печени молодых крыс (доза 200 Гр). 3. Облученная ДНК печени молодых крыс (доза 300 Гр). 4. Облученная ДНК печени молодых крыс (доза 1000 Гр).
В. 1. ДНК тимуса теленка. 2. ДНК печени старых крыс. 3. Облученная ДНК печени старых крыс (доза 1000 Гр). (Из работы М. М. Виленчика, Т. М. Третьяк, В. М. Лобачева, А. М. Кузина, Доклады АН СССР, 1981.)
Анализ обнаруженных изменений показал, что наблюденные изменения спектров КД ДНК при старении или после гамма-облучения ДНК не определяются образованием однонитевых разрывов в ДНК; их нельзя также полностью объяснить денатурационными изменениями. Эти изменения спектров КД можно объяснить переходом модифицированных участков ДНК из «обычной» (канонической) В-формы в иную конформацию. Подчеркнем еще раз, что эти конформационные изменения отличаются от ранее изученных денатурационных изменений ДНК.
В то время, когда мы получили первые данные о возрастных изменениях спектров КД, был опубликован ряд работ, в которых было показано, что двуспиральные синтетические полинуклеотиды с определенной последовательностью оснований могут находиться в левоспиральной конфигурации (названной Z-формой), причем спектр КД таких полинуклеотидов оказывается инвертированным (обратным по знаку). Таким образом, к предположению о существовании таких особых форм ДНК разные группы исследователей пришли независимо, исходя из результатов изучения изменений ДНК при старении и анализа физических свойств полинуклеотидов с определенной последовательностью оснований.
Такие последовательности встречаются и в природной ДНК, в частности в ДНК млекопитающих. Вероятно, эти последовательности in vivo со временем также могут переходить в левоспиральные участки, и количество таких участков может возрастать по нескольким причинам. Во-первых, вследствие метилирования оснований, облегчающих переход отдельных участков ДНК из канонической В-конформации в левоспиральную Z-конформацию. Во-вторых, вследствие локального изменения (увеличения) ионной силы в отдельных участках хроматина или накопления в них определенных веществ, также облегчающих такой переход. В-третьих, образованию, а главное "фиксации" изменений конформации определенных участков ДНК in vivo должно способствовать образование в этих участках повреждений первичной структуры, о которых речь шла ранее, а также ковалентных сшивок ДНК – белок и особенно сшивок ДНК – белок-ДНК.
Однако в клетке, вероятно, существуют белки, способные переводить ДНК из левоспиральной в обычную – В-конформацию. И поскольку предполагалось образование левоспиральных участков ДНК после облучения и были основания считать такое образование одним из механизмов повреждающего действия излучения на клетки, то теоретически был получен ответ и на вопрос: в каких именно клетках белки, "репарирующие" левоспиральные участки, нужно искать в первую очередь. Ясно, что в тех, которые очень устойчивы к излучению, в частности, потому, что содержат относительно большое количество "Z-репарирующих белков".
Это предположение было опубликовано в 1981 году, а в конце 1985 года поступило сообщение о том, что в одном из видов бактерий М. Radiodurans, выделенном лет двадцать назад из котлов ядерных реакторов и, следовательно, обладающем исключительно высокой радиоустойчивостью (отсюда и его латинское название), содержатся белки, под влиянием которых ДНК из Z-конформации может возвращаться в обычную В-конформацию.
Раз уж мы коснулись проблемы биологической роли участков ДНК, находящихся в левоспиральной конформации, то отметим, что химические канцерогены также могут индуцировать в B→Z переход. А такие переходы имеют значение в канцерогенезе. Но если это так, то происходящие при старении или после облучения изменения конформации ДНК также могут иметь значение соответственно в спонтанном и радиационном канцерогенезах. Во всяком случае, логичен вопрос: не являются ли B→Z переходы "почвой", подготавливающей развитие рака в пожилом и старческом возрасте? И далее – не обладают ли антиканцерогенными свойствами белки, осуществляющие обратный Z→B переход, т. е. не могут ли они задерживать развитие спонтанного, или химического, или радиационного канцерогенеза? Сформулированные вопросы, как говорится, не только академические: они представляют интерес и в практическом плане. И вполне поддаются исследованию с помощью современных методов, хотя такие исследования должны включать и сложные методики.
Образование "дополнительных" участков ДНК, находящихся в Z-конформации, представляет потенциальную канцерогенную опасность прежде всего потому, что при этом должна нарушиться регуляция функций генома. Имеются данные о роли таких конформации в регуляции активности генов и, возможно, в дифференцировке клетки. А ведь нарушение регуляции генов и состояния дифференцировки клетки многие биологи считают основой канцерогенеза.
Заключение о накоплении при старении клеток участков их ДНК, находящихся в необычных конформациях, не противоречит предположению об их репарируемости. Часть ДНК так плотно упакована в хроматине, что ее измененные участки просто могут быть недоступны для репарирующих ферментов. А если репарирующие ферменты способны находить и репарировать измененные участки ДНК, то по тем или иным причинам осуществляется "залечивание" не всех из них (т. е. могут быть кинетические и термодинамические ограничения).
Именно исходя из этого еще в 1970 году автором была сформулирована концепция о неизбежном ускользании части спонтанных повреждений ДНК от репарации и об их неизбежном накоплении в процессе старения. (Независимо в радиобиологию был введен термин "неполнота репарации", также означающий, что репарация осуществляется не со 100 %-ной эффективностью.)
Переход ДНК из B– в Z-конформацию облегчается при ее метилировании. Поэтому одно из объяснений наших данных о накоплении "Z-ДНК" состояло в том, что в процессе старения возрастает метилируемость отдельных участков. Такое предположение подкреплялось расчетами скорости "непрограммированного" метилирования ДНК, но противоречило сложившемуся мнению о том, что содержание 5-метил-цитозина в ДНК при старении уменьшается (В. Ф. Ванюшин с сотрудниками в МГУ и Г. Д. Бердышев с сотрудниками в КГУ). Однако недавно обнаружено, что содержание 5-метилцитозина в ДНК нематод возрастает при старении. Таким образом, изменения характера метилируемости ДНК с возрастом, вероятно, зависят от вида и, возможно, типа клеток. Ведь органо– и цитоспецифические возрастные молекулярные изменения наблюдали неоднократно, в частности, на уровне мембран. Наверное, такие закономерности существуют и на уровне ДНК.
Другие возрастные генетические изменения
Итак, мы рассмотрели возрастные нарушения вторичной структуры ДНК и их возможное биологическое значение. А изменяется ли с возрастом структура ДНК на более высоком уровне ее организации? На этот вопрос мы сегодня тоже можем ответить положительно. Во всяком случае, это определенно в отношении третичного уровня – организации ДНК в нуклеосомы.
Нуклеосома представляет собой комплекс гистонов, на который, как на катушку, наматывается ДНК определенной длины – около 150 пар. Затем идет отрезок нуклеосомной ДНК, состоящий из нескольких десятков пар оснований, далее – следующая нуклеосома и т. д.
О том, что структура генетического вещества нарушается и на уровне более высоком, чем третичный, свидетельствуют данные об изменении степени конденсированности хроматина, а также дезорганизация его структур в процессе старения клеток.
Геном млекопитающих состоит из двух отдельных частей – ядерного и митохондриального геномов. До сих пор мы не учитывали это, поскольку речь пока шла о, так сказать, массовых изменениях молекул ДНК. В ядерном геноме содержится несколько миллиардов пар оснований, тогда как в ДНК каждой митохондрии клетки млекопитающих примерно 15 тысяч. Правда, в клетке содержится около тысячи митохондрий. Но даже суммарное количество митохондриальной ДНК (мт ДНК) во много раз меньше ядерной ДНК. Поэтому-то, когда мы обсуждали вопросы биофизической нестабильности ДНК или возрастных изменений ДНК клеток и тканей, не разделенной (нефракционированной) на ядерную и мтДНК, мы для простоты изложения, как правило, "забывали" о "маленькой добавке" к ядерной ДНК. Теперь мы кратко рассмотрим роль этой дополнительной части генома.
Еще в 1973 году автор этой книги, исходя из анализа роли изменений ДНК в старении, сформулировал концепцию о возможности физического взаимодействия и обмена между генетическим веществом ядра и митохондрий. Теперь реальность такого явления и его роль в эволюции можно считать доказанными. Останавливаться на этих сложных, хотя и очень интересных, вопросах здесь мы не будем. Читатели, интересующиеся ими, могут ознакомиться с моей работой в журнале "Успехи современной биологии" (т. 99, в.2, с. 194, 1985)[1]1
В 1986 году было получено прямое доказательство существования мтДНК среди молекул ядерной ДНК клеток человека. Кроме того, А. Я. Литощенко (Институт геронтологии АМН СССР) сообщил об обнаруженном им новом явлении – нарушении регликации мтДНК в печени старых животных. Эти данные можно считать еще одним косвенным доказательством повреждения мтДНК при старении.
[Закрыть].
Сейчас приведу лишь факты, доказывающие взаимодействие (и физическое и функциональное) между ядерной и мтДНК в процессе старения некоторых клеток. Такие факты интересны еще и тем, что они показывают возможность "запуска" старения по крайней мере некоторых клеток с участием всего лишь одного или нескольких генов. Причем активация таких генов может происходить в результате изменения их положения.
Вот пример. Аскомицет (сумчатый гриб) в культуре обладает ограниченной способностью к вегетативному росту, после завершения которого он отмирает. Период роста у диких линий грибка продолжается обычно около 25 дней. Однако у некоторых грибков, содержащих мутантную ядерную ДНК, рост может быть заторможен с помощью относительно небольших (не летальных) концентраций ингибиторов синтеза мтДНК или ингибиторов синтеза белка в митохондриях. И наоборот, старение молодых грибков можно значительно ускорить, если их "заразить" мтДНК, выделенной из старых грибков.
Уже из анализа этих данных можно сделать заключение о том, что старение грибка связано с изменением его мтДНК, контролируемой ядерной ДНК. Фракция ДНК, ответственная за старение аскомицета ("ДНК старения"), уже идентифицирована. Это плазмида, несущая генетическую информацию, ДНК которой содержит 2,4 тыс. пар оснований и длина которой составляет 0,75 мкм. В молодых клетках такая ДНК содержится (встроена) только в мтДНК, их старение связано с выщеплением ее из мтДНК и автономной репликацией уже в форме плазмиды. У ядерных мутантов – "долгожителей", о которых мы говорили, ядро оказывает сдерживающее влияние на эту плазмиду. И ее высвобождение из митохондриального генома и экспрессия ее генетической информации тормозятся.
Еще 10 лет назад в первом издании этой книги отмечалось, что программа старения может быть закодирована в участках ДНК, выполняющих определенные функции в молодых клетках и организмах. Однако и сейчас представляется удивительным, что "ДНК старения" грибка оказалась частью, хотя не кодирующей, а только интроном ("вставкой") жизненно важного структурного гена – цитохром с-оксидазы. Но это особый интрон в том смысле, что он одновременно является и мобильным генетическим элементом т. е. таким генетическим устройством, в структуре которого закодирована способность перемещаться из одного участка в другой, разумеется, с помощью определенных белков, "узнающих" особенности его структуры как мобильного элемента. Оказалось, что "мина старения" (этот термин был введен в первом издании этой книги) может умножаться и перемещаться!
Р. М. Райт, Д. Дж. Коммингс установили, что на конечных этапах старения грибов "плазмида старения" размножается столь интенсивно, что замещает большую часть нативной мтДНК, присутствующей в молодых клетках. Но еще раньше "ДНК старения" обнаруживается в ядерной ДНК. Это и есть доказательство физического взаимодействия между определенными участками ядерной и мтДНК. Взаимодействие это особое – своего рода дальнодействие с помощью "кванта", промежуточным состоянием которого является "плазмида старения". Но в ядре содержатся гены, контролирующие переход интегрированной "ДНК старения" в свободное состояние (плазмиду). Получается, что ядро каким-то образом направляет "ДНК старения" к себе. Не исключено, правда, что обмен мог происходить и в результате прямого взаимодействия ядерной и мтДНК, а интеграцию могли осуществлять ферменты, составляющие давно известные механизмы генетической рекомбинации.
Независимо от конкретных механизмов перемещения "ДНК старения" очевидно, что в стареющих клетках создаются как бы особенно благоприятные условия для распространения части мтДНК за пределы митохондрий и включения ее в яДНК.
Такие условия могут создаваться в процессе старения и клеток млекопитающих. Известно, что и в них происходит метаболизм мтДНК, а содержание ДНК в митохондриях старых клеток может снижаться, и, возможно, часть мтДНК также может размножаться в форме плазмиды и(или) внедряться в ядерную ДНК. Последний процесс облегчается при подготовке клетки к митозу, когда устраняется физический барьер между обеими частями генома – ядерная мембрана.
Но гены, с которыми связано старение, могут не только выходить из мтДНК, но и внедряться в нее. Это обнаружено в конце 1985 года Г. Вертрандом с соавторами при исследовании механизмов старения другого вида грибов – нейроспоры.
"ДНК старения" этого организма также имеет структуру мобильного генетического элемента, но его размер гораздо больше "ДНК старения" аскомицета и состоит из (9-10) 103 пар оснований. Штамм нейроспоры, обретшей способность не стареть, не содержит и «ДНК старения».
В рассматриваемом случае можно предположить, каким образом внедрение такой ДНК в митохондрии нарушает функции, а со временем приводит и к гибели нейроспоры. Дело в том, что эта ДНК включается в место локализации генов, контролирующих синтез рРНК (митохондрии осуществляют синтез нескольких белков с использованием собственных рибосом). Но в результате такого изменения мтДНК ее способность к синтезу рРНК нарушается и, следовательно, возникает дефицит митохондриальных рибосом, приводящий к нарушению жизненно необходимого для нейроспоры митохондриального синтеза белка.
Механизмы внедрения "ДНК старения" нейроспоры также пока не исследованы, но известно, что такое внедрение связано с образованием в мтДНК разрывов. Итак, мы опять приходим к заключению, что нестабильность ДНК, на этот раз мтДНК – одна из причин (а в данном случае – определяющая) старения клеток.
Конечно, механизмы и характер изменения и участия в старении генов мтДНК у клеток млекопитающих могут не ограничиваться кратко рассмотренным у грибов. Кроме того, "гены старения", способные к транспозиции, возможно, могут выщепляться из ядерной ДНК и размножаться в ядре. Во всяком случае, целостность ядерного генома нарушается не только вследствие депуринизации ДНК, образования в ней разрывов и т. д.
М. Фенч и А. А. Морли в конце 1985 года обнаружили в лимфоцитах, полученных из периферической крови людей в возрасте от 0 до 82 лет, фрагменты хроматина, не связанные с основной массой хроматина ядра. Содержание таких микроядер в клетках было тем больше, чем больше был возраст доноров, от которых получали эти клетки. Частота наблюдения микроядер также возрастала после повреждения ДНК рентгеновским облучением культивируемых in vitro лимфоцитов. Это свидетельствует, что увеличенная нестабильность ДНК и является причиной образования микроядер в лимфоцитах пожилых и старых людей.