355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Макс Лауэ » ИСТОРИЯ ФИЗИКИ » Текст книги (страница 9)
ИСТОРИЯ ФИЗИКИ
  • Текст добавлен: 13 сентября 2016, 19:21

Текст книги "ИСТОРИЯ ФИЗИКИ"


Автор книги: Макс Лауэ


Жанр:

   

Физика


сообщить о нарушении

Текущая страница: 9 (всего у книги 15 страниц)

ГЛАВА 11
ЯДЕРНАЯ ФИЗИКА

Едва ли что-либо другое так способствовало изменению представления об атоме, о котором говорилось в главе 10, как радиоактивность. Открыл ее в феврале 1896 г. Анри Беккерель (1852-1908) в связи с опубликованным в начале января 1896 г. открытием рентгеновских лучей (гл. 4).

Эти лучи исходили, при тогдашнем получении их в стеклянных трубках, из флюоресцирующих частей стенки сосуда; возникла мысль, что их причиной могут быть флюоресценция или фосфоресценция. Поэтому Беккерель испытывал ряд фосфоресцирующих тел под влиянием проникающего излучения, способного действовать на фотографическую пластинку. Он не имел никакого успеха, пока ему не попалась соль урана. Но тогда он должен был, конечно, вскоре признать, что найденное излучение не стоит ни в какой причинной связи с фосфоресценцией. То, что он наблюдал, как мы теперь знаем, было действием быстрых электронов. Беккерель обнаружил затем ионизацию воздуха лучами, исходившими из урановых соединений. Все это открыло путь для исследования огромной новой области. Многие сейчас же ринулись в нее, так как благодаря открытию Рентгена созрело время оценить по достоинству значение таких находок.

Среди них были также супруги Пьер Кюри (1859-1906) и Мария Кюри (1867-1934). Они подвергли систематическому исследованию все известные химические элементы в отношении радиоактивности (термин

«радиоактивность» впервые был введен ими). Они нашли ее также у тория (впрочем одновременно с Ге-рардом Шмидтом), но в миллионы раз сильнее она оказалась у двух новых элементов: полония и радия. Аналитикохимическая методика, примененная супругами Кюри при исследованиях элементов на радиоактивность, привела в течение двух следующих десятилетий в руках многочисленных исследователей к открытию других «естественных» радиоактивных элементов. Особенно пополнил их список Отто Ган открытием радиотория (1905), мезотория (.1906) и, совместно с Лизой Мейтнер, протактиния (1918). Несколько отличались своим поведением радиоактивные газы, эманации, из которых первую – эманацию тория – открыл в 1900 г. Резерфорд.

Уже в 1897 г. этот великий исследователь различал по проникающей способности два вида радиоактивного излучения: легче поглощаемые -лучи и более проникающие -лучи. В то время как последние благодаря их легкой отклоняемости в электрическом и магнитном полях были вскоре отождествлены с электронами, над природой первых Резерфорду пришлось потрудиться более долгое время. Но в 1903 г. он нашел, наконец, посредством опытов с отклонением этих лучей, что отношение их заряда к массе по знаку и величине соответствует дважды ионизованным атомам гелия. Вильям Рамзай (1852-1916) и Фр. Содди установили в 1904 г. поразительное появление гелия в соединениях радия; единственным объяснением могло быть возникновение гелия из радия. Резерфорд и Т. Ройдс подтвердили в 1909 г. идентичность -частиц и ионов гелия, так как они обнаружили в собранных нейтрализованных -частицах характерную желтую линию спектра гелия. Так было доказано возникновение элемента гелия из других элементов. В то же самое время постепенно установили, что за небольшими исключениями радиоактивное тело посылает либо -лучи, либо -лучи;

обнаруженное в 1900 г. Паулем Виллардом неоткло-няемое -излучение может быть связано с обоими.

Но открытие Резерфорда не было первым указанием на радиоактивное превращение атомов. Уже в 1903 г. П. Кюри и А. Лаборд произвели сенсацию, обнаружив, что кусок очищенной соли радия всегда имеет более высокую температуру, чем температура окружающей среды. Причиной этого явления считали постоянное порождение теплоты, равное в течение часа 100 малым калориям на 1 грамм радия. Этот удивительный факт позднее (в 1908 г.) подтвердили Резер-форд и Гейгер. Подсчитывая число -частиц, испускаемых в 1 секунду, и измеряя энергию отдельной частицы методом магнитного отклонения, они получили то же количество энергии. Тотчас же возник вопрос: откуда берется эта постоянно освобождающаяся энергия? Уже в 1903 г. Резерфорд и Содди высказали взгляд, что всякий радиоактивный процесс есть превращение элементов. Потом стало ясно, что выделяющаяся при отдельном элементарном процессе энергия равна разности энергий нового и старого атомов. С тех пор говорят о радиоактивном распаде. Постепенно все «естественно» радиоактивные элементы распределили в три ряда распада, родоначальниками которых являются уран, протактиний и торий. Радий и полоний стоят в ряду урана. Упорядочение этих элементов в периодической системе привело в 1911-1913 гг. А. Ресселя, К. Фаянса и Фр. Содди к законам смещения, соответственно которым испускание одной -частицы снижает порядковый номер на два, одной -частицы – увеличивает его на единицу. Это находится в полном согласии с фактом тождественности порядкового номера и заряда ядра, окончательно установленным в 1913 г. посредством рентгеноскопии. Так пало старое воззрение о неразрушимости и несоздаваемости атомов.

– излучение непосредственно не связано с превращением элементов. Оно возникает только тогда, когда образуется возбужденное, в смысле квантовой теории, ядро, которое переходит потом, после испускания

– кванта, в первоначальное состояние. В 1926 г. Лиза Мейтнер экспериментально доказала, что -излучение обнаруживается только после радиоактивного превращения.

Очень скоро заметили, что уменьшение радиоактивности препарата со временем происходит у различных тел с различной скоростью. Закон радиоактивного распада открыли в 1899 г. Юлиус Эльстер (1854-1920) и Ганс Фридрих Гейтель (1855-1923): число испускаемых в секунду частиц уменьшается со временем экспоненциально. Постоянной этого закона является характерное для каждого элемента время полураспада, т. е. время, в течение которого это число уменьшается наполовину. Оно колеблется в очень широких границах – от 1,6 • 1010 лет у тория до 10-4 сек. у радия и даже до еще меньших значений. Согласно установленному в 1912 г. Гансом Гейгером (1881-1945) и Дж. М. Нэт-толом правилу, это число связано в случае -лучей с энергией и вследствие этого также с пробегом испускаемых частиц, так что для каждого ряда радиоактивного распада энергия тем больше, чем меньше время полураспада. Объяснение этого правила на основе волновой механики дал Г. Гамов в 1928 г. (гл. 14).

Большим достижением было данное в 1905 г. Э. Швейдлером объяснение эмпирического закона распада: вероятность распада для каждого атома независима от времени и тем больше, чем меньше время распада. Физика столкнулась здесь впервые с процессом, который не поддается причинному объяснению. До сегодняшнего дня мы не знаем, почему данный радиоактивный атом распадается именно в этот, а не в другой момент времени. Невозможность изменить распад какими-либо физическими влияниями как бы набрасывает завесу на ядро. Правильность вероятностной теории распада подтвердили в 1906-1908 гг. наблюдения Кольрауша, Эдгара Мейера и Э. Регенера, а также Г. Гейгера над требуемыми теорией флюктуациями числа частиц, испускаемых в единицу времени.

Значение теории Швейдлера ясно проявилось позднее, когда физика изучила многие другие атомные явления, для описания которых очень хорошо подходит понятие вероятности при невозможности причинно определить момент времени их наступления. Ко всем таким явлениям применимы вероятностные рассуждения Швейдлера.

Открытие радиоактивного распада атомов оживило алхимическую идею превращения одного элемента в другой. До 1930 г. в течение десятилетий проводились многочисленные опыты этого рода, особенно посредством вольтовой дуги. Но эти мнимые превращения не устояли перед критикой. Превращение достигается, как мы теперь знаем, только методом концентрации необходимого количества энергии на отдельном атоме при бомбардировке его другими атомами или -квантами. Но и в этих экспериментах вначале (1907) были ошибочные результаты. Первое действительное искусственное превращение атомов удалось в 1919 г. Резерфорду. Он облучал азот -частицами и получил при этом протоны с большой длиной пробега. Фотографии этого явления в камере Вильсона, сделанные в 1925 г. П. М. С. Блэккетом, ясно показали, наряду с длинным следом протона, короткий след возникшего кроме него изотопа кислорода с атомным весом 17. В период от 1921 до 1924 г. Резерфорд и Чадвик смогли доказать существование этой реакции – поглощения -частицы и испускания протона – также у всех элементов от бора (порядковое число 5) до калия (порядковое число 19), за исключением углерода и кислорода. Кроме протона в этих реакциях постоянно возникает элемент, следующий по порядку в периодической системе.

Важным годом для развития этой области был 1930 г. Прежде всего Боте и Беккер наблюдали проникающее -излучение при обстреле легких элемен-тов, особенно бериллия, -частицами. Как показал в 1935 г. К. Шнецлер, атомное ядро при столкновении

с -частицами приходит в возбужденное состояние, а после испускания -кванта возвращается в первоначальное состояние. Это явление происходит только при условии, что нижний предел энергии -частицы равен 2,3 • 106 электрон-вольт. И. Кюри и Ф. Жолио подтвердили основные наблюдения Боте и Беккера, но пришли при помощи измененной аппаратуры к другим результатам относительно поглощения возникающего излучения. Они показали с помощью камеры Вильсона, что это излучение приводит более легкие атомы в такое быстрое движение, которое невозможно, согласно теории столкновений, приписать действию -лучей. Отсюда потом Чадвик заключил, что здесь возникает, кроме -лучей, корпускула, которая имеет нулевой заряд и почти ту же самую массу, что и протон, т. е. нейтрон, существование которого давно предполагалось Резер-фордом. Действительно, как доказал позднее Шнецлер, при возбуждении ядер бериллия может происходить улавливание ими частицы с последующим выделением нейтрона при условии, что энергия -частицы равна по крайней мере 4,76 • 106 электрон-вольт. Остающееся ядро является ядром углерода.

Это представление впоследствии полностью подтвердилось; было открыто множество ядерных реакций, в которых захват а-частицы или дейтерия вел к испусканию нейтрона. Особенно обильный источник нейтронов был получен при столкновении быстрых дейтронов друг с другом М. Л. Е. Олифантом, П. Гартеком и Ре-зерфордом в 1934 г., что дало возможность проводить многочисленные опыты с нейтронами.

В 1934 г. И. Кюри и Ф. Жолио натолкнулись в этих опытах на ядерные реакции, при которых вновь возникшее ядро оказывается нестабильным; при отщеплении одного позитрона оно подвергается дальнейшему радиоактивному распаду. В случае этих «искусственно» радиоактивных атомов сохраняется также закон распада Швейдлера. Позднее стали известны случаи, в которых вместо позитрона появляется электрон, а также, при определенных обстоятельствах, наряду с ним

и -излучение. С 1934 г. Э. Ферми стал применять нейтроны для бомбардировки атомов. С тех пор количество устойчивых или радиоактивных ядер, полученных путем искусственного превращения, возросло до многих сотен, и почти все места периодической системы заполнились изотопами (гл. 10).

Атомы, возникающие во всех этих ядерных реакциях, занимали в периодической системе то же место, что и бомбардированный атом, или соседние места. Поэтому произвело большую сенсацию доказательство Ганом и Штрассманом в 1938 г. того, что при обстреле нейтронами последнего элемента периодической системы – урана – происходит распад на элементы, которые стоят в средних частях периодической системы. Здесь выступают различные виды распада. Возникающие атомы в большинстве своем неустойчивы и тотчас же распадаются дальше; у некоторых время полураспада измеряется секундами, так что Ган должен был применить аналитический метод Кюри для продления такого быстрого процесса. Важно отметить, что стоящие перед ураном элементы, протактиний и торий, также обнаруживают подобный распад под действием нейтронов, хотя для того, чтобы распад начался, требуется более высокая энергия нейтронов, чем в случае урана. Наряду с этим в 1940 г. Г. Н. Флеров и К. А. Петржак обнаружили спонтанное расщепление уранового ядра с самым большим из известных до тех пор периодом полураспада: около 2 • 1015 лет; этот факт становится явным благодаря освобождающимся при этом нейтронам. Так явилась возможность понять, почему «естественная» периодическая система заканчивается тремя названными элементами. Теперь стали известны трансурановые элементы, но они настолько неустойчивы, что быстро распадаются.

Расщепление урана посредством нейтронов дает теперь возможность того использования атомной энергии, которое уже многим мерещилось, как «мечта Жюля Верна», но которое еще Резерфорд объявил иллюзией.

При расщеплении нейтронами изотопа урана с атомным весом 235 освобождаются в одном элементарном акте при применении одного нейтрона в среднем два нейтрона, как это показали еще в 1939 г. Ф. Жо-лио, Л. Коварский и Г. Халбан. Поскольку распад этого изотопа урана может быть произведен посредством нейтронов с очень малой энергией, при известных условиях становится возможной цепная реакция, которая ведет к дальнейшему расщеплению ядер, так что процесс протекает сам собой во все возрастающем темпе. Вторая мировая война, разразившаяся через 8 месяцев после опубликования открытия Гана, привела к тому, что первым применением этого открытия было создание нового страшного оружия. Большое деловое сотрудничество американских и английских ученых, опирающееся на огромные государственные средства, создало в течение этой войны атомную бомбу, которая взорвалась 16 июля 1945 г. в Новой Мексике, 6 августа над Хиросимой и вскоре после этого над Нагасаки. Подробное изложение этого развития выходит за рамки этой книги*). С точки зрения физики здесь занимаются величайшим экспериментом, который когда-либо ставили люди. Это – блестящее подтверждение смелого научного предвидения, основанного на убеждении в объективной истинности физики.

Как глубоко эти результаты внутренне и внешне преобразят человечество, пока еще трудно оценить. Возможно, что позднее написанная история будет рассматривать вышеупомянутые открытия как важнейшие во всей исторической эпохе, поскольку замедленное течение цепной реакции, приводящей ко взрыву бомбы, дает возможность использования энергии атомного ядра для мирных, созидательных целей.

*) См. Н. D. Smyth, Atomic energy for military purposes, Princeton University Press, 1945; русский перевод: С м и т, Атомная энергия для военных целей, М., 1948.


ГЛАВА 12
КРИСТАЛЛОФИЗИКА

Наука о кристаллах принадлежит исключительно новому времени. Правильные формы некоторых алмазов, а также гладкие грани других кристаллов, правда, бросались в глаза и прежде; кажущееся беспорядочным изменение их величины и формы было, вероятно, причиной того, что не устанавливали закономерностей. В древности знания о минералах приобретались случайными наблюдениями и к тому же переплетались с мифологией и верой в волшебную силу драгоценных камней.

Совершенно изолированно стоит маленькое сочинение Иоганна Кеплера, появившееся в 1611 г.: из простого наблюдения над «шестиугольными снежинками», именем которых названо его сочинение, гениальный ученый пришел к идее симметрии и даже построения снежинок из плотно упакованных шаров. В его геометрических размышлениях мы узнаем опять тот ход мысли, который Кеплер применил в 1596 г. в своем «Prodromus» при выводе закона для радиусов орбит планет. Этот закон вскоре был признан неправильным; но взгляд на мир, как на творение духа, предпочитающего простые математические отношения, поставил Кеплера здесь на верный путь. Однако это случайное сочинение, которое он сам рассматривал отчасти как забаву, не оказало влияния.

В 1669 г. Нильс Стенсен (Николай Стено, 1638– 1686) открыл, что у кварца (от которого термин «кристалл» был постепенно перенесен на другие твердые

тела с определенной естественной формой), а также у некоторых других кристаллов, даже если они обработаны, между их плоскостями обнаруживается всегда один и тот же угол. В том же году Эразм Бертельсен (Бартолинус, 1625-1698) заметил у исландского шпата двойное лучепреломление, которое в 1678 г. Гюйгенс (гл. 4) объяснил на основе волновой теории. Доменико Гульельмини (1655-1710) распространил в 1688 г. закон постоянства углов на некоторые кристаллы соли. Целое столетие ушло на установление этих фактов. Кристаллография оставалась незатронутой большими успехами остальной физики; физики не имели в своем распоряжении хорошо обработанных кристаллов, а минералоги, правда, обладали ими, но занимались главным образом другими задачами. (Получение искусственных кристаллов является трудным искусством, и в систематической форме оно развилось только в XX веке). Исключением является открытие пироэлектричества в турмалине. В течение долгого времени давались неправильные объяснения этого явления. Лишь в 1758 г. Франц Ульрих Теодор Эпинус (1724-1802) показал, что плоскости кристалла заряжаются при изменении температуры.

Только в 1772 г. появилось опять значительное произведение о формах кристаллов: Жан Батист Роме де Лиль (1736-1790) распространил закон постоянства углов, образуемых плоскостями, на многие другие кристаллы. Эти углы, т. е. положения плоскостей друг по отношению к другу, являются с тех пор, как известно, основной характеристикой любого вида кристаллов,, в то время как величина плоскостей определяется случайными побочными обстоятельствами при росте кристалла.

На основе этого закона развивалась геометрическая кристаллография в процессе трудного детального изучения и, конечно, не без заблуждений. Благодаря выдающимся работам Христиана Самуэля Вейса (1780-1856), исследованиям его ученика Франца Эрнста Неймана (1798-1895) (первого крупного физика, вплотную занявшегося кристаллами), работам Фридриха Моса (1773-1839) и Карла Фридриха Наумана (1797-1873), наконец, Вильяма Миллера (1801-1880) был установлен «закон рациональности». Он определяет положение любой кристаллической плоскости тремя небольшими целыми числами, ее «индексами», если известны три оси кристалла и длина каждой из них. Вышеуказанные исследователи старались также дать систематику кристаллов. Однако полная систематика удалась только в конце этого периода, в 1830 г., Иоганну Фридриху Христиану Гесселю (1796-1872). На основе закона рациональности он дал геометрическое доказательство того, что существуют 32 класса кристаллов, и не больше. Но на его работу также не обращали внимания в течение десятилетий. В 1867 г. Аксель Гадолин (1828-1892), не зная о своем предшественнике, весьма изящным образом вновь установил эту систематику. Таким образом, цель геометрической кристаллографии была достигнута.

Классы кристаллов различали сначала по симметрии, характерной для положений граней. Одновременно укреплялось также представление о том, что эта симметрия имеет решающее значение также для процессов внутри кристаллов, например для распространения света и упругости. Известковый шпат, на котором раньше всего было изучено двойное лучепреломление, имеет только одну оптическую ось. В 1812 г. Жан Батист Био (1774-1862) нашел у слюды две оптические оси. Давид Брюстер (1781-1868) подтвердил это в 1813 г. на примере топаза и других кристаллов.а также расширил в 1818 г. список веществ, имеющих двойное лучепреломление, до числа свыше ста. Известный астроном Джон Фредерик Вильям Гершель (1792-1871) усовершенствовал эти знания, в частности, благодаря применению монохроматического света. Но точную связь между геометрической симметрией плоскостей и физическими свойствами кристаллов формулировал в основном правильно лишь в 1833 г. Франц Нейман, который уже в 1832 г. свел кристаллооптику Френеля

к упругой теории света. Этот же великий исследователь создал также теорию упругости кристаллов. По его следам пошел его ученик Вольдемар Фойгт (1850-1919); учебник кристаллофизики Фойгта, появившийся в 1910 г., остался до сих пор неисчерпаемой сокровищницей сведений по всем физическим проблемам кристаллов. В нем имеется также теория пироэлектричества, которую развил в 1878 г. Вильям Томсон (лорд Кельвин), а также пьезоэлектричества, открытого в 1881 г. Пьером Кюри (1859-1906).

Однако сущность кристаллического состояния, согласно современным взглядам, определяется не этими свойствами, а упорядоченным расположением атомов в пространственных решетках, т. е. конфигурациями со строгой трехмерной периодичностью. На этой основе можно понять все свойства кристаллов.

Теория пространственной решетки имеет длинную историю. Шаровые упаковки, о которых еще в 1611 г. говорил Кеплер, были уже пространственной решеткой, хотя он не применял этого понятия. Разносторонний Роберт Гук (1635-1703) высказал в 1665 г. в своей «Микрографии» правильный взгляд на строение кристаллов, но не обосновал и не развил его. Гюйгенс в своем «Трактате о свете» (гл. 4), напечатанном в 1690 г., на основе изучения характера расщепления известкового шпата дает структуру кристалла в форме пространственной решетки, состоящей из мельчайших частиц эллипсоидальной формы. На основании этого же свойства в 1773 г. Торберн Бергманн (1735-1784), а в более общей форме в 1782 г. Рене Жюст Аюи (1743-1822) рассматривали кристалл, как кладку из мельчайших строительных камней, которые имеют форму параллелепипедов, и также обнаруживающую периодичность по трем измерениям. Физик Людвиг Август Зеебер (1793-1855) был первым, кто соединил с этим воззрением тогда еще новое понятие химического

атома и допустил, что пространственная решетка образована атомами. Благодаря глубокому физическому пониманию он выходит за пределы чисто геометрического рассмотрения и определяет расстояния между атомами посредством сил, действующих между ними, а также ставит в связь с этим упругость и тепловое расширение. Он опубликовал свои взгляды в 1824 г., на 32 года раньше, чем вошла в современную физику атомистика в форме кинетической теории газов. Но, может быть, именно поэтому его подвиг (эту работу действительно можно так назвать) был совершенно забыт. Не помогло также и то, что великий Карл Фридрих Гаусс в 1831 г. в рецензии на одну математическую книгу указал на проблемы, связанные с идеей Зеебера относительно «параллелепипедного расположения точек в пространстве». Лишь в 1879 г. Зонке (см. ниже) обратил внимание на работу Зеебера.

Совершенно независимо от этого развивалась математика пространственной решетки; она определяла отдельную решетку не пространственным распределением изображаемых ею физических образований, а посредством допустимых для нее операций суперпозиции. Так, Мориц Людвиг Франкенгейм (1801-1869) поставил следующий вопрос в 1835 и 1856 гг.: соответствуют ли все геометрически возможные виды пространственных решеток симметриям, наблюдаемым у кристаллов? Уже до его второй работы, а именно в 1850 г., Огюст Бравэ (1811-1863) вывел 14 по его имени названных пространственных решеток, которые могли быть образованы только путем переносов одной ячейки (без помощи других операций). Эти чисто геометрические работы по теории групп обобщил в 1879 г. Леонард Зонке (1842-1897) благодаря введению других операций и получил таким образом 65 различных пространственных групп. Полное решение этой математической проблемы, установление и перечисление всех геометрически возможных пространственных групп совершили кристаллограф Евграф Степанович Федоров (1853-1919) и математик Артур Шенфлис (1853-1928). Оба установили

в 1891 г., независимо друг от друга и совершенно различными путями, 230 пространственных групп.

Сначала эти исследования не оказывали никакого влияния на физику, потому что гипотеза пространственной решетки не обосновывалась какими-либо физическими явлениями. Среди немногих физиков, которые вообще интересовались учением о кристаллах, некоторые защищали противоположное представление о том, что в кристаллах, как во всяком веществе, центры тяжести молекул распределены беспорядочно и анизотропия порождается исключительно параллельной ориентацией привилегированных направлений молекул. В минералогии также мало занимались этой гипотезой. Только Пауль Грот (1843-1927) поддерживал традицию Зонке в своей преподавательской деятельности в Мюнхене. Победу этой гипотезе доставили в 1912 г. опыты В. Фридриха и Пауля Книппинга (1883-1935), которые, согласно высказанному М. Лауэ предсказанию, обнаружили явления интерференции рентгеновских лучей, вызываемые пространственной решеткой кристаллов. Благодаря своей весьма малой длине волны эти лучи дают возможность определить расстояния между атомами в решетке, которые не могут быть определены с помощью лучей, имеющих длину волны видимого света. В этих опытах было также дано первое решающее доказательство волновой природы рентгеновских лучей, которую до тех пор некоторые выдающиеся исследователи отрицали из-за особенно бросающихся в глаза квантовых явлений у этих лучей (гл. 14). Теория этого явления, которую сразу же после первых сообщений о результатах опыта дал М. Лауэ, сумевший количественно подтвердить ее, явилась обобщением теории, предложенной Швердом (гл. 4) в 1835 г. для оптической решетки. Сначала теория Лауэ оспаривалась некоторыми физиками, но недолго, так как несколько резких максимумов интерференции рентгеновских лучей слишком ясно напоминали оптические спектры решетки. Хотя эта теория является только приближением, она чем дальше, тем больше становится

удивительно хорошим приближением. Здесь оказались тесно связанными волновая теория рентгеновских лучей и атомистическая теория кристаллов – одно из тех поразительных событий, которые сообщают физике ее убедительную силу.

Теория Лауэ позволяет сравнивать длину волны с тремя периодами пространственной решетки. Но так как тогда знали только порядок величины последних, то поэтому было невозможно определить абсолютное значение длин волн. Трудность заключалась в незнании атомной структуры кристаллов; не знали, сколько атомов находится в отдельной ячейке пространственной решетки. Помощь пришла в 1913 г. со стороны Вильяма Генри Брэгга (1862-1942) и его сына Вильяма Лоуренса Брэгга. Они воспользовались установленной в 1898 г. Вильямом Барлоу (1845-1934) гипотезой о структуре каменной соли NaCl; идея плотнейших упаковок шаров опять играет роль в этой гипотезе. Эта структура подтвердилась наблюдениями интенсивно-стей максимумов интерференции, и таким образом была получена абсолютная мера для постоянной решетки. Так явилась возможность абсолютного определения длины волны рентгеновских лучей, т. е. в сантиметрах. Впоследствии удалось также при помощи их определить константы решетки других кристаллов. Эти величины большей частью лежат между 10-8 и 10-7см; однако у сложных органических тел обнаруживаются также значительно большие величины. В 1923 г. А. X. Комптон наблюдал диффракцию рентгеновских лучей на искусственных решетках; его измерения ничего не прибавили к прежним определениям длины волны, кроме, конечно, важного увеличения точности.

Измерение длин волн создало рентгеноспектроско-пию. Характеристические лучи химических элементов (К, L, М и т. д.) были открыты благодаря их различной поглощаемости в 1908 г. Ч. Г. Баркла и К. А. Садлером. В работах обоих Брэггов и Г. Мозли (1887-1915) в 1913 г. они рассматривались как серии резких спектральных линий, длины волн которых

связаны простым законом с местом элемента в периодической системе. Спектрография рентгеновских лучей имела очень большое значение для атомистики (гл. 10 и 14). Она привела также к открытию новых элементов – гафния (1923) Г. Хевеши и рения (1925) В. Ноддаком, И. Таке и Отто Бергом (1874-1939). Исследование структур кристаллов, в котором мысль Л. А. Зеебера нашла свое блестящее оправдание, стало отдельной большой ветвью науки. Число органических и неорганических кристаллов, для которых мы можем точно задать положения атомов, насчитывается тысячами. Среди них находятся сложные структуры различных силикатов. В 1925 г. Г. Менцер исследовал их впервые у гранита. Подтвердилось, что у многих металлов, как алюминий, серебро, медь, атомы расположены в виде плотнейших шаровых упаковок, как указывал уже в 1611 г. в упомянутом сочинении Кеплер. В 1915 г. В. Брэгг показал, что у этих и других не слишком сложных структур посредством рентгенографического анализа Фурье плотности электронов можно определить не только положение центра атомов, но и распределение электронов.

Рентгеновские лучи сделали очевидной также распространенность кристаллического состояния в природе. Редко встречаются хорошо образованные крупные кристаллы; гораздо чаще встречаются «микрокристаллические» агрегаты из микроскопических или еще меньшей величины кристаллов. В отношении металлов это представление существует уже давно. Но ново то, что микрокристаллическую структуру имеют также дерево, мышечные и нервные волокна, ткани организма. Именно кристаллическое состояние является нормальным состоянием твердой материи; только немногие тела, прежде всего стекло, являются исключением. Поэтому всякая атомистическая теория твердого тела, например квантовая теория электропроводности, исходит из пространственной решетки. После возникновения волновой механики (гл. 14) пространственные решетки стали играть особую роль. Из теории Луи де Бройля

в 1925 г. Эльзасер сделал заключение, что электронные лучи при прохождении через кристаллы должны давать, подобно рентгеновским лучам, явления интерференции. В 1927 г. это было подтверждено, с одной стороны, опытами К. Дж. Дэвисона и Л. Г. Джермера и, с другой стороны, опытами Г. П. Томсона; они дали непосредственно наглядное и, благодаря изглерению длин волн, связанных с электронами, количественное доказательство этой революционной теории. Отто Штерн (1929) и Джонсон (1931) поставили также с помощью кристаллов опыты для лучей атоглов гелия и водорода. Однако при этом действуют только поверхности кристаллов, так как эти лучи не могут проникнуть в твердые тела. Напротив, для нейтронов можно, так же как для рентгеновских лучей, точно доказать действия пространственной решетки. Это стало возможным, когда аглериканские исследователи получили мощные источники нейтронов в циклотроне (Д. П. Митчел и П. Н. Пауэре, 1936 г.) или даже в «урановых котлах» (Э. Фергли и Л. Маршал, 1947 г.).

Наряду с этим надо упоглянуть, что интерференция рентгеновских и электронных лучей применяется также для определения формы и величины молекул газов, как это показали для рентгеновских лучей в 1915 г. П. Де-бай, а для электронных лучей в 1930 г. X. Марк и Р. Вирл (1904-1932). В этих исследованиях были определены расстояния между атомными ядрами для многих двухатомных молекул: азота, кислорода, фтора и т. д. Эти расстояния заключаются между 1 • 10-8 и 3 • 10-8см. Известно, что атомы в молекуле углекислого газа СО2 расположены на одной прямой, а атомы в молекуле воды Н2О – по сторонам треугольника, и т. д. Особенно хорошо изучена молекула четыреххло-ристого углерода CCl4; в ней атомы хлора образуют равносторонний тетраэдр, в центре которого находится атом углерода. Стереохимические воззрения, выработанные Вант-Гоффом в 1874 г., получили здесь полное подтверждение.


    Ваша оценка произведения:

Популярные книги за неделю