355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Мартин Гарднер » А ну-ка, догадайся! » Текст книги (страница 10)
А ну-ка, догадайся!
  • Текст добавлен: 4 октября 2016, 00:28

Текст книги "А ну-ка, догадайся!"


Автор книги: Мартин Гарднер


Жанр:

   

Развлечения


сообщить о нарушении

Текущая страница: 10 (всего у книги 11 страниц)

Ваша интуиция подсказывает вам, что червяк никогда не доползет до конца каната, но он все же доползет! Доползет-то доползет, но когда?

Задача легко решается, если учесть, что канат растягивается равномерно, как резиновая лента. Следовательно, при каждом растяжении червяк переезжает вперед – его переносит на себе, растягиваясь, сам канат.

Путь, пройденный червяком за каждую секунду, удобно выражать в долях длины каната к концу той же секунды. Как только сумма дробей, выражающих эти доли, станет равной 1, червяк достигнет конца каната.

В одном километре 100000 см, поэтому за первую секунду червяк преодолеет 1/100000 длины каната. За вторую секунду червяк проползет еще 1 см, что составляет 1/200000 от новой длины каната, которая достигнет уже 2 км. За третью секунду червяк проползает еще 1 см, что составляет 1/300000 от длины каната, которая к этому времени достигнет 3 км, и т. д. По истечении kсекунд червяк проползет расстояние, составляющее от «текущей» длины каната долю, которая представима в виде

В скобках стоит сумма первых kчленов так называемого гармонического ряда. Заметим, что сумма членов, заключенных между 1/2 и 1/4, включая 1/4, то есть 1/3 + 1/4 больше, чем 2 х 1/4 = 1/2. Аналогично сумма членов, заключенных между 1/4 и 1/8, включая 1/8, то есть 1/5 + 1/6 + 1/7 + 1/8, больше, чем 4 х 1/8 = 1/2. Следовательно, сумма членов ряда, заключенных между 1/1 и 1/2 k, включая 1/2 k, всегда больше, чем k x 1/2 = k/2 в чем нетрудно убедиться, если члены сгруппировать: возьмите сначала сумму двух первых членов, затем сумму следующих восьми членов и т. д.

Частная сумма членов гармонического ряда может быть сделана сколь угодно большой.

Червяк доползет до конца каната, прежде чем с момента старта истекут 2 200 000с. Более точная оценка составляет е 100000, где е– основание натуральных логарифмов (иррациональное число, чуть большее числа 2,7). Обе оценки дают представление о времени в пути (в с) и о пройденном червяком расстояния (в см).

Точная формула частичной суммы членов гармонического ряда приведена, например, в статье Р. П. Боаса и Дж. М. Ренча«Частичные суммы гармонического ряда» [24]24
  American Mathematical Monthly, October 1971, 78, pp. 864—870


[Закрыть]
. Когда червяк доползет до конца, длина каната будет во много раз превышать диаметр известной части Вселенной. На свой нелегкий путь червяк затратит время, которое во много раз превышает возраст Вселенной по оценкам современной космологии.

Разумеется, в задаче речь идет об «идеализированном» червяке и «идеализированном» канате – точке на прямой. Реальный червяк тихо скончался бы в самом начале путешествия, а реальный канат от растяжения стал бы таким тонким, что отдельные его молекулы оказались бы разделенными огромными пустыми промежутками.

Независимо от параметров задачи (начальной длины канала, скорости червяка, длины отрезка, на который увеличивается с каждой секундой длина каната) червяк всегда доползает до конца за конечное (хотя и очень большое) время. Интересные задачи возникают, если мы будем по-разному удлинять канат.

Например, что произойдет, если длина каната будет возрастать в геометрической прогрессии, скажем удваиваться в каждую секунду? В этом случае червяк никогда не достигнет конца каната.


Сверхзадачи

Современные философы оживленно обсуждают новый класс парадоксов времени – так называемые сверхзадачи. В одном из простейших парадоксов этой серии речь идет о лампе. Нажимая на кнопку, ее можно включать и выключать.


В течение 1 мин лампа включена, в течение следующей 1/2 мин – выключена, затем 1/4 мин лампа снова включена, после чего в течение 1/8 мин снова выключена и т. д. Вся серия включений и выключений длится равно 2 мин.

Будет ли лампа по истечении 2 мин включена или выключена?


Каждое нечетное нажатие кнопки включает лампу, каждое четное – выключает ее. Если по истечении 2 мин лампа включена, то это означает, что последнее число нечетное. Если же по истечении 2 мин лампа выключена, то последнее число четное. Но последнего натурального числа не существует.

Лампа должна быть либо включена, либо выключена, но узнать, будет ли она включена или выключена, невозможно никаким способом!

Парадоксы с «сверхзадачами», выполняемыми так называемыми «машинами бесконечности», и поныне волнуют специалистов по математической логике и философов. Парадокс с лампой известен под названием «лампа Томсона» – в честь впервые написавшего о нем Джеймса Ф. Томсона. Всякий согласится, что лампу Томсона нельзя построить реально, но дело не в этом. Главное в том, что если принять некоторые допущения, то лампа Томсона не приводит к логическим противоречиям. По мнению одних, лампа Томсона – вполне разумный «мысленный эксперимент», по мнению других, – вопиющая нелепость.

Парадокс с лампой Томсона беспокоит наш разум потому, что не существует логической причины, по которой лампу Томсона нельзя было бы бесконечно много раз включить и выключить. Если бегун Зенона успевает за 2 мин преодолеть бесконечно много отрезков дистанции, каждый из которых вдвое меньше предыдущего, то почему ровно за 2 мин нельзя успеть бесконечно много раз включить и выключить некую реально не существующую идеальную лампу? Но если лампа Томсона может за 2 мин бесконечно много раз перейти из состояния «вкл» в состояние «выкл», то это означает, что существует «последнее» натуральное число, с чем трудно согласиться.

Философ Макс Блэк сформулировал тот же парадокс несколько иначе. Он рассмотрел «машину бесконечности», переводящую шарик из лунки Ав лунку Вза 1 мин, затем возвращающую шарик из лунки Вв лунку Аза 1/2 мин, снова переводящую его из лунки  Ав лунку Вза 1/4 мин и т. д., каждый раз вдвое быстрее, чем в предыдущий. Ряд 1 + 1/2 + 1/4… сходится, и все операции по перекатыванию шарика завершаются в течение 2 мин. Но в какой из лунок – в Аили В– окажется шарик по истечении 2 мин?

В какой бы из них он ни оказался, это будет означать что последнее натуральное число либо четно, либо нечетно. Так как последнего счетного числа не существует, то обе возможности, по-видимому, исключаются.

Но если шарика нет ни в лунке А, ни в лунке В, то где же он?

Основные статьи по анализу «сверхзадач» опубликованы в сборнике «Парадоксы Зенона» под редакцией Весли Ч. Солмона. Подробному разбору такого рода парадоксов посвящена книга Адольфа Грюнбаума«Современная наука и парадоксы Зенона» [см. список литературы. – Перев.].


Мэри, Том и Фидо

Перед вами сверхзадача, выполненная собакой. В самом начале Фидо находится рядом с хозяином на расстоянии 1 км от Мэри.


Том и Мэри начинают сближаться со скоростью 2 км/ч каждый. Фидо, одинаково любящий хозяина к хозяйку, бегает от одного к другому и обратно со скоростью 8 км/ч. Добежав до хозяина и хозяйки, Фидо мгновенно поворачивается и пускается назад.


Путь Фидо представлен на графике в координатах время – расстояние. Куда будет обращена морда Фидо – к хозяину или к хозяйке, когда Том и Мэри встретятся посредине разделявшего их километрового отрезка?


На этот вопрос, так же как на вопрос о том, будет ли включена или выключена по истечении бесконечной серии манипуляций с выключателем лампа Томсона, невозможно ответить. Но помочь Тому вычислить, какое расстояние пробежала собака, в наших силах…

Том.Сколько пробежал Фидо?

Но чтобы ответить на этот вопрос, мне нужно просуммировать длину бесконечно многих звеньев ломаной! Это очень трудная задача, Мэри!



Мэри.Совсем не трудная, милый! Мы идем со скоростью 2 км/ч. Значит, каждый из нас проходит полкилометра за 15 мин. Так как сначала нас разделяло расстояние 1 км, мы встречаемся через 15 мин.



Мэри.Фидо бегает со скоростью 8 км/ч. За четверть часа он пробегает 2 км. Вот и все.

Том.Здорово! Мне даже не понадобился микрокалькулятор.


Предположим теперь, что Том, Мэри и Фидо находятся там, где они встретились. Том и Мэри идут той же дорогой с той же скоростью, но в обратном направлении, а Фидо бегает от одного из них к другому со скоростью 8 км/ч. Где будет Фидо, когда расстояние между Томом и Мэри снова станет равным 1 км?


Невероятно, но факт: Фидо не может находиться нигде между Томом и Мэри! Не верите? Убедитесь сами. Пусть вначале Фидо находится в любой точке километрового отрезка, разделяющего Тома и Мэри, которые начинают идти навстречу друг другу. Где бы ни находился Фидо, через 15 мин все трое сойдутся в центре отрезка.

Первая задача (Том и Мэри идут навстречу друг другу, а Фидо бегает между ними туда и обратно) классическая. Она существует в различных вариантах.

Иногда это задача о мухе, летающей туда и обратно между двумя сближающимися локомотивами, иногда– задача о птичке, порхающей между двумя едущими во встречных направлениях велосипедистами.

Рассказывают, что когда эту задачу предложили американскому математику Джону фон Нейману, тот сразу назвал правильный ответ. «Поздравляю! – сказал собеседник фон Неймана, сообщивший ему задачу. – Большинство людей пытаются решить задачу очень трудным способом, суммируя бесконечный ряд отрезков». «Но именно это я и сделал», – с удивлением ответил фон Нейман.

Итак, в какую сторону будет обращена морда Фидо в тот момент, когда Том и Мэри сойдутся посредине разделявшего их километрового отрезка? Задать такой вопрос все равно что спросить, будет ли включена или выключена лампа Томсона по окончании всех манипуляций с выключателем, или в какой из двух лунок, Аили В, окажется в конце концов шарик. Это только кажется, будто Фидо должен быть обращен мордой либо к хозояину, либо к хозяйке. В действительности же любой ответ подразумевает, что существует последнее натуральное число (звеньев ломаной, по которой бежит собака), которое либо четно, либо нечетно.

Но если мы обратим процесс сближения Тома, Мэри и Фидо во времени, заставив Мэри и Тома расходиться из середины километрового отрезка, а Фидо по-прежнему бегать между хозяином и хозяйкой, то возникнет новый парадокс. Наша интуиция подсказывает нам, что если некую однозначно определенную процедуру обратить во времени, то есть изменить направление всех движений на противоположное, то мы должны вернуться к тому, с чего начали. Однако в рассматриваемом случае процедура при обращении времени утрачивает однозначную определенность. Если события развиваются от начала к концу, то Фидо оказывается в середине километрового отрезка, разделявшего Тома и Мэри. Но если события развиваются от конца к началу, то место, где будет находиться Фидо, когда Том и Мэри разойдутся на 1 км, невозможно указать однозначно: пес может находиться в любой точке отрезка.

Более подробный анализ этого парадокса проведен Весли Солмоном ( Scientific American, декабрь 1971).

И задача о двух хозяевах и их верной собаке, и парадоксы Зенона, и лампа Томсона могут служить описательным введением в теорию пределов и суммирования бесконечной геометрической прогрессии.

Ломаная, по которой бежит Фидо, похожа на траекторию прыгающего мячика Вот несложная задача о таком мячике. Предположим, что круглый мяч брошен на пол с высоты 1 м. Высота, на которую подпрыгивает мяч, каждый раз вдвое меньше предыдущей.

Если каждый подскок длился бы 1 с, то мяч прыгал бы вечно. Но как и в парадоксах с бегуном Зенона, машиной, перемещающей шарик из лунки в лунку, и Фидо, на прохождение каждого следующего отрезка траектории требуется меньше времени, чем на прохождение предыдущего. Очередной подскок занимает 1/2 от продолжительности предыдущего подскока. Последовательность времен сходится. Следовательно, по истечении конечного промежутка времени мяч остановится, хотя теоретически он подпрыгнет бесконечно много раз. Суммарная высота всех подскоков составит 1 + 1/2 + 1/3 +… + 1/n = 2 м.

Предположим, что мяч подпрыгивает каждый раз на высоту, составлявшую 1/3 от предыдущей. Какова суммарная высота всех подскоков в этом случае?


Может ли время идти вспять?

При обращении некоторых движений, например если кто-нибудь вздумает пятиться или автомашина поедет задним ходом, создается почти полное впечатление, будто время течет вспять.


Знакомый мотив


звучит так странно, если пластинку проигрывать oт конца к началу.


Многие явления необратимы.


Время подобно стреле, указывающей только в одну сторону. Даже если знакомый мотив проигрывать от конца к началу, последовательность, в которой звучат ноты, располагается во времени, текущем вперед, а не назад.


Мы не можем заглянуть в будущее, но заглянуть в прошлое в наших силах. Взглянув на звезду, расположенную от нас на расстоянии в тысячу световых лет, мы увидим ее такой, какой она была тысячу лет назад.


Но видеть прошлое еще не означает перенестись в прошлое. Удастся ли когда-нибудь построить машину времени, которая позволит побывать в прошлом и в будущем?

Какие события допускают «обращение во времени», то есть изменение направления движения на противоположное, и какие не допускают? Чтобы наглядно представить себе различие между теми и другими, предположим, что мы отсняли некие события кинокамерой и просматриваем ленту на экране, прокручивая ее в обратную сторону. Какие события из числа происходящих на экране противоречат законам природы и какие согласуются с ними?

Если на экране автомашина движется задним ходом, то это не выглядит противоестественным: и в реальной жизни нам неоднократно случается видеть, как водитель ставит машину на место задним ходом. Но если на экране прыгун в воду взлетает на трамплин из бассейна, то это явный признак того, что киномеханик не перемотал киноленту и пустил фильм от конца к началу. То же можно сказать и в том случае, если разбитое яйцо на экране само собой соберется на полу в целое и прыгнет кому-то в руки. В реальной жизни так никогда не бывает.

Даже если ход события «обращен во времени» изменением направления движения на противоположное (как при проигрывании пластинки от конца к началу), он протекает во времени, продолжающем идти вперед, а не назад. Стрелы обычно летят в ту сторону, в которую обращен их наконечник. Представьте себе, что на ваших глазах стрела, описав дугу в небе оперением вперед, попадает прямо в руки стрелку из лука: на тетиву стрела ляжет позже, чем побывает в воздухе. Артур Эддингтон однажды сравнил время с символической стрелой, всегда указывающей одно и то же направление. События в нашей Вселенной неумолимо следуют одно за другим от прошлого к будущему и никогда – от будущего к прошлому.

В последние годы физики и специалисты по космологии обсуждали возможность протекания событий «в обратном направлении» в других мирах. Лaуреaт Нобелевской премии по физике Ричард Фейнман предложил интерпретацию квантовой теории поля, в которой античастицы рассматривались как частицы, движущиеся назад во времени. Об этих фантастических теориях вы можете прочитать в четырех последних главах второго издания моей книги «Этот правый, левый мир».


Машины времени

Профессор Браун только что вернулся на 30 лет назад и наблюдает самого себя в младенческом возрасте.

Браун.Предположим, что я злодейски убью этого младенца. Кто же тогда вырастет и станет профессорам Брауном? Или, совершив преступление, я бы тотчас же бесследно исчез?


На этот раз профессор Браун перенесся на 30 лет в будущее и занимается тем, что вырезает свое имя на дубе, росшем под окнами лаборатории.


Профессор вернулся в настоящее и через несколько лет решил срубить дуб. Когда дерево было свалено, профессору пришла в голову идея, надолго лишившая его покоя.



Браун.Гм, 3 года назад я перенесся на 30 лет в будущее и вырезал свое имя на этом дубе. Что же произойдет теперь через 27 лет, когда я прибуду туда из прошлого? Ведь никакого дерева не будет. Куда же денется то дерево на котором я вырезал свое имя?

О путешествиях в прошлое и будущее написаны сотни научно-фантастических повестей и рассказов, снято множество кино– и телефильмов. Классический образец литературы о путешествиях во времени – «Машина времени» Герберта Уэллса.

Возможно ли логически путешествие во времени, или оно приводит к противоречиям? Из приведенных парадоксов мы видим, что если принять гипотезу о существовании единственной Вселенной, движущейся вперед во времени, то всякая попытка вернуться в прошлое может привести к логическому противоречию.

Рассмотрим первый парадокс, в котором путешественник во времени, вернувшись в прошлое, видит себя в младенческом возрасте. Убив младенца, он сам окажется и существующим, и не существующим: если убит тот, кто вырос и стал, профессором Брауном, то откуда взялся профессор Браун?

Второй парадокс более тонкий. В том, что профессор Браун отправился в будущее и вырежу свое имя на дереве нет никакого логического противоречия.

Оно возникнет после, того, как профессор Бpayн вернется в настоящее, то есть совершит путешествие во времени в обратном направлении. Срубив дерево, профессор Браун исключит его из будущего, и мы снова приходим к противоречию: в некоторый момент в будущем дерево будет и существовать, и не существовать.


Тахионный телефон

В последние годы внимание физиков привлекли гипотетические частицы, получившие название т ахионы.Тахионы движутся быстрее света. Согласно теории относительности, такие частицы, если бы они существовали, должны были бы двигаться в обратном направлении во времени.


Профессор Браун считает, что ему удалось успешно разрешить проблему установления связи с его коллегой доктором Гамма, живущим в другой галактике он изобрел тахионный телефон!


Профессор Браун выступает перед студентами с лекцией а своем изобретении.

Браун.Завтра ровно в полдень я позвоню доктору Гамма по тахионному телефону. Я попрошу его повесить трубку, сосчитать число вертолетов, которые он видит за окном своего кабинета, и позвонить мне в ответ, чтобы сообщить, сколько у него получится.

Ассистент.Должен огорчить вас, профессор, но у вас ничего не получится.



Браун.Почему вы так думаете, мой юный друг?

Ассистент.Потому, что тахион движется назад во времени. Доктор Гамма позвонит вам в ответ за час до полудня, и целый час сигнал будет идти до нашей Галактики. Поэтому вы получите ответ за 2 часа до того, как зададите свой вопрос, что невозможно.

Эпизод с изобретением профессора Брауна показывает, что парадокс возникает не только, когда кто-нибудь путешествует по времени в обратном направлении. Любой сигнал или объект, отправленный против течения времени, может привести к противоречию. Например, профессор Браун мог бы сказать себе в понедельник: «В следующую пятницу я сяду в машину времени, надену галстук и отошлю его в прошлый вторник, то есть в завтра». Разумеется, во вторник профессор найдет свой галстук в машине времени и, предположим, уничтожит его. Тогда в пятницу у профессора не будет галстука для того, чтобы отослать его во вторник. Галстук был, когда профессор Браун отсылал его во вторник, но вот снова наступила пятница, и никакого галстука, который можно было бы послать в прошлый вторник, нет и в помине!

Несмотря на все эти трудности, многие физики вполне серьезно относятся к тахионам. (Дж. Фейяберг посвятил тахионам научно-популярную статью «Частицы со скоростью, большей скорости света» – Scientific American, февраль 1970.) Согласно теории относительности, скорости обыкновенных частиц ограничены сверху скоростью света. Тем не менее физики рассмотрели гипотетическую возможность существования частиц (названных Фейнбергом тахионами), скорость которых всегда гораздо больше скорости света. Для тахионов скорость света является нижним пределом. Теория относительности с необходимостью приводит к заключению, что такие частицы должны двигаться во времени так же, как мисс Антуанетт из следующего лимерика:

 
Шустрая мисс Антуанетт
Носилась по свету быстрее, чем свет,
Ей в завтра хотелось попасть,
Да все втуне:
Умчится теперь, прилетит накануне!
 

Парадокс с тахионным телефоном отнюдь не доказывает, что тахионы не могут существовать. Он показывает лишь, что если тахионы существуют, то их нельзя использовать для связи, так как в противном случае мы столкнулись бы с приведенным выше логическим противоречием. Более подробно об этом парадоксе и вытекающих из него следствиях относительно исследований тахионов рассказывается в статье Дж. А. Бенфорда, Д. Л. Бука и У. А. Ньюкома«Тахионный антителефон» [25]25
  Physical Review, D, v, 2, July 1972,


[Закрыть]
.


Параллельные миры

Писатели-фантасты придумали, как избежать парадоксов, связанных с путешествиями во времени.

Они вообразили, будто каждый раз, когда путешественник во времени вторгается в прошлое, наша Вселенная расщепляется на две, каждая из которых лежит в своем пространстве – времени.


Теория разветвляющихся Вселенных порождает множество странных ситуаций. Предположим, вы отправились на год назад и пожимаете самому себе руку.

Фимсетер.Привет, Фимстер.

Фимстер.Рад видеть вас, Фимстер.


Позже и вы, и ваш двойник в любой момент можете вскочить снова в машину времени и, вернувшись в прошлое, встретить уже не нога, а двух своих двойников. На этот раз при встрече будут присутствовать уже три Фимстера.

Повторяя путешествия в прошлое, число Фимстеров можно сделать сколь угодно большим.

Мы изобразили в картинках фантастический способ, позволяющий совершать путешествия во времени и не впадать при этом в логические противоречия. Придумали его писатели-фантасты. Он положен в основу не менее дюжины произведений современной фантастики. Хитрость состоит в том, что когда кто-нибудь или что-нибудь попадает в прошлое, Вселенная расщепляется на параллельные миры. Но коль скоро происходит такое расщепление, исчезает противоречие между существующим и несуществующим профессором Брауном, срубленным и несрубленным деревом.

Если есть параллельные миры, то Браун (или дерево) может существовать в одном мире и не существовать в другом.

Интересно отметить, что представление о разветвляющихся мирах лежит в основе одной интерпретации квантовой механики. Она называется теорией многих миров. Ей посвящены целые книги. Согласно этой необычней теории, впервые выдвинутой в 1957 г. Хью Эвереттом III, Вселенная каждый миг расщепляется на бесчисленные параллельные миры. Каждый такой мир представляет собой одну из возможных комбинаций событий, которые могли бы произойти в момент расщепления. Возникает необозримое множество Вселенных, охватывающих все возможные комбинации мыслимых событий. Описание этой невероятной картины приведено в научно-фантастическом романе Фредерика Брауна«Что за безумный мир»:

«Если число вселенных бесконечно, то должны существовать все возможные комбинации. Следовательно, все что угодно где-то должно быть истинным. Где-то должна быть Вселенная, в которой Гекльберри Финн не литературный персонаж, а реальный человек, делающий все то, что ему предписал делать Марк Твен. Более того, где-то должны быть бессчетные вселенные, в которых бессчетные Гекльберри Финны проделывают все, о чем только мог подумать Марк Твен, сочиняя свой бессмертный роман. А в бесконечно многих вселенных происходит нечто такое, что мы не можем ни выразить словами, ни вообразить».


Замедление времени

Путешествие в прошлое приводит к столь запутанным парадоксам, что ни один ученый не принимает его всерьез. Иное дело путешествие в будущее. Предположим, что космический корабль стартует с Земли и летит со скоростью, близкой к скорости света.


Чем быстрее летит космический корабль, тем медленнее идет время. Для самих астронавтов оно идет, как обычно, но нам они кажутся застывшими статуями.


Долетев до другой галактики, астронавты возвращаются на Землю. Самим астронавтам кажется, что полет занял 5 лет. Но для тех, кто остался на Земле, со времени старта успело пройти не одно тысячелетие.


Такого рода путешествия во времени не приводят к парадоксам. Но астронавты оказываются «запертыми» в будущем, как в мышеловке: они не могут вернуться к своим современникам.

Противоречия возникают только при путешествиях в прошлое, но не в будущее. Ведь если строго разобраться, то мы все, хотим ли того или нет, путешествуем в будущее. Отправляясь вечером спать, вы надеетесь проснуться в ближайшем будущем. Вполне мыслима такая ситуация, когда человек, погруженный в состояние анабиоза, будет реанимирован, например, через тысячу лет. Именно такое «путешествие во времени» лежит в основе многих научно-фантастических произведений, в том числе, и романа Герберта Уэллса«Когда спящий проснется».

Как показано на наших рисунках, теория относительности Эйнштейна позволяет осуществить путешествие в блюдущее на другом принципе. Согласно специальной теории относительности, чем быстрее движется объект, тем медленнее течет его время относительно наблюдателя. Например, если космический корабль движется относительно Земли со скоростью, близкой к скорости света, то время на таком корабле будет идти гораздо медленнее, чем на Земле. На борту корабля астронавты не заметят необычного. Часы астронавтов с их точки зрения будут идти нормально, сердца – биться в обычном ритме и т. д. Но если бы земные наблюдатели могли видеть их, то движения астронавтов показались бы наблюдателям настолько замедленными, словно те, окаменев, превратились в статуи. В свою очередь, если бы астронавты могли наблюдать за жителями Земли, то им показалось бы, что все события происходят в ускоренном темпе: земной год уложился бы в несколько часов.

Причина, по которой мы не наблюдаем ничего подобного в повседневной жизни, заключается в том, что все эти эффекты становятся значительными при скоростях, близких к скорости света, обозначаемой по традиции буквой си составляющей около 300 000 км/с. Промежуток времени Т, измеренный по земным часам, связан с промежутком времени Т', измеренным по часам, находящимся на космическом корабле, который движется с постоянной скоростью vотносительно Земли, простой формулой:

Подставляя любую повседневно встречающуюся скорость в выражение под радикалом, вы получите величину, столь близкую к единице, что Ги Г'можно, по существу, считать равными. Но если вы подставите v– 0,5 с, v= 0,75 сили v= 0,9 с(такие скорости характерны для некоторых субатомных частиц), то замедление времени становится достаточно заметным, чтобы его можно было измерить в лаборатории.

Такие измерения действительно проводились и стали сильным подтверждением специальной теории относительности.


    Ваша оценка произведения:

Популярные книги за неделю