412 000 произведений, 108 200 авторов.

Электронная библиотека книг » Марк Колтун » Солнечные элементы » Текст книги (страница 6)
Солнечные элементы
  • Текст добавлен: 1 июля 2025, 21:01

Текст книги "Солнечные элементы"


Автор книги: Марк Колтун


Жанр:

   

Физика


сообщить о нарушении

Текущая страница: 6 (всего у книги 12 страниц)

При измерениях на импульсных имитаторах вычислительные устройства автоматически пересчитывают характеристики батарей к задаваемой рабочей температуре. Пересчет ведется по средним температурным коэффициентам, которые имеют заметный разброс. Импульсные имитаторы снабжают устройством для термостабилизации измеряемых батарей, температуру которых контролируют в момент измерений. Термостабилизирующее устройство может быть выполнено на основе, например, инфракрасных излучателей, устанавливаемых при измерениях с темновой стороны батарей.

Необходимо также кратко остановиться на сверхмощных ксеноновых лампах непрерывного горения, каждая из которых (при достаточно хорошей имитации спектра внеатмосферного солнечного излучения) может создать необходимую плотность потока излучения 1360 Вт/м2 на поверхности солнечной батареи площадью в несколько десятков квадратных метров. Примером такого источника излучения может служить разработанная Всесоюзным научно-исследовательским светотехническим институтом металлическая ксеноновая лампа сверхвысокого давления мощностью 40 кВт. Лампа взрывобезопасна, снабжена двойным охлаждаемым водой кварцевым окном в металлическом корпусе, однако ввиду значительной неравномерности освещения по площади, достигающей ±20 % на краях облучаемой поверхности, такие лампы лучше использовать лишь в устройствах для исследования светового старения космической техники или приближенной оценки работоспособности солнечных батарей, а не при измерениях их фотоэлектрических параметров.

Для исследовательских целей и выборочных измерений выпускаемых и разрабатываемых солнечных элементов используют имитаторы с высоким качеством воспроизведения спектра и однородным потоком. Равномерное освещение получают за счет смешивания пучков лучей, которое может быть выполнено несколькими способами. В отечественном имитаторе C–I на лампе накаливания с цветовой температурой 3100 К равномерность облученности ±10 % на площади 20×30 мм получена наложением двух пучков излучения. Спектральная коррекция осуществляется с помощью цветных оптических стекол. C помощью светофильтров достигается достаточно хорошее воспроизведение спектра в интервале 0,4–1,1 мкм, однако при этом сами светофильтры поглощают значительную часть энергии излучения лампы накаливания, что требует почти десятикратного превышения исходного потока излучения над имитированным и интенсивного охлаждения светофильтров. При полном использовании энергии излучения лампы накаливания мощностью 750 Вт с помощью двухлучевой схемы и применении специальной системы охлаждения (светофильтры погружаются в прозрачный четыреххлористый углерод, охлаждаемый проточной водой) возникшие трудности удается преодолеть.

Постоянство спектра имитатора C–I контролируется с помощью «сине-красного отношения» – отношения токов короткого замыкания эталонного солнечного элемента при поочередном введении перед ним двух светофильтров, пропускающих излучение соответственно в сине-зеленой и инфракрасной областях спектра. Изменение уровня плотности потока излучения при постоянстве его спектрального состава обеспечивается диафрагмами переменного раскрытия и нейтральными или сетчатыми светофильтрами.

Для получения высокой равномерности освещения в точных имитаторах все чаще используется специальный смеситель – оптический интегратор, представляющий собой пакет линзовых элементов гексагонального сечения. На выходной торец пакета проецируется изображение тела накала ламп. Интегратор состоит из большого количества (до 19) отдельных проекционных систем, каждая из которых, формируя свой пучок, направляет его на всю рабочую зону, где пучки всех элементов смесителя накладываются друг на друга. В отличие от обычной системы проекции, когда неравномерность яркости тела накала воспроизводится на облучаемой поверхности, здесь первичное изображение дробится, и в результате происходит наложение множества световых пятен от каждого элемента смесителя. В итоге облученность в различных точках освещаемой поверхности отличается от среднего значения на ±2–3 %.

Параллельность лучей достигается в большинстве современных имитаторов за счет применения коллиматоров (как правило, параболоидных зеркал или линз Френеля), в фокусе которых размещается изображение тела накала источников излучения, которое, в свою очередь, создается концентраторами (чаще всего эллипсоидами с большим углом охвата). Угол деколлимации равен отношению половины диаметра пучка лучей в фокусе коллиматора к его фокусному расстоянию.

Источником излучения большинства зарубежных имитаторов служит ксеноновая лампа высокого давления. Спектр коррегируется интерференционными светофильтрами, позволяющими приблизить спектр лампы к спектру внеатмосферного Солнца.

Имитатор Спектросан Х-25 фирмы Спектролаб (США), созданный для измерений параметров солнечных элементов, дает пучок с неравномерностью не более ±2 % на площади диаметром 300 мм при расстоянии 1,5–2 м от кассеты со светофильтрами. Сменный комплект фильтров позволяет получать как внеатмосферный, так и наземный солнечные спектры, правда, весьма далекий от стандартного спектра (условия AM1,5).

На аналогичных принципах построены имитаторы фирмы Ушио Электрик (Япония), Ориел (США), Оптикал Радиейшн Kopn. (США), Бош (ФРГ) и др.

Среди отечественных имитаторов на средние площади хорошие параметры имеет прибор, разработанный во Всесоюзном научно-исследовательском светотехническом институте. Неравномерность освещения в этом имитаторе не превышает ÷2 % на площади 150×200 мм, что достигается с помощью смесителя, выполненного в виде достаточно протяженного (длиной от 1 до 2 м) вертикального полого зеркального световода с поперечным сечением, несколько превышающим рабочую площадь. Имитатор, однако, не воспроизводит высокой параллельности лучей, которая характерна для внеатмосферного солнечного излучения. Источником излучения в этом имитаторе служат две металло-галогенные лампы со спектром, близким к солнечному, – ртутные газоразрядные лампы с добавками иода и бромида олова.

Следует отметить, что использование в достаточно точных имитаторах внеатмосферного излучения Солнца устройств, довольно быстро изменяющих во времени свои оптические характеристики и требующих регулярной замены (многослойные интерференционные светофильтры, сложные лампы, пропускание колб которых ухудшается со временем, а характеристики излучения не постоянны), не позволяет применить эти имитаторы для контроля качества солнечных элементов в процессе производства. К тому же такие имитаторы не рассчитаны на измерение параметров солнечных батарей, имеющих, как правило, большую площадь (несколько десятков и сотен квадратных метров).

Сложный характер наземного солнечного излучения при различных воздушных массах (см. рис. 1.1) делает весьма трудной задачу имитации такого излучения, даже если ограничиться целью воспроизведения стандартного солнечного излучения в условиях AM1,5 в области длин волн от 0,4 до 1,1 мкм.

Вероятно, получение точного спектрального распределения стандартного наземного солнечного излучения возможно лишь с помощью монохроматора с изменяющейся по заданной программе щелевой или штырьковой диафрагмой, что, однако, не позволяет даже при светосильном монохроматоре достичь освещенности, характерной для солнечного излучения. Второй возможный путь такой имитации – воспроизведение наземного солнечного спектра по отдельным спектральным участкам с помощью ксеноновой или галогенной лампы, снабженной набором сменных узкополосных интерференционных светофильтров. Оба способа, к сожалению, создают поток имитированного солнечного излучения на очень небольшой площади в несколько квадратных милли– или сантиметров.

В связи со сложностью точной имитации наземного солнечного излучения получили широкое распространение методы приближенного воспроизведения наземных спектров имитаторами со спектром излучения, повторяющим сглаженную, усредненную кривую излучения Солнца при условиях AM1,5. Путем подбора или расчета необходимого комплекта светофильтров для имитаторов внеатмосферного излучения любой рассмотренной конструкции можно добиться достаточно хорошего приближения к наземным солнечным спектрам при требуемой плотности потока прямого излучения.

Известен, например, имитатор для измерения параметров солнечных элементов, состоящий из двух ламп – ксеноновой и вольфрамовой. У ксеноновой лампы длинноволновая часть спектра (правее 0,7 мкм) «отрезана» с помощью фильтра на основе раствора медного купороса, охлаждаемого водой, а коротковолновое излучение вольфрамовой лампы накаливания (левее 0,55—0,6 мкм) поглощается фильтром из цветного стекла. Смешение на облучаемой поверхности солнечного элемента двух коррегированных таким образом лучистых потоков дает возможность при изменении мощности ламп и толщины фильтров получать сглаженную кривую как внеатмосферного, так и наземного солнечного излучения.

Жидкостной оптический фильтр на основе раствора медного купороса может быть также применен для приближения к спектру Солнца спектрального излучения обычных ламп накаливания.

Можно сделать сравнительно простой наземный имитатор на лампах накаливания со стеклянными фильтрами и диффузным отражателем, обеспечивающим равномерное освещение рассеянным светом, близким к наблюдающемуся в натурных условиях. Как показали эксперименты, такой отражатель позволяет получить неравномерность, не превышающую ±5 % на площади 40×40 мм. Линзовая оптика в имитаторе отсутствует. Источник излучения – галогенные лампы с цветовой температурой 3400 К. Хорошее приближение к сглаженной кривой спектрального распределения полного потока наземного излучения при атмосферной массе 1,5 можно получить с помощью специальных цветных стекол.

Рис. 3.1. Оптическая схема имитатора прямого и рассеянного (диффузного) потока наземного солнечного излучения

1 – вольфрамовые галогенные лампы; 2 – конденсоры; 3 – плоские фацетные отражатели; 4 – объективы; 5,6 – светофильтры для имитации спектрального состава прямого и рассеянного (диффузного) потока излучения соответственно; 7 – измеряемый солнечный элемент

Более полно реальные условия наземного солнечного излучения воспроизводятся при использовании оптической схемы, показанной на рис. 3.1. Правый луч одной лампы и левый луч другой проходят через светофильтр и, освещая солнечные элементы под углом, близким к нормальному, имитируют поток прямого солнечного излучения. Другая пара лучей, проходя системы коррекции и попадая на солнечные элементы под острым углом, имитирует рассеянное излучение неба. Как показали расчеты, спектральное распределение излучения лампы накаливания с цветовой температурой 3400 К можно преобразовать в спектральное распределение прямого солнечного потока при стандартных параметрах с помощью светофильтра, состоящего из нескольких специально подобранных цветных стекол различной толщины и слоя дистиллированной воды. Оптимизация толщины фильтров проводилась разработчиком этой схемы И. С. Оршанским (Всесоюзный научно-исследовательский институт источников тока) на ЭВМ, что позволило достичь хорошей коррекции спектра ламп.

Эталонные солнечные элементы и их градуировка

Учитывая, что спектральное распределение энергии излучения даже высококачественных имитаторов отличается от стандартного солнечного, а чувствительность солнечных элементов селективна, проводить настройку интенсивности имитаторов с помощью неселективных приемников излучения (радиометров) нецелесообразно. Для этой цели применяются специально отградуированные эталонные солнечные элементы. Эталонные, или стандартные, солнечные элементы, иногда также называемые светоизмерительными приемниками, – это фактически радиометры с селективной чувствительностью.

Плотность потока солнечного излучения при одинаковом значении воздушной массы и, казалось бы, сравнительно небольших вариациях основных составляющих атмосферы может изменяться, как показали расчеты, достаточно сильно. Из сравнения различных атмосферных условий следует, что плотность потоков солнечного излучения при нескольких измерениях, фиксируемая неселективным радиометром, может быть почти одинаковой, в то время как спектральный состав излучения будет отличаться столь существенно, что солнечные элементы (в силу селективной чувствительности) будут вырабатывать при этом различную электрическую мощность и значительно отличающиеся токи. Даже у высококачественных элементов различие в токах короткого замыкания, измеренных в наземных условиях при одинаковой энергетической облученности, но разном состоянии атмосферы, составляет в эксперименте около 15 %. В то же время, например, одинаковая плотность солнечного излучения 672 Вт/м2 (зафиксированная в разные дни измерений в одном и том же пункте земной поверхности) может наблюдаться для следующих двух состояний атмосферы: при m=3, толщине слоя озона 5,5 мм, β=0,02, α= 1,3 и при m=1,5, толщине слоя озона 2 мм, β=0,17, α=0,66 (толщина слоя осажденных паров воды в обоих случаях 2,0 см), хотя очевидно, что спектральный состав излучения при столь разных параметрах атмосферы будет заметно отличаться.

Сравнение градуировочного коэффициента – отношения интегрального фототока с единицы площади элемента, определенного по спектральной чувствительности, к плотности потока солнечного излучения, падающего на эту площадь, – для большого числа солнечных элементов показало, что если настройка интенсивности излучения имитаторов из вольфрамовых ламп без фильтра проводится неселективным радиометром, то погрешность измерения тока короткого замыкания солнечных элементов достигает 50 %.

При использовании имитаторов на основе вольфрамовых ламп с дихроическим фильтром погрешность составит 30 % (при прогнозировании значений тока во внеатмосферных условиях) и 10 % (в наземных), а для имитаторов на основе ксеноновых ламп с короткой дугой и интерференционными фильтрами погрешность равна 15 % для наземных измерений и 3–5 % для космических.

При градуировке эталонных солнечных элементов определяют ток короткого замыкания в стандартных условиях облучения. C помощью эталонного солнечного элемента настраивают имитатор – регулируют поток его излучения до тех пор, пока ток короткого замыкания эталона станет таким же, как при стандартных условиях.

Следует отметить, что в этом случае энергетическая облученность рабочей зоны имитатора не будет в точности совпадать с энергетической облученностью, создаваемой естественным солнечным излучением в стандартных условиях, поскольку излучение оценивается по его воздействию на селективно-чувствительный солнечный элемент конкретной конструкции из определенного полупроводникового материала.

Обычно для оценки излучения по его воздействию на приемник с конкретной спектральной чувствительностью вводят эффективные величины: оценка излучения по его воздействию на глаз человека производится в люксах, по воздействию на кожу – в эритемных единицах и т. д. В случае солнечных элементов вводится не эффективная величина, требующая нового названия; а эквивалентная. Так, если источник с произвольным спектром при некоторой энергетической облученности создает в солнечном элементе ток, равный внеатмосферному, то при этом энергетическая облученность для данного типа излучения эквивалентна 1360 Вт/м2.

Например, при освещении лампой накаливания с цветовой температурой 2850 К кремниевый солнечный элемент с мелкозалегающим p-n-переходом (I≤0,5mkm) генерирует такой же ток, как в космических условиях, если энергетическая облученность, создаваемая лампой, снабженной водяным фильтром толщиной 40 мм, равна приблизительно 780 Вт/м2, а лампой без фильтра – 960 Вт/м2. В обоих случаях освещаемый такой лампой кремниевый эталонный элемент покажет 1360 Вт/м2.

Применение эталонных солнечных элементов позволяет проводить удовлетворительные по точности измерения на имитаторах с плохой коррекцией спектра и даже при использовании источников излучения с произвольным спектральным распределением энергии. Погрешность оценки электрических характеристик солнечных элементов в этом случае будет зависеть от степени отличия спектральной чувствительности измеряемого и эталонного элементов. Таким образом, основное требование, предъявляемое к эталонным солнечным элементам, – идентичность их оптических свойств и спектральных характеристик характеристикам тех солнечных элементов, для измерения которых они применяются. Особенно это касается спектральной чувствительности. При использовании эталонных элементов в наземных условиях с имитаторами, имеющими широкий пучок излучения, важна также и угловая зависимость чувствительности, в значительной степени определяемая микрорельефом поверхности солнечного элемента, влияющим на коэффициент отражения света при различных углах падения. Даже самый совершенный технологический процесс изготовления не обеспечивает идентичности оптических и спектральных характеристик всех элементов данного типа, поэтому в качестве эталонных желательно отбирать элементы, имеющие характеристики, близкие к средним для выпускаемой продукции.

Проектирование эталонных солнечных элементов включает в себя создание конструкции, исследование стабильности и метрологических характеристик, разработку аппаратуры и методики градуировки.

Конструкция эталонных солнечных элементов в зависимости от назначения может быть разной, но во всех случаях должно обеспечиваться основное требование, предъявляемое к средствам измерений, – высокая стабильность всех параметров. Это, в свою очередь, приводит к необходимости надежной термостабилизации солнечных элементов или точного измерения их температуры. Эталон простейшей конструкции представляет собой солнечный элемент, укрепленный на металлической пластине (в углублении) и защищенный стеклом. Для поддержания постоянной температуры эталонный элемент устанавливается обычно на термостатированном столике.

В 1980–1982 гг. в СССР был разработан, усовершенствован и предложен в качестве стандарта для стран СЭВ новый эталонный солнечный элемент с прямоугольной фоточувствптельной поверхностью размерами 30×35 мм (и больше) и с фоточувствптельной поверхностью круглой дисковой формы диаметром 50 мм больше) для измерения параметров элементов и батарей космического и наземного применения соответственно.

Новый эталонный элемент имеет встроенный холодильник, снабженный радиатором, через который может протекать вода от термостата, и чувствительный термодатчик. В качестве фоточувствительного датчика в этих эталонах используются солнечные элементы из кремния с мелкозалегающим p-n-переходом и элементы на основе гетеропереходов твердый раствор алюминия в арсениде галлия – арсенид галлия. Большие размеры корпуса эталона обеспечивают угловое поле, превышающее 166°, что позволяет использовать новый эталон при измерениях солнечных элементов и батарей как в полном, так и в прямом коллимированном потоке солнечного излучения.

На корпусе нового эталона может крепиться тубус, уменьшающий поле зрения до ±2,5o, что необходимо для измерения прямого потока солнечного излучения при определении характеристик батарей, работающих с концентраторами. На тубусе для контроля параметров атмосферы (содержания паров воды, озона и аэрозолей) предусмотрена возможность установки интерференционных светофильтров, которые пропускают излучение в узких спектральных интервалах, соответствующих селективным полосам поглощения в спектре наземного солнечного излучения.

Постоянное совершенствование технологии изготовления и создание новых типов солнечных элементов вызывают необходимость измерения параметров солнечных элементов с нестандартным распределением спектральной чувствительности. При этом необходимо иметь набор солнечных элементов с различными вариантами спектральных характеристик. Солнечные элементы для таких эталонов получают изменением глубины залегания p-n-перехода, вариацией характеристик просветляющего покрытия, облучения элементов разными дозами протонов и электронов различной энергии. Быстрый подбор эталонного элемента выполняют по «сине-красному» отношению токов эталона и измеряемого элемента. C этой целью поочередно измеряется ток солнечного элемента со светофильтрами, выделяющими излучение в синей и ближней инфракрасной областях спектра, и подбирается эталонный элемент с наиболее близким значением «сине-красного» отношения. Аналогичный подход можно использовать для подбора эталонов при измерениях параметров солнечных батарей из нестандартных солнечных элементов.

Элементы для эталонов отбираются из числа серийно выпускаемых или изготавливаются специально. При отборе основное внимание обращается на качество торцевых поверхностей, на значения шунтового и последовательного сопротивлений. Важно, чтобы свойства солнечных элементов, используемых для этой цели, были однородны по площади (особенно спектральная и интегральная чувствительности). Желательно, чтобы у них был минимальный температурный коэффициент тока короткого замыкания. Отобранные по этим параметрам элементы монтируются в оправы и проходят естественное или ускоренное старение. Затем определяется стабильность чувствительности. Исследование проводят в течение длительного времени, при этом методика должна обеспечивать, чтобы погрешность относительных измерений не превышала 0,1 %. При первичной градуировке используются эталонные элементы с высокой стабильностью чувствительности; изменения тока короткого замыкания таких элементов с течением времени составляют не более чем ±0,5 %. Для эталонных солнечных элементов наземного применения проверяются также угловые зависимости чувствительности и линейность зависимости Iκ 3. от плотности светового потока. Отклонение от линейности этой зависимости при изменении плотности потока в диапазоне 400—1000 Вт/м2 не должно превышать ±0,5 %.

Кремниевые солнечные элементы, предназначенные для энергетических целей и используемые как эталонные, в обычных условиях отличаются наиболее стабильными характеристиками из всех преобразователей солнечной энергии. Эти солнечные элементы обладают также линейной зависимостью тока короткого замыкания (в эталоне они работают в режиме короткого замыкания) в довольно широком диапазоне изменения плотности потока излучения и имеют небольшой температурный коэффициент тока короткого замыкания 0,1–0,2 %∕° С; их чувствительность охватывает видимую и ближнюю инфракрасную области спектра. Могут применяться в эталонах и кремниевые солнечные элементы со сверхмелким p-n-переходом (толщина легированного слоя l≤0,1+0,2 мкм), чувствительные в ближней ультрафиолетовой области солнечного спектра.

Абсолютная градуировка эталонных солнечных элементов трудоемка, требует длительного времени и значительных затрат, поэтому эталоны, прошедшие такую градуировку, используют только в качестве первичных эталонов образцового средства измерения. Для каждодневных целей применяются светоизмерительные приемники – вторичные и рабочие эталоны.

Эталонные элементы работают в режиме короткого замыкания, и градуировка их заключается в определении тока короткого замыкания при нормируемых условиях спектрального состава и плотности потока солнечного излучения (внеатмосферного или наземного). Возможны два принципиально различных типа градуировки: на естественном солнечном излучении и в лаборатории с использованием средств измерений, поверенных по Государственному эталону, с измерением спектральной чувствительности эталонных солнечных элементов по усовершенствованным методикам.

При градуировке эталонных элементов, предназначенных для настройки имитаторов внеатмосферного солнечного излучения, применяется множество методов первого типа: измерения на космических аппаратах, ракетах, шарах-зондах, высотных самолетах, на поверхности земли.

При градуировке на космических аппаратах и ракетах значение тока для внеатмосферных условии получают в результате непосредственных измерений. Градуировка на космических аппаратах, помимо высокой стоимости, встречает ряд сложностей, связанных с возвращением эталонных элементов на Землю, и поэтому используется, как правило, только для проверки точности других методов. Ракеты, поднимающиеся на высоту более 200 км, возвращают эталонные элементы на Землю. Все измерения проводятся на высоте не менее 100 км.

Шары-зонды поднимаются на высоту 30–40 км, где спектральное распределение энергии солнечного излучения определяется практически только полосами поглощения озона и в очень небольшой степени аэрозольным рассеянием. Влияние озона и аэрозолей учитывается введением поправки.

Самолеты для научных исследований обычно поднимаются на 12–13 км. Ориентация эталонных солнечных элементов на Солнце осуществляется летчиком с помощью оптического прицела. Измерения начинаются при подъеме на 3–4 км. Параметры солнечного излучения зависят от высоты полета самолета над уровнем моря и от положения Солнца над горизонтом в момент измерений, т. е. от оптической массы атмосферы. Проводились измерения на научном самолете при значениях абсолютной атмосферной массы от 1,4 до 0,14. Значение тока для внеатмосферных условий определялось экстраполяцией результатов к нулевой атмосферной массе. Это значение можно получить таким же образом по данным измерений в наземных, желательно высокогорных условиях.

Метод, который наиболее часто используется при градуировке под естественным солнечным излучением на поверхности Земли (как правило, в высокогорных условиях), заключается в эктраполяции результатов измерений к нулевой атмосферной массе. При градуировке последовательно измеряют ток короткого замыкания эталонных солнечных элементов для различных значений атмосферной массы (разная высота Солнца). Поскольку работа проводится в стационарных условиях, достаточно знать зависимость тока короткого замыкания эталонов от относительных значений атмосферной массы. Внеатмосферное значение тока короткого замыкания солнечных элементов получают путем линейной экстраполяции зависимости логарифма тока от относительной атмосферной массы к ее нулевому значению.

Практически метод осуществляется путем измерения тока короткого замыкания эталонных элементов в течение половины солнечного дня. Логарифмы измеренных значений тока наносятся на график в функции атмосферной массы, через экспериментальные точки проводится прямая линия (так называемая прямая Бугера), которая линейно экстраполируется к значению тока при нулевой атмосферной массе. Строго говоря, зависимость логарифма тока короткого замыкания от атмосферной массы оказывается линейной только для монохроматического света. Кремниевые солнечные элементы чувствительны в достаточно широкой области спектра, и вследствие эффекта Форбса для них эта функция изображается слабо вогнутой кривой. Однако при градуировке экстраполяцию проводят линейно, a затем вносят поправку на эффект Форбса. Для вычисления поправки (значение которой находится в пределах 1–3 %) необходимо знать спектральное распределение коэффициента прозрачности атмосферы в течение всего периода градуировки эталонных элементов, когда производятся измерения тока короткого замыкания эталонных солнечных элементов в зависимости от высоты Солнца над горизонтом.

Эти измерения проводят в сухих горных районах, где выше прозрачность атмосферы и для которых в определенные периоды года характерна устойчивость оптических свойств атмосферы. Для контроля стабильности оптических свойств атмосферы одновременно с измерениями ведут наблюдения за солнечным ореолом.

В СССР градуировка эталонных солнечных элементов осуществляется с 1965 г. регулярно один-три раза в год в окрестностях Алма-Аты на высокогорной станции Государственного астрономического института им. П. К. Штернберга (43° с. ш., 77° в. д., 3040 м над уровнем моря), сотрудниками которого во главе с Э. В. Koноновичем создана программа расчета тока Iκ 3 эталонов на ЭВМ и оборудован солнечный телескоп для этих измерений. Во Всесоюзном научно-исследовательском институте источников тока В. Я. Ковальским и И. С. Оршанским с сотрудниками были разработаны аппаратура и методика проведения высокогорной градуировки.

Пример определения IAM0 рассмотренным методом для двух эталонных элементов приведен на рис. 3.2.

Рис. 3.2. Экспериментальные зависимости логарифма тока короткого замыкания эталонных солнечных элементов от значения воздушной массы, построенные по результатам высокогорных измерений в районе Алма-Аты 26 июня 1982 г.

1 – кремниевый элемент; 2 – элемент на основе гетероперехода AlGaAs – GaAs

Если значения относительной воздушной массы, полученные во время измерений в высокогорных условиях, перевести в абсолютные величины, то зависимость логарифма тока короткого замыкания от абсолютной воздушной массы дает возможность определить ток короткого замыкания эталонных солнечных элементов не только для условий AM0, но и для AM1, AM1,5 и АМ2, а также для больших значений воздушной массы.

Однако при градуировке эталонов на согласованном в международном масштабе спектре требуется соответствие ему спектра наземного солнечного излучения, использованного при измерениях, не только по значению воздушной массы, но и по остальным параметрам: плотности потока излучения, коэффициенту мутности и селективности, количеству осажденных паров воды и озона. Сравнение спектра солнечного излучения, измеренного в день проведения испытаний в высокогорных условиях, со стандартным позволяет внести необходимую поправку в значение тока эталонов, определенное по зависимости, подобной показанной на рис. 3.2, для любых значений абсолютной воздушной массы. Тем самым удается на основании результатов высокогорных измерений получить достаточно точные градуировочные значения тока эталонных элементов для оценки параметров наземных солнечных элементов. Приведение к стандартному спектру может быть также осуществлено без детального исследования спектра солнечного излучения в определенный день – достаточно знать глубину нескольких характерных полос в спектре, что позволяет оценить содержание водяных паров, озона и аэрозолей в этот день.

Как правило, результаты градуировки эталонных солнечных элементов несколькими методами сравниваются между собой и показывают достаточно хорошее совпадение получаемых значений.

Измерения в наземных, лабораторных

и космических условиях

Наземные параметры солнечных элементов в зависимости от условий измерения изменяются: по мере увеличения воздушной массы, возникновения пасмурности, облачности, дымки, появления капель дождя КПД солнечных элементов, как правило, значительно растет, хотя абсолютное значение генерируемой ими мощности падает. Причину этого явления легко понять из сравнения кривых спектрального распределения энергии солнечного излучения при различных атмосферных массах (см. рис. 3.3): при увеличении значения атмосферной массы от 1 до 5 плотность потока излучения падает, но максимум проходящего сквозь атмосферу излучения сдвигается вправо, приближаясь к максимуму спектральной чувствительности солнечных элементов из кремния и арсенида галлия.


    Ваша оценка произведения:

Популярные книги за неделю