355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Мартин Гарднер » А ну-ка, догадайся! » Текст книги (страница 7)
А ну-ка, догадайся!
  • Текст добавлен: 4 октября 2016, 00:28

Текст книги "А ну-ка, догадайся!"


Автор книги: Мартин Гарднер


Жанр:

   

Развлечения


сообщить о нарушении

Текущая страница: 7 (всего у книги 11 страниц)

В том, что это действительно так, вы легко убедитесь, взяв туза пик и два туза красных (бубновой и червовой) мастей. Перетасовав карты, разложите их в ряд на столе вверх рубашкой. Попросите кого-нибудь выбрать одну из карт. Какова вероятность, что выбранная карта будет тузом пик? Ясно, что эта вероятность равна 1/3.

Предположим теперь, что вы заглянули в две карты, на которые не пал выбор вашего ассистента, и перевернули один из красных тузов вверх картинкой. Вы можете рассуждать следующим образом (именно так и рассуждал зазывала). Вверх рубашкой лежат только две карты. Туз пик с равной вероятностью может быть любой из них. Следовательно, вероятность того, что выбран именно туз пик, возросла до 1/2. В действительности же эта вероятность и после того, как вы перевернули красный туз вверх картинкой, осталась равной 1/3. Дело в том, что, заглянув в две оставшиеся невыбранными карты, вы всегда можете повернуть вверх картинкой именно красный туз; это ваше действие не несет никакой информации, которая могла бы повлиять на оценку вероятности угадывания туза пик.

Вы можете удивить своих друзей, показав им следующую разновидность игры в «три скорлупки».

Вместо того чтобы самому заглядывать в две оставшиеся невыбранными карты и узнавать, какая из них красный туз, попросите вашего ассистента (того, кто выбрал одну из карт) перевернуть одну из двух остальных карт вверх картинкой. Если перевернутая карта окажется тузом пик, то расклад объявляется недействительным и игра повторяется до тех пор, пока перевернутая карта не окажется одним из красных тузов. Увеличивает ли подобная процедура вероятность угадать туз пик?

Как ни странно, эта процедура увеличивает вероятность угадать туз пик до 1/2. В этом мы можем убедиться, рассмотрев простой случай. Перенумеруем карты слева направо числами 1, 2 и 3. Предположим, что ваш ассистент выбрал карту 2 и перевернул вверх картинкой карту 3, которая оказалась красным тузом.

Карты при этом могут быть разложены следующими 6 способами:


Если бы третья (перевернутая) карта оказалась тузом пик, то расклад был бы объявлен недействительным. Следовательно, комбинации 4 и 6 можно исключить из рассмотрения. В четырех остальных случаях (1, 2, 3 и 5) карта 2, выбранная ассистентом, дважды оказывается тузом пик. Следовательно, вероятность того, что карта 2 – туз пик, равна 2/4 = 1/2.

К аналогичному результату мы пришли бы независимо от того, какую карту выберет ассистент и какая из двух остальных карт, если ее перевернуть, окажется красным тузом. Вот если бы мистеру Марку разрешалось выбрать одну из оставшихся скорлупок и она при переворачивании оказалась бы пустой, то тогда его шансы на выигрыш действительно увеличились бы с 1/3 до 1/2.


Три игральные кости

Если вам случится побывать на американской ярмарке, держитесь подальше от павильона, где всем желающим предлагают сыграть в «Чак-э-лак». Многие люди поддаются на уговоры зазывал, считая эту игру беспроигрышной.


Играют в «Чак-э-лак» следующим образом. В специальной клетке из проволоки находятся 3 игральные кости. Их встряхивают, переворачивая клетку. Игрок ставит на любое число от 1 до 6. Если названное число выпадет на одной кости, банкомет возвращает игроку ставку. Если названное число выпадет на двух или трех костях, игроку соответственно возвращают удвоенную или утроенную ставку.

Игроки часто рассуждают так.



М-р Марк.Если бы в клетке была только одна кость, названное мной число выпадало бы только 1 раз из 6. Если бы в клетке было две кости, то названное ло выпадало бы в 2 случаях из 6.

А поскольку в клетке три игральные кости, то названное число должно выпадать в 3 случаях из 6. Шансы на выигрыш и на проигрыш равны!



М-р Марк.Но мои шансы на выигрыш еще выше! Если я поставлю 1 доллар, например, на пятерку и пятерка выпадет на двух костях, то я выиграю 2 доллара.

А если пятерка выпадет на трех костях, то я выиграю 3 доллара.

Игра явно должна идти в мою пользу.


Если все посетители игорных домов думают так же, как и мистер Марк, то не приходится удивляться, что владельцы игорных домов становятся миллионерами!

Почему при игре «Чак-э-лак» игорный дом имеет значительно большие шансы на выигрыш, чем мистер Марк?

В «Чак-э-лак» играют во многих игорных домах в США и других странах. В Англии эта игра стала называться «Птичья клетка». Иногда в нее играют тремя костями, на гранях которых вместо точек по числу очков изображены туз бубен, туз треф, туз пик, туз червей, корона и якорь, в этом случае игру называют «Корона и якорь».

На ярмарках зазывалы обычно выкрикивают: «За один раз три выигрыша и три проигрыша!» У посетителей создается впечатление, что игра «Чак-э-лак» честная: ни одна из сторон не имеет преимущества перед другой стороной. Игра действительно была бы честной, если бы на костях всегда выпадало различное число очков. После каждого поворота клетки банкомет забирал бы 3 доллара у трех проигравших и выплачивал бы 3 даллара трем выигравшим (если на каждое число очков игроки ставят по 1 доллару).

К счастью для банкомета, одно и то же число очков часто выпадает на двух или трех костях. Если одно и то же число очков выпадает на двух костях, то банкомет забирает у проигравших 4 доллара и выплачивает выигравшим 3 доллара, извлекая прибыль в 1 доллар. Если одно и то же число очков выпадает на трех костях, то банкомет забирает у проигравших 5 долларов и выплачивает выигравшему 3 доллара, извлекая прибыль в 2 доллара. Итак, числа, выпадающие одновременно на двух и трех игральных костях, составляют истинную основу благосостояния игорного дома.

Вычислить прибыль, которую приносит игорному дому игра «Чак-э-лак», по формулам – дело довольно хитрое. Проще всего составить полный список всех 216 возможных исходов бросания 3 игральных костей и убедиться, что в 120 случаях на трех костях выпадает 134 различное число очков, в 90 случаях одно и то же число выпадает на двух костях и в 6 случаях – на трех костях. Предположим, что игорный дом провел серию из 216 партий в «Чак-э-лак», причем во всех 216 случаях исходы бросания трех костей были различными. В каждой партии 6 людей поставили по 1 доллару на каждое из 6 чисел. Следовательно, банкомет собрал ставок на общую сумму 210х6 = 1296 долларов. В тех случаях, когда на всех трех костях выпало различное число очков, он выплатил 120х6 = 720 долларов. В тех случаях, когда на двух костях выпало по одинаковому числу очков, банкомет выплатил 90х2 = 180 долларов тем, кто угадал число очков на третьей кости (неповторяющееся), и 90х3 = 270 долларов тем, кто угадал число очков, выпавшее на двух костях. Наконец, в тех случаях, когда одно и то же число очков выпало на трех костях, банкомет выплатил 6х4 = 24 доллара. Таким образом, всего банкомет выплатил 1194 доллара.

Прибыль игорного дома составила 102 доллара, или 102/1296 = 1,078…, то есть более 7,8 %. Это означает, что в длинной серии игр в среднем игрок теряет около 7,8 цента на каждый поставленный им доллар.

А каковы шансы на выигрыш при одном бросании?

Если кости выкрашены в различные цвета, например одна в красный, другая в зеленый, а третья в синий цвета, то 1 очко на красной кости при любом числе очков на двух остальных костях может выпасть 36 различными способами. В 30 случаях число очков на красной кости отлично от 1, на зеленой кости равно 1, на синей кости – любое. Наконец, в 25 случаях число очков на красной и на зеленой костях отлично от 1, а на синей равно 1. Следовательно, в 91 случае из 216 по крайней мере на одной кости выпадает 1 очко. Следовательно, вероятность выиграть, поставив на 1 очко, составляет 91/216, то есть значительно меньше 1/2. То же самое справедливо и относительно любого другого числа очков.


Удивительные попугаи

У одной дамы было два попугая. Однажды гость спросил ее:

Гость.Один из попугаев самец?

Хозяйка.Да.

Какова вероятность того, что оба попугая самцы? Эта вероятность равна 1/3.


Предположим, что гость спросил даму, указывая на клетку с темным попугаем:

ГостьЭто самец?

Хозяйка.Да

На этот раз вероятность того, что оба попугая самцы повышается до 1/2. Странно! Почему вопрос, заданный о птице с темным оперением, так сильно сказывается на вероятности?


Парадокс легко решается, если выписать все возможные случаи.

Если гость знает, что один из попугаев самец, то возможны три случая. Только в одном из них оба попугая самцы Следовательно, вероятность того, что оба попугая самцы, составляет 1/3. (Мы предполагаем, что в каждой клетке с равной вероятностью может оказаться как самец, так и самка.)


Но если гость знает, что темный попугай самец, то возможны лишь 2 случая. Только в одном из них оба попугая самцы. Следовательно, вероятность того, что оба попугая самцы, составляет 1/2.

Задачу с попугаями можно промоделировать, попросив кого-нибудь бросить 2 монеты различного достоинства и высказать некоторые утверждения относительно исходов бросаний. Бросающий может избрать одну из нескольких процедур.

1. Если выпадут два «орла», заявить: „По крайней мере одна монета выпала вверх «орлом»". Если выпадут две «решки», заявить: „По крайней мере одна монета выпала вверх «решкой»". Если одна монета выпадет вверх «орлом», а другая – вверх «решкой», заявите «По крайней мере одна монета выпала вверх…» и дальше по своему усмотрению сказать либо «орлом», либо «решкой». Какова вероятность, что обе монеты выпали вверх той стороной, которую назвал бросающий?

Ответ: 1/2.

2. Бросающий монеты заранее предупреждает, что заявит: „По крайней мере одна монета выпала вверх «орлом»" только при условии, если это действительно так. Если ни одна монета не выпадет вверх «орлом», он промолчит и бросит монеты еще раз. Какова вероятность, что обе монеты выпали вверх «орлом»?

Ответ: 1/3. (На этот раз исход, когда обе монеты выпадают вверх «решками», исключается из рассмотрения, так как при таком исходе бросающий промолчит.)

3. Бросающий монеты заранее предупреждает, что объявит о том, какой стороной вверх выпадет монета меньшего достоинства, независимо от того, будет ли это «орел» или «решка». Какова вероятность того,» что обе монеты выпадут вверх одной и той же стороной?

Ответ: 1/2.

4. Бросающий монеты заранее предупреждает, что заявит: „По крайней мере одна монета выпала вверх «орлом»" только в том случае, если вверх «орлом» выпадет монета меньшего достоинства. Какова вероятность того, что обе монеты выпали вверх «орлами»?

Ответ: 1/2.

Иногда парадокс с попугаями излагают в форме, не позволяющей решить его однозначно. Представьте себе, вы встретили незнакомца, заявившего: «У меня двое детей. По крайней мере один мальчик», Какова вероятность, что у незнакомца два сына?

Эта задача поставлена неточно: вы остаетесь в неведении относительно обстоятельств, побудивших незнакомца сделать заявление. С такой же вероятностью он мог бы, например, сообщить вам: «По крайней мере одна девочка», выбрав наугад девочку или мальчика, если у него сын и дочь, или назвав пол одного из детей, если у него два сына или две дочери. При этих условиях вероятность того, что у незнакомца два сына, равна 1/2. Подобная ситуация соответствует первой из четырех перечисленных нами процедур.

В парадоксе с попугаями неоднозначность устраняется тем, что гость задает вопрос. Первый вопрос («По крайней мере один из попугаев самец?») соответствует второй из четырех приведенных выше процедур. Второй вопрос («Темный попугай самец?») соответствует четвертой процедуре.

С парадоксом о двух попугаях тесно связан еще более удивительный парадокс, известный под названием «парадокс второго туза». Предположим, что вы играете в бридж. Взглянув после раздачи в свои карты, вы заявляете: «У меня туз». Какова вероятность, что у вас есть второй туз?

Ответ: 5359/14498, что меньше 1/2.

Предположим теперь, что всех партнеров интересует какой-то определенный туз, например, туз пик. Игра продолжается до тех пор, пока после очередной раздачи карт вы не заявите: «Туз пик у меня». Какова вероятность того, что у вас есть второй туз?

Ответ: 11636/20825, что чуть больше 1/2! Почему выбор определенного туза так изменяет шансы?

Вычисление вероятностей для всей колоды громоздко и утомительно, но суть парадокса легко понять, если воспользоваться «мини-колодой» из четырех карт, например из туза пик, туза червей, двойки треф и валета бубен. (Упрощение задачи за счет уменьшения числа элементов рассматриваемого множества нередко позволяет легко разобраться в структуре проблемы.) Колоду из четырех карт перетасуем и раздадим двум игрокам.

Существует всего 6 равновероятных вариантов взяток (по 2 карты в каждой) – см. рисунок на стр. 139.


В 5 из 6 случаев игрок может заявить: «У меня туз», но второй туз у него будет лишь в одном случае из 5. Следовательно, вероятность того, что у игрока имеется второй туз, равна 1/5.

В трех случаях игрок может заявить: «У меня туз пик». Лишь в одном из этих трех случаев у него имеется второй туз. Следовательно, вероятность того, что у игрока есть второй туз, равна 1/3. Заметим, что партнеры должны заранее условиться, какой масти туз их интересует, а также о том, кто будет объявлять, если ему попадется избранный туз. Без этих оговорок задача может стать неопределенной.


Чей кошелек толще?

Профессор Смит однажды обедал вместе с двумя студентами-математиками.

Профессор Смит.Хотите сыграть в новую игру? Каждый из вас выкладывает кошелек на стол.

Выигрывает тот, в чьем кошельке денег окажется меньше, и получает все деньги из другого кошелька.



Джо.Если у меня денег больше, чем у Джилл, то она выиграет и мои деньги достанутся ей. Если же у нее денег больше, чем у меня, то выиграю я. Следовательно, я выиграю больше, чем могу потерять. Эта игра для меня выгоднее, чем для Джилл.



Джилл.Если у меня больше денег, чем у Джо, то он выиграет и мои деньги достанутся ему. Если же у него денег больше, чем у меня, то выиграю я. Следовательно, я выиграю больше, чем могу проиграть. Эта игра для меня выгоднее, чем для Джо.


Может ли одна и та же игра «быть выгоднее» для каждого из двух партнеров? Ясно, что не может. Не возникает ли парадокс из-за того, что каждый игрок ошибочно полагает, будто его шансы на выигрыш и проигрыш равны?

Этот забавный парадокс заимствован из книги французского математика Мориса Крайчика«Математические развлечения». У Крайчика речь идет не о кошельках, а о галстуках:

Каждый из двух лиц утверждает, что его галстук красивее. Чтобы решить спор, они обращаются к третейскому судье. Победитель должен подарить побежденному сбой галстук в утешение. Каждый из спорщиков рассуждает следующим образом: «Я знаю, сколько стоит мой галстук. Я могу проиграть его, но могу и выиграть более красивый галстук, поэтому в этом споре преимущество на моей стороне». Как может в одной игре с двумя участниками преимущество быть на стороне каждого из них?

Игра, о которой поведал читателям Крайчик, честная, если мы с помощью некоторых дополнительных предположений четко и однозначно сформулируем правила игры. Так, если мы располагаем сведениями о том, что один из игроков имеет при себе меньшую сумму денег, чем другой, или имеет обыкновение носить дрянные галстуки, то игру нельзя будет считать честной. Но если мы не располагаем подобной информацией, то вполне допустимо предположить, что каждый из игроков имеет при себе некую случайную сумму денег – от нуля до некоторого максимального предела, например до 100 долларов Если, исходя из этого предположения, мы построим, как это сделано в книге Крайчика, матрицу платежей, то увидим, что игра «симметрична» и ни один из игроков не имеет преимущества.

К сожалению, это ничего не говорит нам о том, где именно в рассуждениях двух игроков кроется ошибка. Как мы ни бились, нам так и не удалось найти простое и удовлетворительное решение парадокса Крайчика. Книга Крайчика ничем не может нам помочь, а других работ, посвященных этой игре, насколько известно, не существует.


Принцип безразличия

Есть ля жизнь на Титане, самом крупном из спутников Сатурна?


Если на подобные вопросы вы с равной вероятностью отвечаете как утвердительно, так и отрицательно, то это означает, что вы слепо следуете «принципу безразличия». Необдуманное применение этого принципа не раз заводило многих математиков, физиков и даже великих философов в тенета абсурда.

«Принцип недостаточного основания», который экономист Джон Мейнард Кейнсв своем «Трактате по теории вероятностей» переименовал в «принцип безразличия», можно сформулировать следующим образом: если у нас нет веских причин считать нечто истинным или ложным, то это «нечто» мы с равной вероятностью можем считать как истинным, так и ложным.

Принцип безразличия имеет долгую и славную историю. Его применяли в столь разных областях человеческого знания, как естествознание, этика, статистика, экономика, философия, психология. При неправильном применении этот принцип приводит к парадоксам и прямым логическим противоречиям. Французский астроном и математик Лаплас однажды, воспользовшись принципом безразличия, вычислил вероятность того, что завтра утром взойдет солнце, и получил 1826214:1!

Посмотрим, какие противоречия возникают, если воспользоваться принципом безразличия при ответах на вопросы о жизни на Титане. Какова вероятность того, что на Титане есть жизнь? Применив принцип безразличия, мы получим, что эта вероятность равна 1/2. Какова вероятность того, что на Титане нет простейших растений? И на этот вопрос принцип безразличия дает ответ: 1/2. Какова вероятность того, что на Титане нет простейших животных? Ответ снова гласит: 1/2. А какова вероятность того, что на Титане нет ни простейших растений, ни простейших животных? По законам теории вероятностей мы должны умножить 1/2 на 1/2 и получить 1/4. Следовательно, вероятность того, что на Титане есть какая-то жизнь, повысилась до 3/4 вопреки прежней оценке, равной 1/2.

В приведенном выше примере к абсурдным результатам принцип безразличия приводит в сочетании с некоторым дополнительным допущением. Мы молчаливо предполагали, что события, заведомо не являющиеся независимыми, независимы. В свете теории эволюции вероятность существования разума на Титане зависит от существования на нем низших форм жизни.

Приведем еще один поучительный пример неосторожного применения принципа безразличия – парадокс со спрятанным кубом. Предположим, что вам сообщили: «В кладовке спрятан куб с длиной ребра от 2 до 4 см». Поскольку у вас нет оснований предполагать, что длина ребра куба меньше или больше 3 см, вам лучше всего принять ее равной 3 см. А каков объем спрятанного куба? Он должен быть заключен в пределах от 2 3= 8 до 4 3= 64 см 3. Поскольку у вас нет оснований считать, что объем куба меньше или больше 36 см 3, вам лучше всего принять его равным 36 см 3. Иначе говоря, по вашим лучшим оценкам, ребро куба имеет длину 3 см, а объем куба составляет 36 см 3. Странный какой-то куб, вы не находите?

Иначе говоря, применив принцип безразличия к оценке длины ребра спрятанного куба, вы получаете куб с длиной ребра 3 см и с объемом 27 см 3. Применив тот же принцип к оценке объема куба, вы получите куб объемом 36 см 3и длиной ребра, равной (36) 1/3примерно = 3,30 см.

Парадокс с кубом – хорошая модель для демонстрации того, с какими трудностями могут столкнуться физик или статистик, оценивая некую величину по ее максимуму и минимуму и считая, что истинное значение величины, вероятнее всего, лежит посредине между максимумом и минимумом.

Принцип безразличия на вполне законном основании применяется в теории вероятностей, но лишь в тех случаях, когда симметрия ситуации служит объективным основанием для принятия гипотезы о равенстве вероятностей. Например, монета геометрически симметрична: между аверсом и реверсом монеты вы можете провести плоскость симметрии. Монета физически симметрична: ее плотность постоянна по всему объему, иначе говоря, ни лицевая, ни оборотная сторона не имеет перевеса. Силы, действующие на подброшенную монету в воздухе – сила тяжести, давление воздуха и т. д., – симметричны: они не выделяют ни одну из сторон. Следовательно, мы можем с полным основанием считать, что вероятности выпадения «орла» и «решки» равны. Аналогичные соображения симметрии применимы и к шести граням кубической игральной кости, и к 38 ямкам на колесе рулетки.

В каждом из этих случаев обширные эксперименты, проводившиеся в игорных домах и казино, показали правильность и пределы применимости соображений симметрии. В тех случаях, когда симметрия заранее не известна и может даже не существовать, применение принципа безразличия нередко приводит к абсурдным результатам.


    Ваша оценка произведения:

Популярные книги за неделю