412 000 произведений, 108 200 авторов.

Электронная библиотека книг » Марк Колтун » Солнечные элементы » Текст книги (страница 9)
Солнечные элементы
  • Текст добавлен: 1 июля 2025, 21:01

Текст книги "Солнечные элементы"


Автор книги: Марк Колтун


Жанр:

   

Физика


сообщить о нарушении

Текущая страница: 9 (всего у книги 12 страниц)

Стабилизации свойств и увеличению фотопроводимости таких пленок способствуют также лазерный отжиг, ионное легирование, подогрев подложки до 200–400 °C при их нанесении. У солнечных элементов с р – i – n-структурой и прозрачным проводящим окном из диоксида олова КПД достигает 7,5 %, а по некоторым сообщениям даже 10 %, хотя подобные рекордные цифры относятся к элементам весьма малой площади (несколько мм2), у которых резко уменьшена опасность закорачивания переходов. Еще более высокие КПД (около 12 % в эксперименте и 15–18 % – в ближайшем будущем) удается получить, создавая каскадные структуры из трех материалов в аморфном состоянии – карбида кремния (в качестве широкозонного верхнего окна) и расположенных под ним слоев кремния и германия.

Из-за высокого последовательного сопротивления аморфных солнечных элементов КПД солнечных батарей на их основе не превышает 2–3 % (велики потери на коммутацию). Несмотря на относительно невысокий КПД, уже в настоящее время небольшие экономичные солнечные батареи, состоящие из восьми последовательно соединенных солнечных элементов из аморфного кремния, вырабатывающих мощность всего лишь 4,5 мкВт/см2 при свете люминесцентной лампы (освещенность около 300 люкс), широко используются на практике для электропитания малогабаритных электронных часов и калькуляторов со световыми индикаторами на жидких кристаллах. Спектральная чувствительность элементов из аморфного кремния в близкой к ультрафиолетовой области солнечного спектра превосходит чувствительность солнечных элементов из монокристаллического кремния (рис. 4.6) и напоминает спектральную зависимость чувствительности человеческого глаза, что делает перспективным применение таких элементов также в фото– и киноэкспонометрах.

Рис. 4.6. Спектральная зависимость коэффициента собирания кремниевых солнечных элементов

1 – аморфный кремний с р – i—n-структурой и пленкой ITО со стороны падающего света; 2 – монокристаллический кремний с р-n-переходом на глубине 0,3 мкм

Рис. 4.7. Спектральная чувствительность фронтально-барьерного (1, 3) и тыльно-барьерного (2) солнечных элементов на основе гетеросистемы сульфид меди – сульфид кадмия при различной толщине слоя сульфида меди

1, 2 – сотни ангстрем; 3 – тысячи ангстрем

Длительное время лидирующее положение среди тонкопленочных солнечных элементов занимали различные гетероструктуры на основе тонких пленок соединений A11Bv1, особенно сульфида кадмия. В первых солнечных элементах из этого полупроводникового материала для создания разделяющего барьера на поверхность сульфида кадмия наносились полупрозрачные слои серебра, меди, золота, платины. Практически все последующие солнечные элементы были получены на основе гетероперехода сульфид меди – сульфид кадмия, причем сульфид меди образовывался путем замещения атомов кадмия атомами меди в ходе химической реакции (при температуре 90–95 °C) сульфида кадмия с однохлористой медью в жидкой или твердой фазе. В последнем случае однохлористая медь предварительно наносилась на поверхность пленок сульфида кадмия напылением в вакууме.

Первый метод называется «мокрым». При его использовании поверхность солнечных элементов и самого гетероперехода носит развитый характер из-за многочисленных углублений и выступов зерен, увеличившихся в ходе химического травления. Это обстоятельство уменьшает коэффициент отражения света от поверхности солнечных элементов, но увеличивает обратный ток насыщения.

По второму методу, получившему название «сухого», образуется почти планарный гетеропереход, плоскопараллельный по отношению к подложке, но фоточувствительность пленок сульфида меди, получаемых в ходе реакции в твердой фазе, несколько уступает фоточувствительности пленок, образующихся «мокрым» способом.

Различают два типа тонкопленочных солнечных элементов на основе распространенной гетеросистемы сульфид меди – сульфид кадмия: тыльно-барьерный и фронтально-барьерный.

При фронтально-барьерной конструкции пленка сульфида кадмия осаждается в квазизамкнутом объеме в вакууме на подогреваемую до 200–300° G подложку из молибдена, полиимидной пленки или медной фольги, покрытой слоем цинка. Затем «сухим» или «мокрым» способом создается слой сульфида меди. Контакт к этому слою наносится в виде сетки из медных полос, испаряемых в вакууме через трафаретные маски, или создается приклейкой с помощью токопроводящей пасты позолоченной медной сетки (или ее прижимом липким слоем защитной полимерной пленки).

При изготовлении тыльно-барьерных солнечных элементов на подогреваемую стеклопленку или пластину из стекла с прозрачным токопроводящим слоем оксидов олова и индия (ITO) наносится слой сульфида кадмия и создается гетеропереход сульфид меди – сульфид кадмия, причем медный контакт к слою сульфида меди в этом случае может быть сплошным, полученным испарением слоя меди, поскольку тыльно-барьерный тонкопленочный элемент освещается со стороны стекла.

Толщина слоя сульфида кадмия обычно составляет от 2 до 40 мкм, слоя сульфида меди от 0,05 до 0,15 мкм. Ширина запрещенной зоны сульфида меди 1,2 эВ, сульфида кадмия 2,4 эВ, спектральная чувствительность тыльно-барьерных элементов (рис. 4.7, кривая 2) в коротковолновой области отсутствует – в данном случае верхний по отношению к свету слой сульфида кадмия служит окном-фильтром, поглощающим практически все излучение с длиной волны короче 0,5 мкм. Спектральная чувствительность фронтально-барьерного солнечного элемента на основе гетеросистемы сульфид меди – сульфид кадмия (кривая 1) и тыльно-барьерного (кривая 2) получена для изготовленных «мокрым» методом элементов со слоем сульфида меди толщиной несколько сотен ангстрем. При увеличении толщины слоя сульфида меди до 0,15 мкм спектральная чувствительность фронтально-барьерных элементов в длинноволновой области спектра, как показывают измерения, проведенные в ряде работ, резко увеличивается (см. рис. 4.7 кривая 3). Эффект влияния термообработки, проведенной после изготовления элемента и нанесения контактных медных полос на его рабочую поверхность, на характеристики фронтально-барьерного солнечного элемента на основе гетеросистемы сульфид меди – сульфид кадмия состоит в резком увеличении его спектральной чувствительности практически при всех длинах волн в диапазоне от 0,3 до 1,1 мкм.

Вероятно, происходящая при термообработке диффузия атомов меди из контактов в поверхностный слой элементов улучшает как стехиометрический состав слоя сульфида меди, так и его фоточувствительность. Положение длинноволнового края чувствительности элементов до термообработки соответствует краю поглощения сульфида кадмия (Eg=2,4 эВ). Это дает основание предположить, что коротковолновая область чувствительности фронтально-барьерных солнечных элементов на основе гетеросистемы сульфид меди – сульфид кадмия обусловлена сульфидом кадмия, в то время как чувствительность во всех остальных областях спектра – слоем сульфида меди.

Экспериментально полученные в разных странах тонкопленочные солнечные элементы на основе гетеросистемы сульфид меди – сульфид кадмия в основном (при измерениях на наземном Солнце) имеют КПД 4–7 %, однако уже получены отдельные элементы с КПД, превышающем 10 % при измерениях на имитаторе наземного Солнца.

Для такого резкого увеличения КПД были использованы предложенные ранее усовершенствования, в частности сочетание напыленных контактов к сульфиду меди с контактной сеткой, приклеенной к ним токопроводящей пастой, что резко снижает последовательное сопротивление элементов. Кроме того, слой сульфида меди был создан не «сухим» способом, позволяющим увеличить Ux.x до 0,58 В, но повышающим потери на отражение, а «мокрым», однако концентрация соляной кислоты в растворе, травящем поверхность сульфида кадмия перед обработкой в однохлористой меди, была уменьшена и одновременно было увеличено время травления. В результате высота выступов пирамидальной формы на поверхности готовых элементов не превышала 1 мкм, что позволило резко уменьшить потери на отражение, получить Iκз=22,2÷24,7 мА/см2 и в то же время сохранить Ux.x на уровне 0,54–0,58 В при высоком коэффициенте заполнения вольт-амперной характеристики.

Некоторые из путей дальнейшего повышения КПД тонкопленочных элементов основаны на использовании структур, оказавшихся столь эффективными при улучшении характеристик солнечных элементов из кремния или арсенида галлия. В частности, дополнительное легирование сульфида меди с поверхности атомами меди позволяет получить структуру р+ – p-типа в верхнем слое, а при легировании сульфида кадмия цинком, кадмием или алюминием образуется двуслойная структура п – n+-типа в базовом слое. Добавляя к сульфиду кадмия сульфид цинка, можно создать плавную варизонную структуру в базовом слое и уменьшить различие постоянных кристаллической решетки полупроводниковых материалов, составляющих гетеропереход. При термообработке готовых элементов на воздухе при 200 °C на поверхности сульфида меди, возможно, образуется слой широкозонного полупроводникового материала CuхSyO1-y, выполняющего ту же роль, что и слой AIxGa1-xAs в солнечных элементах с гетеропереходами на основе арсенида галлия.

Имеются направления усовершенствования параметров, характерные и специфичные именно для солнечных элементов данного типа. Например, замена слоя Cu2S слоем InP или CuInSe2 приводит к значительному увеличению коэффициента собирания, уменьшение плотности состояний в области гетероперехода (постоянные кристаллической решетки сульфида кадмия и этих материалов весьма близки), а при использовании вместо сульфида меди теллурида хрома удается существенно улучшить стабильность характеристик тонкопленочных элементов во времени, хотя, конечно, основную роль в увеличении срока службы таких элементов при длительной эксплуатации играет применение многослойных просветляющих и защитных покрытий. Для увеличения производительности процесса получения слоя сульфида кадмия и его удешевления успешно используется вместо испарения в квазизамкнутом объеме метод химической пульверизации на воздухе или нанесение с помощью газотранспортных реакций.

Электрофизические и оптические свойства большого числа гетеросистем на основе полупроводниковых соединений AIISvi, предложенных для создания тонкопленочных солнечных элементов, таких, как p-ZnTe – п-CdSe, p-ZnTe – n-CdTe, p-CdTe – n-CdS, p-CdTe – п-ZnSe, p-CdTe – n-CdZnS и др., достаточно подробно описаны в ряде опубликованных работ. У солнечных элементов на основе этих систем КПД пока еще ниже, чем у гетеросистемы сульфид меди – сульфид кадмия, однако некоторые из них, например солнечные элементы структуры p-CdTe – n-CdS, привлекают внимание низким температурным градиентом падения мощности и стабильностью характеристик.

Высокий КПД (16 % для условий AM0) получен советскими и зарубежными исследователями в комбинированной монокристаллическо-тонкопленочной гетероструктуре, образованной соединениями A111Bv и A11Bvi, нанесенными в такой последовательности: на монокристаллической подложке из фосфида индия создается эпитаксиальный слой того же материала, на который затем напыляется пленка сульфида кадмия в квазизамкнутом объеме в вакууме. Широкому использованию таких солнечных элементов препятствует высокая стоимость фосфида индия.

Существуют планы крупномасштабного применения тонкопленочных элементов гетеросистемы сульфид меди – сульфид кадмия и ее модификаций в наземной солнечной энергетике, но в настоящее время эти элементы применяют на практике в основном как малогабаритные и очень чувствительные детекторы ультрафиолетового и видимого излучения Солнца и искусственных источников света (рис. 4.8).

Рис. 4.8. Спектральная чувствительность фронтально-барьерных солнечных элементов, полученных испарением в вакууме слоя селенида (1) и сульфида (2–6) меди на базовые слои из различных полупроводниковых соединении

1, 2 – CdS; 3 – Zn0,1Cd0,9S; 4 – Zn0,15Gd0,85S; 5 – Zn0,4Cd0,6S; 6 – ZnS

Солнечные элементы из арсенида галлия

с гомо– и гетеропереходами

К арсениду галлия с середины 50-х годов, когда начались активные исследования в области фотоэлектричества, привлечено внимание большого числа ученых и инженеров, поскольку в солнечных элементах из этого полупроводникового материала с гомогенным p-n-переходом сразу удалось получить достаточно высокий КПД преобразования солнечного излучения в электроэнергию (η=4÷6 %). Создание p-n-перехода осуществлялось диффузией примеси р-типа – кадмия (впоследствии цинка) – в исходные пластины n-типа.

Несмотря на некоторые недостатки (хрупкость, большая плотность), у арсенида галлия имеются несомненные преимущества перед кремнием. В силу большой ширины запрещенной зоны способность арсенида галлия преобразовывать длинноволновое солнечное излучение ограничена (арсенид галлия поглощает излучение с длиной волны менее 0,9 мкм). Однако это же обстоятельство приводит к существенно меньшим значениям обратного тока насыщения Io=10-9÷10-1°A∕cм2 (в то время как у солнечных элементов из кремния I0=10-6÷10-7 А/см2), что, в свою очередь, дало возможность в настоящее время получить большие, чем у кремниевых солнечных элементов, значения напряжения холостого хода Ux.x (0,7–0,8 В для p-n-перехода в гомогенном материале) и достаточно высокий КПД даже для серийно выпускаемых элементов (10–12 % при измерениях на имитаторах внеатмосферного солнечного излучения). Эти же особенности данного полупроводникового материала обусловливают значительно более медленное падение КПД с ростом температуры, составляющее у солнечных элементов из арсенида галлия 0,25 %/oC (у кремниевых элементов 0,45—0,46 %/°C).

Эти преимущества арсенида галлия были полностью подтверждены в ходе более чем десятимесячной эксплуатации солнечных батарей, снабжавших электроэнергией советские межпланетные автоматические аппараты «Луноход-1, -2», о чем разработчики этих батарей сообщили на Всемирном электротехническом конгрессе в Москве в 1977 г.

Солнечные батареи из арсенида галлия при температуре 130–140oC на поверхности Луны генерировали выходную электрическую мощность, более чем в два раза превосходившую мощность, ожидаемую, по расчетным данным, для кремниевых солнечных батарей в этих условиях. В данном случае было особенно важно иметь высокую эффективность батарей, поскольку решение задачи осложнялось ограниченной площадью, на которой могла быть размещена солнечная батарея (откидная крышка космического аппарата). На радиатор космического аппарата было нанесено зеркальное теплоотражающее покрытие из радиационно стойких стекло-пленок со слоем алюминия или серебра на внутренней поверхности, позволявшее улучшить тепловой режим работы электронной аппаратуры этого автоматического межпланетного аппарата. Отношение интегрального коэффициента поглощения солнечного излучения αc к интегральному коэффициенту собственного теплового излучения поверхности ε данного покрытия составляло менее 0,2.

В начале и конце лунного дня при малых углах подъема Солнца над лунным горизонтом солнечное излучение, отражаясь от зеркального радиатора, попадало на откинутую крышку космического аппарата. В эти моменты с помощью телеметрической информации было четко зафиксировано увеличение тока солнечных батарей и повышение их температуры от 120 до 140oC. Радиатор использовался одновременно как своеобразный концентратор-отражатель.

Солнечные элементы с p-n-переходом в гомогенном арсениде галлия целесообразно устанавливать на космических аппаратах, направляемых как в сторону Солнца, так и к дальним планетам Солнечной системы. При росте фототока за счет увеличения плотности падающего потока излучения (например, при приближении к Венере или Меркурию) и уменьшении исходного значения обратного тока насыщения I0 температурный градиент мощности элементов может составить 0,15 %/°C, что в три раза меньше, чем у кремниевых солнечных элементов обычной конструкции. Эффективность использования солнечных элементов из арсенида галлия в условиях низкой освещенности (не только в космосе, но и на Земле, например при создании высокочувствительных кино– и фотоэкспонометров, а также малогабаритных солнечных батарей для электронных часов и калькуляторов) тоже связана с малыми значениями Iо, крутой люкс-амперной характеристикой, резким ростом Ux.x и напряжения нагрузки при небольшом увеличении потока излучения в области весьма низкой освещенности (от нескольких единиц до десятков люкс).

Следует сказать, что основные пути усовершенствования солнечных элементов с р-n-переходом в гомогенном кремнии и арсениде галлия практически совпадают: дальнейшее уменьшение глубины залегания p-n-перехода до значений 0,1–0,2 мкм; увеличение диффузионной длины неосновных носителей заряда в базовом слое; использование встроенных электростатических тянущих полей и дополнительных изотипных барьеров и p-n-переходов; оптимизация контактной системы, особенно для работы в условиях концентрированных световых потоков, создаваемых с помощью параболических зеркальных отражателей или плоских линз Френеля на основе прозрачного сравнительно светостойкого акрилового пластика.

Для созданного в лаборатории солнечного элемента из гомогенного арсенида галлия с мелкозалегающим p-n-переходом получено η=21,1 % при освещении солнечным излучением со спектром наземного Солнца в условиях AM1 (степень концентрации 24) и η = 16,9 % (степень концентрации 325). При однократном потоке солнечного излучения со спектром AM1 и температуре 80o C для такого элемента характерны следующие значения параметров: η=15,4 % и Ux.x=0,97 В. Компоненты, образующие полупроводниковый материал арсенид галлия, входят еще в целый ряд двойных, тройных и четверных полупроводниковых соединений с близкой к арсениду галлия постоянной кристаллической решетки, но различной шириной запрещенной зоны, зависящей от химического состава соединения. Тем самым открывается возможность образования на поверхности солнечных элементов из гомогенного арсенида галлия слоя другого полупроводникового соединения и создания эффективного гетероперехода, причем в силу близости постоянных решетки контактирующих материалов в таком гетеропереходе будут отсутствовать механические напряжения и рекомбинационные центры. В то же время плавное изменение химического состава и, следовательно, ширины запрещенной зоны Eg по глубине верхнего слоя гетероперехода позволяет создать так называемую варизонную структуру. Можно, например, получить структуру, в которой значение Eg у поверхности велико и уменьшается в глубину, – оптимальный случай для элементов, преобразующих солнечное излучение, поскольку высокоэнергичные фотоны ультрафиолетовой или коротковолновой видимой областей излучения Солнца поглощаются в самых верхних слоях элементов.

Такие гетероструктуры служат не только для изменения (как правило, расширения) спектральной чувствительности; они позволяют создавать в солнечных элементах из арсенида галлия значительные тянущие электростатические поля как за счет градиента распределения легирующей примеси по глубине элемента (что является единственно возможным способом получения тянущих полей в случае кремниевых солнечных элементов), так и за счет градиента ширины запрещенной зоны полупроводника.

Один из наиболее простых и оригинальных технологических приемов создания такой плавной варизонной структуры на поверхности солнечного элемента из арсенида галлия был разработан советскими авторами еще в середине 60-х годов. При этом для получения структуры использован не метод жидкостной или газовой эпитаксии, а хорошо отработанная техника термодиффузии. Для изготовления солнечного элемента применяли пластинку из арсенида галлия n-типа с концентрацией носителей Nn=1÷5×1017 см-3, в которой путем термодиффузии фосфора в эвакуированной кварцевой ампуле (остаточное давление 10-6 мм рт. ст.) при температуре выше 900o C создавались поверхностный слой фосфида галлия и тонкая переходная область, состав которой плавно менялся от GaP до GaAs, что соответствовало изменению ширины запрещенной зоны Eg от 2,25 до 1,43 эВ (при комнатной температуре). Общая толщина слоя GaP и переходной варизонной области составляла 5–7 мкм. При последующей термодиффузии акцепторной примеси цинка в полученных структурах по аналогичной методике создавались p-n-переходы, глубину залегания которых можно было регулировать с помощью режимов процесса термодиффузии.

Изменение вида кривой спектральной чувствительности в таких элементах может быть легко достигнуто различной глубиной залегания p-n-перехода: кривая имеет резко выраженный максимум при λ=0,45 мкм, что обусловлено залеганием p-n-перехода в приповерхностном слое GaP, и два максимума (коротковолновый при λ=0,45 мкм и длинноволновый при λ=0,85 мкм) при расположении р-n-перехода в области переменного состава между фосфидом и арсенидом галлия. Следовательно, спектральную чувствительность таких солнечных элементов можно направленно изменять в интервале длин волн от 0,45 до 0,85 мкм. При большой глубине термодиффузии цинка и нахождении р – n-перехода в чистом арсениде галлия на кривой спектральной чувствительности остается практически один максимум при 0,85 мкм. Напряжение холостого хода Ux.x солнечных элементов на основе гетероструктуры фосфид галлия – арсенид галлия достигало 0,8 В, хотя КПД не превышал 4–5 %.

В дальнейшем было обнаружено, что в силу практически полного соответствия постоянных решетки твердого раствора алюминия в арсениде галлия и чистого арсенида галлия образуемый ими гетеропереход обладает весьма малой плотностью состояний и центров рекомбинации на границе раздела, что обеспечивает в этих структурах двустороннее собирание носителей заряда с высоким квантовым выходом. На основе такой гетероструктуры ленинградскими и московскими физиками в начале 70-х годов был создан солнечный элемент с η = 11 % при измерениях на имитаторе внеатмосферного солнечного излучения.

Наибольшее распространение нашли затем в СССР и за рубежом солнечные элементы на основе гетеросистем р-Ga1-хAlхAs – p-GaAs – n-GaAs, получаемых методом жидкостной или газовой эпитаксии с одновременной термодиффузией акцепторной примеси цинка, в которых основной p-n-переход, разделяющий носители заряда, расположен в базовой пластине из арсенида галлия, а слой твердого раствора алюминия в арсениде галлия выполняет роль широкозонного окна – фильтра и благодаря изотипному p-n-переходу на поверхности арсенида галлия практически устраняет потери на поверхностную рекомбинацию.

Ширина и химический состав широкозонного фильтра могут меняться, существенно влияя на свойства получаемых солнечных элементов. Например, при увеличении толщины этого слоя, а также слоя p-GaAs и степени легирования обоих слоев резко уменьшается последовательное сопротивление элементов (и становится выгодно использовать их при больших концентрациях потока солнечного излучения); при уменьшении толщины верхних слоев элементов практически исчезают оптические потери на поглощение в этих слоях. Изменение химического состава слоя окна (в частности, содержания алюминия в нем) позволяет создать на поверхности вари-зонную структуру, помогающую собиранию носителей заряда, рождаемых коротковолновым светом в верхних слоях солнечных элементов. Для расчета и оптимизации оптических и электрических свойств солнечных элементов на основе таких гетероструктур прежде всего необходимо знать зависимость ширины запрещенной зоны и характера оптических переходов в основной полосе поглощения от состава материала, а также оптические константы полупроводниковых слоев.

Как было показано в ряде исследований, для полупроводникового соединения AlxGa1-xAs при x≤0,4 характерны прямые оптические переходы, а в области 0,4≤x≤0,8 (предел химической устойчивости соединения) спектральная зависимость коэффициента поглощения имеет вид, типичный для непрямого перехода. Таким образом, перед разработчиками элементов открывается возможность уменьшить поглощение излучения в слое твердого раствора благодаря использованию для материала окна-фильтра тонкого слоя с большим значением х или варизонной структуры малой толщины (предпочтительно с небольшим значением х у поверхности твердый раствор – воздух и высоким значением х у границы раздела твердый раствор – арсенид галлия). При этом необходимо отметить, что в случае сравнительно толстых слоев твердых растворов, получаемых технологически достаточно просто и имеющих преимущества с точки зрения создания надежных электрических контактов, целесообразно применять твердые растворы с обратной зависимостью состава от глубины или просто равномерные слои со сравнительно высоким значением х.

Рис. 4.9. Зависимость ширины запрещенной зоны полупроводникового соединения Аlx1-xАs от его состава для различных видов оптических переходов

1 – прямые; 2 – смешанные


Pис. 4.10. Спектральная зависимость коэффициента собирания (а) солнечных элементов на основе арсенида галлия с гомогенным p-n-переходом (I) и гетеропереходом p-Ga0.3Al0,7As – p-GaAs – n-GaΛs (II) и схема расположения слоев в элементах обоих типов (б)

1 – просветляющие и защитные покрытия; 2 – верхний токосъемный контакт; 3 – широкозонное окно-фильтр из слоя твердого раствора p-AlxGa1-хAs; 4 – p-GaAs; 5 – базовый слой n-GaAs толщиной 250–300 мкм; 6 – тыльный контакт

На рис. 4.9 представлена зависимость ширины запрещенной зоны AlxGa1-xAs от состава данного полупроводникового соединения (от величины х) для случая прямых оптических переходов при любых значениях х (кривая 1) и для смешанной модели – прямых оптических переходов при х≤0,4 и непрямых при х≥0,4 (кривая 2).

Влияние толщины и состава верхних слоев на оптические характеристики и КПД солнечных элементов с широкозонным окном-фильтром из AlxGa1-xAs и р-п-переходом в находящемся под ним монокристаллическом арсениде галлия можно проследить, сравнивая результаты работ, проведенных различными исследователями. На рис. 4.10 представлены экспериментальные спектральные зависимости коэффициента собирания носителей заряда солнечного элемента из арсенида галлия обычной конструкции с гомогенным p-n-переходом (кривая 7) и гетероструктурой на поверхности (кривая 2). Солнечный элемент с гетероструктурой имел следующий состав и толщину слоев: p-Ga0,3Alo0.7As (8 мкм), p-GaAs (0,7 мкм) и n-GaAs (300 мкм). Такие солнечные элементы позволили получить при измерениях в наземных условиях КПД более 20 %. В то же время в силу сравнительно большой толщины широкозонного окна-фильтра и низкого последовательного сопротивления эти элементы можно эффективно использовать при повышенной плотности потока солнечного излучения. Однако по этой же причине коротковолновый край спектральной чувствительности таких солнечных элементов соответствует 0,51—0,52 мкм (см. рис. 4.10).

Расчетная оптимизация параметров солнечных элементов на основе арсенида галлия с гетеропереходами, проведенная в ряде работ, показала, что, уменьшая толщину верхнего слоя твердого раствора и изменяя его состав (увеличивая содержание алюминия), можно значительно расширить спектральную чувствительность таких элементов в коротковолновую область спектра. Расчетные спектральные зависимости коэффициента собирания солнечных элементов данного типа при разной толщине слоя твердого раствора Al0.36Ga0.14As и следующих параметрах элементов: толщина слоев p-GaAs и n-GaAs 1,5 и 250 мкм соответственно, концентрация носителей заряда во всех слоях (1–3)×1018 см-3; в верхнем слое твердого раствора диффузионная длина Ln=0,5 мкм, подвижность носителей заряда μn= =250 см2∕(B×c); в p-GaAs слое Ln=5 мкм, μn= =2500 см2/(B×c); в n-GaAs слое Lp=0,5 мкм, μp= =150 см2/(B×c), представлены на рис. 4.11.

Следует отметить, что высокие значения коэффициента собирания данных элементов в длинноволновой области (при λ=0,6÷0,9 мкм) объясняются сравнительно большим значением диффузионной длины носителей в p-GaAs (более чем в три раза превышающей толщину слоя).

Рис. 4.11. Спектральная зависимость коэффициента собирания солнечных элементов структуры p-Al0.86Ga0.14AS – p-GaAs (толщиной l = 1,5 мкм) – n-GaAs (l = 250 мкм) при разной толщине верхнего слоя твердого раствора

1–1,0 мкм; 2–0,5; 5–0,25; 4–0,1; 5–0,05 мкм

Рис. 4.12. Зависимости максимального КПД солнечного элемента с р-n-переходом в гомогенном материале от ширины запрещенной зоны полупроводника при различной степени концентрации излучения

1 – 1000; 2 – 100; 3 – 10; 4–1 (однократный солнечный поток)

Рис. 4.13. Энергетические зонные диаграммы и схемы расположения слоев в различных солнечных элементах на основе арсенида галлия а – с переходом в гомогенном материале и широкозонным окном-фильтром на поверхности; б – с варизонной структурой в слое окна-фильтра; в – с переизлучающей структурой между двумя областями окна-фильтра; 1 – p-n-переход в арсениде галлия; 2 – окно-фильтр из твердого раствора алюминия в арсениде галлия; 3 – варизонная структура (переменный по х состав AlxGa1-xAs); 4 – переизлучающая структура; А – солнечное излучение; Б – люминесценция

Эксперимент подтверждает результаты расчетов. Вольт-амперная нагрузочная характеристика экспериментальных солнечных элементов говорит о том, что их КПД в условиях наземного Солнца уже заметно превышает 20 % и может быть увеличен до 25 %, например, за счет использования очень тонких верхних слоев твердого раствора с плавно меняющимся по глубине химическим составом и шириной запрещенной зоны, образующих варизонную структуру. Возможность получения таких слоев методами газовой и молекулярной эпитаксии в настоящее время теоретически и экспериментально доказана.

Повышение КПД солнечных элементов из простых и сложных полупроводниковых структур

Повышение КПД солнечных элементов имеет как научное, так и инженерно-экономическое значение: уменьшение себестоимости электроэнергии, получаемой от солнечных элементов, может быть достигнуто не только путем применения дешевых исходных полупроводниковых материалов и автоматизации технологии их изготовления, но и благодаря резкому росту КПД, хотя это и требует дополнительных затрат, которые тем не менее окупаются при эксплуатации таких сравнительно дорогостоящих солнечных элементов.

Вероятно, сразу после опубликования первых работ, где предельно достижимые КПД солнечных элементов ограничивались значениями 24–25 %, начались поиски оригинальных физических идей, которые можно было бы положить в основу новых, более эффективных моделей солнечных элементов, чтобы открыть дорогу исследовательским и практическим работам по реализации таких элементов. Выдвинутые вскоре модели каскадных и многопереходных солнечных элементов, элементов с гетеропереходами, встроенными электрическими полями, варизонными структурами, долгое время не удавалось проверить в эксперименте, хотя предельный теоретический КПД большинства новых моделей поднимался до уровня 30–50 %. В то же время благодаря успешной практической реализации многих новых моделей солнечных элементов в эксперименте в наземных условиях был достигнут КПД 14–15 % для дешевых кремниевых солнечных элементов,· базовый слой которых получен сравнительно простыми и экономичными методами, и от 20 до 25 % для элементов на основе гетероструктур в системе твердый раствор алюминия в арсениде галлия – арсенид галлия.


    Ваша оценка произведения:

Популярные книги за неделю