Текст книги "Биологические основы старения и долголетия"
Автор книги: Михаил Виленчик
сообщить о нарушении
Текущая страница: 11 (всего у книги 16 страниц)
Однако одновременно это, по-моему, и один из плодотворных подходов для понимания механизмов регуляции функций организма, особенно его иммунологической защиты. Дело в том, что связь между защитными и регуляторными функциями обнаруживается при рассмотрении не только центральной нервной системы или гематоэнцефалического или плацентарного барьера, но и при анализе иммунологической системы. Кстати, роль нарушения "тройного взаимодействия" (функций головного мозга, гематоэнцефалического барьера и иммунологической системы) в старении может состоять, например, в следующем. У молодых организмов головной мозг защищен гематоэнцефалическим барьером таким образом, что в нем "не разыгрываются" иммунологические процессы. Но если при старении функции такого барьера нарушаются, это приводит к синтезу аутоантител против нервных клеток, а следовательно, и к нарушению функций головного мозга.
Другое свойство защитных систем – постоянное функционирование. Это касается не только иммунологической системы. Другие защитные механизмы также работают постоянно, а не только "в особых условиях". Правда, в специальной физиологической литературе высказывалось мнение, что защитная функция в здоровом организме практически не проявляется – она "включается" только в экстремальных условиях. Факты, приведенные ранее, а также те, что будут описаны в следующем разделе, показывают, что это не так.
Биохимические системы обезвреживания токсических мутагенных и канцерогенных веществ
Постоянно функционируют и биохимические системы защиты организма. Например, в крови имеются в небольших количествах различные физиологические активные вещества (желчные кислоты и т. д.), проникновению которых в мозг препятствует гематоэнцефалический барьер. Если желчные пигменты все же проникают в мозг (это бывает, например, при желтухе новорожденных), они оказывают на него токсическое действие.
В экстремальных условиях функции "физиологических мер защиты" (И. П. Павлов) проявляются более отчетливо. Но наряду с этим те же функции могут стать препятствием для лечения патологического процесса, изолируя орган от медикаментозных средств, например, мешая проникновению в инфицированный орган антибиотиков или других антибактериальных или противовирусных препаратов.
И при анализе биохимических систем внутренней защиты можно увидеть закономерность, которую мы видели раньше, говоря о проблеме физиологических систем защиты. Тогда была подчеркнута тесная связь регуляторных и защитных функций этих систем. Например, одним из важнейших нейромедиаторов является ацетилхолин – медиатор парасимпатического отдела вегетативной нервной системы. После выполнения своей функции (передачи нервного импульса) часть молекул ацетилхолина должна быть разрушена, иначе его постоянное образование с участием синтезирующего фермента – холинацетилтрансферазы приведет к накоплению его в больших количествах в нервных окончаниях и к поступлению его в нефизиологических количествах в кровь. Это нарушит нейрогуморальную регуляцию в организме. Защиту от такого нарушения осуществляет фермент холинэстераза, разрушающая ацетилхолин.
Но часть ацетилхолина все же попадает в кровь, и хотя небольшое его количество необходимо для гуморальной регуляции функции, накопление его в крови очень опасно.
Но организм обезопасил себя, вероятно, еще одной линией защиты от избытка ацетилхолина в крови. По данным Г. Н. Кассиля с сотрудниками, такую защиту осуществляют эритроциты, связывающие и тем самым обезвреживающие ацетилхолин. В уже цитированной книге этого автора проводится интересный анализ, свидетельствующий о существовании целого ряда уровней защиты организма от гистамина – физиологически очень активного вещества, постоянно вырабатываемого в организме и участвующего в регуляции деятельности некоторых органов. Однако если гистамин в крови человека начинает накапливаться, это вызывает нарушение различных функций. Избыточное образование в организме гистамина (или недостаточная защита от него!) может иметь значение в патогенезе таких широко распространенных заболеваний, как язвенная болезнь желудка или аллергия.
Приведенные примеры можно было бы продолжить, но и сказанного достаточно для того, чтобы представление И. П. Павлова о "физиологических мерах защиты" распространить на область биохимии.
Существует и специальная биохимическая система защиты от чужеродных веществ (ксенобиотиков), обладающих токсическими, мутагенными или канцерогенными свойствами. Эта барьерно-химическая защита особенно сильна в печени: с помощью ее обезвреживается большая часть поступающих в организм ксенобиотиков.
Важным элементом этой защиты являются гемсодержащие белки цитохром Р-450. Эта группа белков названа так вследствие того, что в восстановленной форме она в комплексе с окисью углерода имеет спектр поглощения с максимумом при 450 нм или вблизи этой полосы. Цитохром Р-450 – это общее название серии гемпротеидов, относимых к классу гидроксилаз, т. е. белков, участвующих в гидроксилировании поступающих в клетку веществ (или образуемых в ней или в других клетках стероидов и некоторых других метаболитов). При функционировании этих гидроксилаз (их называют еще монооксигеназами, так как они осуществляют включение только одного атома кислорода) происходит транспорт электронов по сложной цепи переносчиков, в результате чего восстанавливаются ионы железа, входящие в комплекс субстрата с цитохромом Р-450. В результате Fe3+ восстанавливается в Fe2+, а затем к последнему присоединяется О2. Тогда из внутриклеточной цепи переноса электронов «прибывает» еще один электрон, после чего координационно связанный кислород или О22- атакует субстрат, а цитохром Р-450 освобождается в состоянии, содержащем Fe3+.
Все исследованные до сих пор формы цитохрома Р-450 печени млекопитающих прочно связаны с мембранами эндоплазматического ретикулума (микросомами). Под влиянием различных ксенобиотиков концентрация этих белков резко возрастает. Такой процесс индукции происходит и под влиянием синтетических лекарств, также являющихся, как правило (к сожалению), чужеродными для организма. Например, после введения фенобарбитала гидроксилазная активность в печени возрастает примерно в 20 раз. Из важнейших свойств рассматриваемой биохимической системы отметим еще одно, касающееся механизмов ее действия, а именно превращение ксенобиотика из трудно в легко экскретируемую форму.
Как мы уже видели, такая работа сопровождается образованием , являющегося, как мы теперь знаем, индуктором переокисления липидов и генотоксическим агентом.
Рассматривая биологическую роль активных форм кислорода, мы подчеркнули и его участие в разрушении макрофагами бактерий. Таким образом, прослеживается практически одинаковая зависимость функционирования систем защиты от, казалось бы, столь разных факторов: химических чужеродных веществ или чужеродных бактерий.
Мы обсудили защитную функцию Р-450. Но драматический парадокс состоит в том, что Р-450 может не только обезвреживать потенциально канцерогенные вещества, но и катализировать их превращение в активные канцерогены. Например, 3-метилхолантрен, который содержится в выхлопных газах транспортных средств, индуцирует такую форму цитохрома Р-450, которая путем гидроксилирования этого полициклического углеводорода превращает его в сильный канцероген. Таким образом, мы опять приходим к парадоксальному заключению: защитная система оказывается и потенциально опасной, причем опасность эта скрытая.
Но все же регуляция ее возможна. Так, известно, что цитохром Р-450, индуцируемый барбитуратами, отличается от соответствующего белка, индуцируемого 3-метилхолентреном.
Теперь, имея представление о важнейших свойствах биохимической системы защиты, рассмотрим вкратце, как она изменяется при старении организма. Общее количество микросом (1 мг белка в расчете на 1 г массы ткани) в процессе старения крыс уменьшается. Изменение функциональной способности оксидазной системы микросом печени может быть обусловлено также уменьшением текучести липидного бислоя мембран микросом. О том, что физико-химическое изменение мембран происходит, свидетельствует изменение спектров электронного парамагнитного резонанса спиновой метки, растворимой в липидной фазе.
Дуглас Шмуклер и Роза Уонг из отдела биологии старения клетки медицинского центра и центра анатомии печени Калифорнийского университета исследовали активность системы НАДРН-цитохрома с – Р-450 – редуктазы микросом печени крыс 3, 9 и 27 месяцев. Оказалось, что удельная активность последнего фермента, как связанного, так и не связанного с мембранами микросом, наибольшая у 3– и 9-месячных крыс.
Поскольку содержание цитохрома Р-450 может возрастать при воздействии на организм токсических веществ большое значение имеет не только исходный уровень его активности, но и способность клеток к индуцированному синтезу такого белка. Добавки в пищу определенных сорбентов приводили к увеличению продолжительности жизни крыс на 30–40 %. Хотя содержание цитохрома Р-450 в их печени уменьшалось, потенциальная активность ферментных систем, обезвреживающих токсические вещества, существенно возрастала.
На основе этих данных можно полагать, что цитохром Р-450 участвует в обезвреживании не только токсических веществ, которые поступают извне, но и эндогенных токсических факторов. Иными словами, исходя из анализа биологических основ старения, мы можем предположительно находить новые грани работы биохимических систем. Что же касается самой идеи значения эндогенных токсических факторов в старении, то ее можно рассматривать как естественное продолжение представления И. И. Мечникова о роли токсинов. Правда, он имел в виду "токсины", синтезируемые не клетками организма, а живущими в его кишечнике микроорганизмами. Но ведь микроорганизмы, рассматривавшиеся И. И. Мечниковым, были не патогенными, а постоянно находящимися в организме. Во всяком случае, становится ясным, что в пожилом и старческом возрасте из-за снижения защитных возможностей даже эндогенная интоксикация организма может нарушать те или иные его функции путем усиления молекулярных механизмов деструкции: генома, полирибосом, мембран или "энергетических станций" клетки.
Тот же факт, что при старении уменьшается способность к индуцируемому синтезу микросомальных защитных ферментов, подтверждает общие закономерности, которые мы выявили ранее (см. главу II) при анализе других биологических основ старения: во-первых, то, что один из характерных признаков старения – снижение не только (и даже не столько) уровня функциональной активности клетки, органа или организма, сколько функциональной способности их, и, во-вторых, что в процессе, старения уменьшается способность клеток к индуцируемому синтезу по крайней мере некоторых белков. – Однако данные, полученные при экспериментальном исследовании печени грызунов, следует с осторожностью переносить на людей. Ведь такие данные позволяют делать лишь предположительные заключения об изменении защитной функции печени при старении всех млекопитающих. Так, один из основных результатов исследований рассматриваемой защитной системы состоит в том, что активность большинства ферментов микросом печени, участвующих в метаболизме чужеродных веществ, в частности лекарств, уменьшается с возрастом. Но значительны такие изменения лишь в печени самцов крыс, а не самок. В изолированных гепатоцитах печени самцов крыс обнаружено значительное снижение активности монооксигеназной системы, участвующей в метаболизме ксенобиотиков. Даже у мышей закономерности возрастных и половых различий ферментов, участвующих в таком метаболизме, отличаются от закономерностей, наблюдаемых у крыс. Правда, как правило, при старении всех исследованных грызунов наблюдается снижение с возрастом способности организма экскретировать с желчью неметаболизируемые печенью ксенобиотики и содержания в микросомах печени цитохрома Р-450.
Следовательно, можно предположить, что окислительный метаболизм ксенобиотиков, в частности лекарств, при старении млекопитающих, как правило, уменьшается. Если такая закономерность верна и для человека, то нужно предвидеть, что печень и организм в целом пожилого и тем более старого человека более чувствительны к токсическому действию факторов, загрязняющих окружающую среду, а также к побочному (токсическому) действию лекарств.
Неожиданными являются данные о половых различиях изменений у крыс активности ферментов микросом при старении. То, что такие изменения наблюдаются преимущественно у самцов, "соблазнительно" связать с известной закономерностью: ведь у млекопитающих вообще (включая человека) продолжительность жизни самцов обычно меньше, чем самок. Однако вопрос о том, какой "вклад" в это различие вносят половые особенности старения ферментов монооксигеназной системы клеток печени и всей печени в целом, пока может быть только поставлен.
Мы видим, что система защитных механизмов сложна и разнообразна, однако в организации и работе этой системы прослеживается систематичность. Прежде всего это касается взаимосвязи механизмов защиты на различных уровнях организации. Так, рассматривая физиологические механизмы защиты, мы пришли к заключению, что они взаимосвязаны с молекулярными (внутриклеточными) механизмами самозащиты, а последние представляют лишь часть глубинных ее эшелонов. Можно даже отметить однонаправленность физиологических и молекулярных механизмов защиты. Например, мы теперь понимаем, что в крови содержатся эндогенные, генотоксические вещества, от которых так же, как и от содержащихся в окружающей среде генотоксических факторов, нервные клетки головного мозга должны быть надежно защищены.
Сегодня мы можем расшифровать уже цитированное нами предвидение Стефана Цвейга: "Наш мозг… так хрупок, так сложен, что достаточно задетого сосудика… малейшего изменения какой-нибудь молекулы, чтобы нарушить высшую всеобъемлющую гармонию человеческого ума". Такая молекула теперь известна. Это ДНК, "малейшее изменение" которой может нарушить структуру жизненно важного белка и, следовательно, функцию нервной клетки.
Но если функции гематоэнцефалического барьера будут нарушены, то снизить уязвимость ДНК могут еще молекулярные системы обороны, включая механизмы репарации ДНК. Защиту же ДНК половых клеток осуществляют наряду с последними и гистогематические барьеры, а мужских половых клеток – гематотестикулярный.
Существуют и другие различные биологические барьеры для мутагенных и канцерогенных веществ. Например, чужеродные вещества, содержащиеся в окружающей среде и обладающие мутагенными свойствами, могут нейтрализоваться факторами, содержащимися в слюне. Известно также, что активность такого сильного мутагена, как N-метил-N′-нитро-N-нитрозогуанидана при попадании в кровь млекопитающих резко снижается. Ну а роль кожных покровов в предохранении организма от факторов, загрязняющих окружающую среду, известна каждому.
При сравнении молекулярных механизмов (биохимических) и клеточных защитных систем обнаруживается столь сильное сходство, что это не может не привести к мысли об общности их происхождения. Например, выше мы пришли к заключению, что в работе микросомальных гидроксилаз, защищающих организм от токсических и канцерогенных чужеродных веществ, и в функции макрофагов, защищающих организм от микробов, значение имеет образование супероксидного радикала.
Мы ограничили наш анализ защитных механизмов лишь животными организмами. Но ведь и растения имеют защитные механизмы, в частности, определяющие их устойчивость к патогенным для растений вирусам и грибкам. Есть основания полагать, что одно из звеньев этой системы обороны – выработка активных форм кислорода клетками растений с целью поражения этим химическим оружием патогенных для них биологических систем. Но клетки и животных, и растений, вырабатывая активные формы кислорода, неизбежно повреждают собственные структуры, включая генетические (о чем подробно было рассказано ранее), а также структуры других клеток. ДНКазы, участвуя в репарации ДНК, также неизбежно повреждают и здоровые участки генома и т. д.
Таким образом, работа защитных механизмов, направленная против вредных для клеток и организма воздействий, сама, оказывается, имеет "вредный" компонент. Становится ясным, что длительность существования клеток и организмов должна зависеть от соотношения благотворной функции и вредных последствий работы этих механизмов. Несовершенство систем защиты генетических и других структур клетки от радикалов ОН·, , от Н2О2, перекисей липидов и других эндогенно-образуемых потенциально вредных факторов служит одной из основных причин накопления с возрастом повреждений в ДНК, липофусцина – в цитоплазме, межмолекулярных сшивок – в межклеточном веществе.
Несовершенство систем репарации ДНК состоит не только в том, что часть повреждений "ускользает" от ре-парирующих ферментов, но и в том, что эти же ферменты могут функционировать с ошибками, тем самым усиливая повреждения и становясь механизмом не защиты, а развития болезни.
Лишь имея это в виду, можно понять и следующую, казалось бы, парадоксальную закономерность в организации различных млекопитающих. Активность ферментов цитохрома Р-450 тем больше, чем меньше их видовая продолжительность жизни. Эти ферменты участвуют в метаболизме не только чужеродных веществ (о чем было рассказано ранее), но и стероидных гормонов, причем и в процессе таких биохимических превращений могут образовываться свободные радикалы. Эти вещества, содержащие неспаренные электроны и потому обладающие высокой реакционной способностью, также могут повреждать и ДНК, и другие структуры клетки и разрушать межклеточное вещество. Таким образом, защитные биохимические системы участвует и в нормальном метаболизме; причем в результате этого могут происходить "побочные" биохимические процессы, отдаленным последствием которых может быть снижение жизнеспособности организма и увеличение его предрасположенности к болезням.
Следовательно, при обобщении основного из сказанного до сих пор о механизмах старения логичен вывод: снижение функциональной способности с возрастом можно связать с отмеченным несовершенством функции защитных систем и тем, что это несовершенство в процессе старения усиливается, т. е. эффективность работы защитных систем ухудшается.
Кроме того, со снижением эффективности работы защитных систем связан, вероятно, и другой класс свойств организма, неизбежно сопровождающий старение, – увеличение предрасположенности к болезням.
Глава V
Старение и связанные с ним болезни
Установлено, что вероятность развития таких наиболее распространенных заболеваний, как атеросклероз и ряд других сердечно-сосудистых или большинство раковых, неуклонно возрастает по мере увеличения возраста человека. Вследствие такой, можно сказать, трагической закономерности сохраняется ситуация, которую известный отечественный физиолог Г. Н. Кассиль в своей вышедшей в 1978 году книге «Внутренняя среда организма» охарактеризовал следующими словами: «Преждевременная старость сводит в могилу еще способных жить и творить людей. Люди живут гораздо меньше, чем должны были бы жить… Нормальная смерть или смерть от истинной старости встречается редко, не чаще, чем одна на 100 тысяч».
Однако известно и то, что в последние десятилетия в индустриально развитых странах значительно возросла средняя продолжительность жизни человека. Этого удалось достичь благодаря успехам медицины в лечении и профилактике инфекционных болезней. Поэтому сегодня на первый план выступает борьба с сердечно-сосудистыми и раковыми заболеваниями, являющимися основной причиной гибели большинства людей задолго до того, как "истечет" их век. Так, например, в США из всех погибших в течение года взрослых людей 90 % умирают от этих заболеваний.
Вместе с тем ряд зарубежных геронтологов утверждают, что излечение от сердечно-сосудистых заболеваний увеличит среднюю продолжительность жизни современных людей на 7 лет, а излечение от раковых и вовсе лишь на 1–3 года. С нашей точки зрения, это упрощенный подход к серьезной проблеме. В нем не учтено, например, что хронические заболевания протекают длительно, способствуя развитию других патологических процессов и одряхлению организма. Это относится, в частности, и к атеросклерозу: он не только является одной из причин смертности, диагностируемых патологоанатомами, но и способствует нарушению функций различных органов, увеличивает уязвимость организма к другим, например инфекционным, заболеваниям. Таким образом, полный контроль за атеросклерозом (а не только устранение его как причины смерти) должен увеличить среднюю продолжительность жизни и задержать наступление старости на больший срок, чем это следует из приведенных выше результатов расчетного анализа причин смертности. С другой стороны, мы теперь понимаем, что торможение процесса старения клеток и межклеточного вещества – это в то же время и путь профилактики и атеросклероза, и рака, и многих других заболеваний.
В последние годы стало общепринятым представление о роли в опухолевом росте превращения определенных клеточных генов (протоонкогенов) в онкогены, которые кодируют белки, ответственные за злокачественную трансформацию. Говоря о роли нестабильности ДНК и о накоплении повреждений ДНК с возрастом как об одной из причин увеличения предрасположенности стареющего организма к раку, можно допустить, что критическое значение здесь имеет повреждение именно клеточных протоонкогенов. В результате такого повреждения протоонкогены мутируют, превращаясь в онкогены, и(или) активируются.
Последнее означает, что активность онкогенов больше активности протоонкогенов. Но эта активация не всегда обусловлена мутацией. Например, изменение характера метилирования ДНК (как правило, уменьшение ее) также может быть причиной активации генов. Но ведь при работе на поврежденной ДНК функция ДНК-метилазы, катализирующей процесс метилирования матрицы, нарушается. Следовательно, мы нашли еще одну причину, причем важнейшую (активация онкогенов вследствие накопления повреждений ДНК с возрастом) и, следовательно, конкретизировали наиболее вероятный молекулярный механизм учащения опухолевых заболеваний в процессе старения.
Далее возникает новый вопрос: нельзя ли подавить функцию онкогенов и тем самым уменьшить опасность одного из дамокловых мечей, висящих над людьми, пока кажущегося неизбежным учащения опухолевых заболеваний с возрастом? Если еще несколько лет назад эта проблема могла быть отнесена лишь к области фантастики, теперь уже просматривается несколько способов торможения онкогенов. Один из них – посредством активации антионкогенов – генов, тормозящих функцию онкогенов. Эта идея уже обсуждалась биологами, в частности, с участием Д. Уотсона (того самого, который открыл с Ф. Криком двойную спираль ДНК). В беседе с ним в Пущино летом 1985 года автор этих строк узнал, что в США к сходному предположению пришли другие исследователи и что изучение антионкогенов Д. Уотсон также считает очень перспективным в плане понимания механизмов рака.
Наверное, в этом эпизоде примечательно и то, что об этих механизмах, о перспективах их исследования говорилось как об актуальной уже не только медицинской, но и не в меньшей степени и биологической проблеме. Значение биологических подходов для понимания причин учащения опухолевых заболеваний с возрастом можно понять, продолжив рассмотрение положительных и отрицательных последствий активации защитных систем.
О сложном переплетении благотворных и опасных последствий от активации иммунологической системы свидетельствуют следующие факты, полученные в 1985 году группой исследователей Массачусетского главного госпиталя Гарвардской медицинской школы в Бостоне (США). Мышам вводили фагоциты человека, активированные для выработки активных форм кислорода. Примерно у каждой четвертой из опытных мышей наблюдали развитие злокачественной или доброкачественной опухоли. В контрольной группе животных, которым также вводили фагоциты человека, но такие, у которых не была индуцирована выработка активных форм кислорода, учащения развития опухолей не наблюдали.
Известно, что частички дыма, накапливаемые в легких курильщиков, активируют фагоциты. Кроме того, фагоциты удаляют отмирающие клетки в тканях, например в молочной железе женщин, где происходит интенсивное обновление клеток. Следовательно, во всех этих случаях активная "защитная работа" фагоцитов неизбежно сопровождается выделением ими активных форм (радикалов) кислорода. Весьма вероятно, что они, в свою очередь (см. главу III), активируют перекисное окисление липидов мембран здоровых клеток и вызывают повреждение их ДНК, что и увеличивает риск развития опухолевых заболеваний. Но не только их.
В 1985 году были опубликованы данные группы американских кардиологов, изучавших развитие экспериментального атеросклероза у обезьян под влиянием диеты с высоким содержанием жира, т. е. в условиях, моделирующих те, что способствуют развитию атеросклероза у человека. Исследователи установили: важной причиной развития этого заболевания является "прилипание" моноцитов к эндотелию артерий и затем превращение их в макрофагов, "пожирающих" капельки жира. Эти факты указывают на то, что в исследованных макрофагах также стимулировалась выработка активных форм кислорода, повреждающих внутреннюю стенку сосудов. А в местах повреждения затем и могли формироваться атеросклеротические бляшки. Следовательно, в этиопатогенезе атеросклероза может иметь значение "побочная" активность макрофагов. И чем больше эта активность, тем больше вероятность заболевания.
Как я уже подчеркивал, началом развития биологии старения и всей современной геронтологии можно считать работы основателя иммунологии И. И. Мечникова, который рассматривал два основных механизма старения: пожирание макрофагами "благородных" клеток органов и отравление клеток токсинами, вырабатываемыми бактериями, живущими в кишечнике каждого человека. Спустя почти сто лет, развивая концепцию И. И. Мечникова, мы приходим к заключению, что в действительности макрофаги сначала сами отравляют "благородные" клетки различных органов, а затем "пожирают" погибающие клетки.
Что касается, так сказать, классического "генетически предопределенного" ускоренного старения, то такое заболевание было описано в 1886 году Дж. Хатчинсоном и в 1904 году Х. Гилфордом. Последний назвал такое заболевание прогерией. У людей, страдающих этим заболеванием, уже в раннем детстве наблюдается облысение и поседение, сморщивание кожи, атеросклероз, разрастание соединительной ткани в мышце сердца, т. е. классические симптомы старения. Продолжительность жизни больных прогерией обычно меньше 16 лет.
Несколько иначе протекает преждевременное старение при синдроме Вернера. В этом случае рост организма прекращается в 12 лет, поседение и облысение наблюдаются в 20 лет и примерно в этом же возрасте развиваются такие "старческие" симптомы, как атеросклероз, катаракта, а у больных женщин рано наступает менопауза. Заболевание начинается в 15–30 лет, а средняя продолжительность жизни таких больных около 47 лет.
Специальные исследования показали, что способность к репарации ДНК клеток людей, страдающих синдромом преждевременного старения, ниже, чем клеток здоровых людей, хотя величина этого различия зависит от условий эксперимента и может быть очень небольшой.
В процессе старения резко учащается развитие не только опухолевых, сердечно-сосудистых или аутоиммунных заболеваний, но и, например, таких, как остеоартрит и катаракта. Опыты на лабораторных животных, а также результаты обследований людей, получивших рентгеновское облучение по медицинским показаниям, и данные других обследований свидетельствуют: развитие таких заболеваний у человека и других млекопитающих ускоряется под влиянием ионизирующей радиации. Причем есть основания полагать, что в этом случае деструктивные (патологические) процессы инициируются свободнорадикальными реакциями, в частности активными кислородными радикалами.
В главе III была подчеркнута роль таких радикалов в молекулярных возрастных изменениях коллагеновых и эластиновых нитей межклеточного вещества. Такие изменения, в свою очередь, служат основой нарушения при старении взаимодействия между клетками и их снабжения кислородом и различными питательными веществами. Это связанно с тем, что затрудняется диффузия веществ не только между клетками, но и между ними и кровью. Ведь и коллагеновые, и эластиновые волокна входят в состав сосудистой стенки. Следовательно, то, что последняя с возрастом становится более плотной, менее эластичной, зависит от рассмотренных нами молекулярных изменений коллагена и эластина. Такие изменения ЯВЛЯЮТСЯ одним из факторов, которые делают сосудистую стенку с возрастом более уязвимой к атеросклерозу. Это еще один конкретный пример того, как старение подготавливает почву для развития наиболее распространенных и тяжелых заболеваний.
Ускоренное старение клеток головного мозга человека по такому признаку, как накопление в этих клетках пигмента старения – липофусцина, наблюдается при цероидном липофусцинозе. Как видно из названия этой болезни, у людей, страдающих ею, в нервных клетках (точнее, в пирамидальных нейронах определенных областей головного мозга) накапливается большое количество липофусцина. Это может приводить к гибели таких клеток.
Недавно группа швейцарских исследователей (Ганс Браак с соавторами, 1984) обнаружила крайне интересные явления. У щенка английского сеттера в возрасте 20 месяцев в пирамидальных нейронах мозга выявилось накопление липофусцина, подобно тому как это происходит в тех же нейронах при цероидном липофусцинозе человека. Сходные изменения происходят и при нормальном старении нервных клеток участков мозга, хотя в последнем случае эти изменения значительно более медленны, чем при рассматриваемом наследственном заболевании. Таким образом, теперь имеется модель для исследования старения нервных клеток человека, позволяющая в течение всего нескольких лет исследовать механизмы этого процесса и(или) факторы, тормозящие его.
Старческое слабоумие, старческий склероз мозга, пресенильная (предстарческая) деменция – все это названия, как теперь полагают многие психиатры и невропатологи, одной болезни. Той самой, которую еще в 1907 году описал немецкий невропатолог Алоис Альцгеймер (поэтому ее обычно называют болезнью Альцгеймера). Правда, Альцгеймер обнаруживал это заболевание лишь у некоторых людей 40–50 лет, и его долго считали особой формой пресенильного слабоумия. Подобные же симптомы у пожилых людей объясняли тем, что это следствие "одряхления" их организма или "отвердения" артерий мозга.