355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Макс Лауэ » ИСТОРИЯ ФИЗИКИ » Текст книги (страница 10)
ИСТОРИЯ ФИЗИКИ
  • Текст добавлен: 13 сентября 2016, 19:21

Текст книги "ИСТОРИЯ ФИЗИКИ"


Автор книги: Макс Лауэ


Жанр:

   

Физика


сообщить о нарушении

Текущая страница: 10 (всего у книги 15 страниц)

Первоначальная теория интерференции в пространственных решетках представляет собой, как было сказано, приближение, которое, правда, для рентгеновских лучей почти всегда достаточно, но для электронов, напротив, часто перестает быть годным. Доработку этой теории в более точную «динамическую» теорию произвели в 1914 г. Ч. Г. Дарвин и в 1917 г. П. П. Эвальд. С помощью этой теории они смогли объяснить несоответствие между старой теорией и точными измерениями В. Стенстрёма (1919 г.). Окончательный вид динамической теории придал в 1931 г. Макс Лауэ. Согласование ее с волновой механикой произвел в 1935 г. М. Колер. Для электронов сделал соответствующий шаг уже в 1928 г. Г. Бете.

Динамическая теория описывает, в отличие от прежней теории, также волны внутри кристалла; она поэтому необходима для понимания найденного в 1935 г. В. Косселем явления интерференции при пропускании через кристаллы монохроматического рентгеновского излучения; источники излучения в этом случае находятся в самой пространственной решетке. Это излучение действительно ясно обнаруживает в определенных направлениях, установленных условиями интерференции, характерные резкие максимумы и минимумы интенсивности.

Первоначальная теория была еще несовершенной, поскольку она совершенно отвлекалась от теплового движения атомов. Между тем это движение при комнатной и более высокой температуре довольно значительно в сравнении с тремя периодами пространственной решетки. В 1914 г. П. Дебай показал, что оно не имеет никакого влияния на положение и резкость максимумов интерференции, но уменьшает только их интенсивности. С тех пор теория подвергалась дальнейшей обработке. В 1926-1933 гг. В. Л. Брэгг и его сотрудники подтвердили ее рядом измерений.


ГЛАВА 13
ТЕПЛОВОЕ ИЗЛУЧЕНИЕ

Учение о тепловом излучении является одной из самых молодых ветвей физики. Понятие теплового излучения было установлено химиком Карлом Вильгельмом Шееле (1742-1786); первые эксперименты произвел Марк Огюст Пикте (1752-1825). Пьер Прево (1751-1839) сделал из них вывод в 1791 г., что каждое тело излучает независимо от окружающей его среды. Сообщенное телу количество тепла представляет собой разность между теплом, которое оно получает от среды, и тем, которое оно излучает; это – важный закон, который только при теплопроводности не имеет никакого значения. В течение первой половины XIX столетия знали только единый спектр; тепловое и световое излучения часто спутывали (гл. 4). Поскольку в то же самое время были установлены оба основных начала, термодинамика и оптика теперь настолько развились, что из их объединения могло родиться дитя, предназначенное совершить величайшую революцию в физике. Это еще одно из тех событий, которые доказывают истинность физики.

Новый путь проложил Густав Роберт Кирхгоф (1824-1887). Он показал, что в замкнутом пустом пространстве, не проницаемом для излучения и поддерживаемом при постоянной температуре, устанавливается универсальное излучение «черного тела», зависящее только от температуры, но не от природы стенок. Интенсивность излучения любого тела может быть определена, исходя из излучения «черного тела», если

известны поглощение и показатель преломления данного тела (1859). Только для излучения черного тела имеет строгое значение закон косинусов, который в 1760 г. был выведен Иоганном Генрихом Ламбертом (1728-1777) из наблюдений над излучением источников света. Так вся проблема излучения свелась к исследованию излучения черного тела. Никто не подозревал значения этих открытий. К тому же считали невозможным наблюдение излучения черного тела. В 1895 г. Отто Лум-мер (1860-1925) и Вильгельм Вин (1864-1928) изобрели способ изучать его, глядя внутрь замкнутого пространства через маленькую щель, столь маленькую, что это заметно не изменяет состояния излучения в замкнутой полости. Лишь с тех пор существуют количественные измерения интенсивности излучения черного тела.

За несколько месяцев до установления закона, носящего имя Кирхгофа, последний вместе с Робертом Вильгельмом Бунзеном (1811-1899) опубликовал открытие, которое произвело большое впечатление на современников: темные фраунгоферовы линии в солнечном спектре совпадают с линиями испускания хорошо известных газов и паров. Таким образом, было доказано в общем виде, что материя вне нашей планеты состоит из тех же химических элементов, что и на Земле. До тех пор это можно было предполагать только на основе анализа метеоритов.

Спектроскопия, как инструмент астрономии, обещала большое расширение наших знаний о неподвижных звездах. Но результаты вскоре превзошли все ожидания. Элемент гелий, вопреки обычным правилам, был раньше найден на Солнце Ж. Жансеном (1824-1907) в 1868 г. и лишь потом, в 1895 г., в минерале клевеите Вильямом Рамзаем (1852-1916) и Теодором Клеве (1840-1905). Спектроскопия звезд в настоящее время не является еще исчерпанной наукой.

Кирхгоф считал связь между этим открытием и термодинамикой более тесной, чем она есть на самом деле. Он заблуждался, предполагая, что испускание

спектральных линий совершается за счет тепловой энергии. В большинстве случаев электрическое или химическое возбуждение вызывает в газах свечение; температура излучения •– как мы выражаемся теперь – становится тогда гораздо выше температуры самогс газа. Совпадение линий поглощения и испускания связано с явлением резонанса, которое было объяснено лишь теорией квантов.

Второй шаг в исследовании теплового излучения сделал в 1884 г. Людвиг Эдуард Больцман (1844-1906). На основании электромагнитной теории света он заключил о давлении излучения черного тела на стенки, равном одной трети энергии излучения, приходящейся на единицу объема. Путем простого применения обычных термодинамических способов он вывел, что эта энергия пропорциональна четвертой степени абсолютной температуры; коэффициент пропорциональности – универсальная постоянная. Так был обоснован и уточнен результат, который еще в 1879 г. был выведен Джозефом Стефаном (1835-1893) из измерений французских физиков. Это было триумфом электромагнитной теории света. В своем некрологе о Больц-мане Лорентц назвал перлом теоретической физики *) его маленькое, но глубоко продуманное сочинение, в котором он смело применил к тепловому излучению термодинамические понятия – давление и температуру, а неявно – также понятие энтропии.

Закон Стефана-Больцмана говорит о суммарной энергии всего спектра. Целью исследования стало изучение распределения энергии в спектре. Существен-

*) Н. A. L о г е n t z, Verh. d. Deutschen Phys. Gesellschaft (1907).

ное приближение к этой цели означало третий шаг теории теплового излучения. Его сделал в 1893 г. Вильгельм Вин (1864-1928) путем комбинации методов термодинамики с принципом Допплера. Закон смещения Вина – великое открытие, недостаточно оцененное в современных учебниках, – дает возможность вычислить распределение энергии при любой температуре, если оно известно при данной температуре. Но даже без этого знания закон дает объяснение, почему с возрастанием температуры максимум интенсивности в спектре все больше и больше смещается к коротким волнам; почему, таким образом, тепловое излучение при более низких температурах остается невидимым, а при температурах около 6000° максимум интенсивности становится видимым; если известно его положение, то возможно вычислить температуру источника излучения, например Солнца. Вин первый распространил понятие энтропии не только на излучение черного тела, но также на направленное излучение, что было в связи с законом увеличения энтропии тем более необходимо, что энтропия источника излучения уменьшается. Вскоре после этого оказалось, что закон смещения ведет так далеко, как вообще могла пойти классическая физика, т. е. к порогу квантовой теории.

Было сделано много попыток решения проблемы вычисления интенсивности излучения как функции частоты колебаний и температуры. Мы упомянем закон, названный по имени лорда Рэлея (1842-1919) и Джемса Хопвуда Джинса (1877-1946), согласно которому интенсивность пропорциональна температуре и квадрату частоты колебаний. Этот закон недействителен для произвольно высоких частот колебаний (коротких длин волн) потому, что при этом не получается конечная общая энергия излучения. Однако он содержит определенную истину, поскольку имеет значение для небольших частот (больших длин волн). С 1896 г.

В. Вин и позднее также М. Планк (1858-1947) выдвинули закон распределения, согласно которому интенсивность уменьшается экспоненциально по мере возрастания длин волн. Так пытались избежать «ультрафиолетовой катастрофы». В 1899 г. удалось экспериментально подтвердить этот закон, но затем усовершенствованные измерения Отто Луммера (1860-1925) и Эрнста Принсгейма (1859-1917) привели к значительным отклонениям от этого закона, послужившим для Планка источником новых размышлений.

Двадцатилетняя деятельность Планка в области термодинамики и ясное понимание значения энтропии, которое тогда еще многими оспаривалось, сыграли большую роль в развитии его идей. Ядром проблемы он считал не формулу интенсивности, а однозначно связанное с нею отношение между энергией, частотой и энтропией излучения. Закону распределения -Вина соответствовала одна связь этих величин, закону Рэлея-Джинса – другая. Когда Планк в октябре 1900 г. узнал о новых измерениях Фердинанда Курл-баума (1857-1927) и Генриха Рубенса (1865-1922), подтверждающих закон для длинных волн, он установил на основе обоих видов связи интерполяционную формулу, из которой непосредственно получался названный по его имени закон излучения, содержащий прежде установленные формулы как предельные случаи*). Он доложил об этом в Немецком физическом обществе 19 октября 1900 г. Несмотря на некоторые сомнения, этот закон в последующем все больше и больше эмпирически подтверждался.

Оставалось, правда, главное дело, а именно: проблема надлежащего теоретического обоснования этого полуэмпирически найденного закона. Планк вернулся к обнаруженной Больцмаиом связи между энтропией и вероятностью (гл. 10) и вычислил вероятность числа колебаний линейного осциллятора. При этом он исходил

*) М. Plank, Zur Geschichte der Auffindung des physika-

lischen Wirkungsquantums, Naturwiss. 31, 153 (1943).

из неслыханно новой, только по необходимости им введенной идеи о том, что возможны только дискретные ступени энергии. Отсюда, действительно, получался закон излучения. Этот закон удовлетворял закону смещения Вина, если ступени энергии отличались друг от друга на величину h, где h – новая универсальная константа, элементарный квант действия. Таким путем теоретическая формула излучения становилась тождественной формуле, найденной путем интерполяции. Численное значение h получилось на основании измерений равным 6,5 • 10-27эрг • сек. Константа Больц-мана, которая также входит в закон излучения (поскольку применяется установленное Больцманом отношение между энтропией и вероятностью состояния), имеет значение 1,37 • 10-16эрг/град. Этот вывод Планк также доложил в Немецком физическом обществе 14 декабря 1900 г. С этого дня началось развитие теории квантов.

Закон квантов энергии h Планка был не продолжением прежней физики, а переворотом в ней. Следующие десятилетия все яснее показывали, насколько глубок был этот переворот и также насколько он был необходим. Именно с помощью теории квантов стало возможным понимание атомных явлений.

В последующие годы были сделаны еще некоторые другие попытки теоретически вывести закон излучения Планка. В 1910 г. П. Дебай, например, применил h-закон к электромагнитным собственным колебаниям черного тела и достиг таким путем, может быть, еще более простого подхода к формуле излучения. В 1917 г. Эйнштейн сделал интересный вывод, который дальше всего отходит от представления о колебаниях излучения черного тела. Он характеризует это излучение посредством спектральных областей и квантов энергии, которые относятся к этим областям. При этом он придает каждому возбужденному атому излучения черного тела определенную вероятность излучения в единицу

времени, а также пропорциональную энергии излучения вероятность поглощения или вынужденного испускания. Для невозбужденных атомов устанавливается только вероятность поглощения. Мысль Швейдлера о вероятности распада при радиоактивности находит здесь свое применение к другим атомным процессам; эта мысль распространилась на всю теорию квантов.

С другой стороны, термодинамика излучения доставила поразительное подтверждение принципа Больцмана. Две пространственно разделенные системы частиц в общем статистически независимы, так что их вероятности умножаются, когда вычисляют вероятности всей системы; этому соответствует, согласно принципу Больцмана, аддитивное сложение их частных энтропии в общую энтропию, которое принадлежит к числу неявных предпосылок классической термодинамики. Если производят такое вычисление у двух когерентных лучей, которые возникают из одного луча при отражении и преломлении, то находят, что общая энтропия их больше, чем энтропия первоначальных лучей. Но в 1906 г. М. Лауэ смог доказать, что этот процесс обратим; можно два когерентных луча опять сложить в один путем соответствующего отражения и преломления. Общая энтропия двух когерентных лучей должна, следовательно, быть равна энтропии первоначальных лучей. Противоречие разрешается, если отказываются от правила аддитивности частных энтропии когерентных лучей. Согласно принципу Больцмана это действительно необходимо, так как колебания обоих когерентных лучей полностью согласуются друг с другом; колебания в этих лучах не являются, следовательно, статистически независимыми. Это единственное исключение из правила аддитивности энтропии было бы без принципа Больцмана совершенно непонятным.


ГЛАВА 14
КВАНТОВАЯ ФИЗИКА

Квантовая физика, отличающаяся от прежних теорий введением элементарного кванта действия h и определением состояний материальных систем через целые числа, существует как теория лишь с начала XX века (гл. 13). Но ее экспериментальные корни частично уходят далеко в XIX столетие. Измерения интенсивности теплового излучения, которые повлекли за собой переворот, были произведены лишь в последнем десятилетии прошлого века. Однако фотоэлектрический эффект, длины волн линейчатых и полосатых спектров, а также зависимость удельной теплоты тел от температуры были известны на несколько десятков лет раньше. Старая физика надеялась благодаря этим открытиям достигнуть своего завершения. Именно этим объясняется то, что Филипп Жолли (1809-1884) представил юноше Планку физику как по существу законченную науку, изучение которой, собственно, мало интересно. Но именно то, что было написано о линейчатых спектрах на основе прежней физики, не устояло перед критикой. Квантовая физика более или менее легко справилась с этими проблемами и объяснила, кроме того, еще многие новые экспериментальные факты.

Теория излучения Планка привлекла сначала мало внимания. Слишком нова была мысль о прерывных изменениях энергии. У многих его современников сомнения усиливались также тем, что значение элементарного электрического заряда, выведенное Планком из измерений излучения, было гораздо выше, чем большинство значений, полученных в то время путем пря-

мых измерений. Первый смелый шаг по пути дальнейшего развития идеи квантов сделал в 1905 г. А. Эйнштейн в своей теории фотоэлектрического эффекта.

Самое раннее указание на этот эффект было дано в 1887 г. Генрихом Герцем. Он заметил, что ультрафиолетовое излучение облегчает разряд, если оно попадает на искровой промежуток. Годом позже Вильгельм Гальвакс (1859-1922) установил, что причиной этого явления служит появление носителей электричества. В 1899 г. Филипп Ленард (1862-1947) показал, что они являются свободными электронами. Он же установил в 1902 г. две поразительные закономерности: существует нижний предел частоты света, до которого электроны не появляются и начиная с которого энергия освобожденных электронов возрастает с частотой; с другой стороны, энергия электронов независима от интенсивности света, интенсивность света определяет только число электронов, освобождающихся в единицу времени.

Эти факты, непонятные с точки зрения волновой теории света, точно соответствовали предсказаниям квантовой теории. Эйнштейн определил свет, как поток квантов света (фотонов), и приписал каждому кванту энергию h кроме того, он допустил, что "каждый электрон освобождается при посредстве одного кванта. Здесь непосредственно происходит бомбардировка облучаемых тел квантами света. Если hменьше, чем работа, необходимая для освобождения электрона (работа выхода), то эффект не наступает; это значит, что со стороны больших длин волн существует предел, который зависит от облучаемого тела. Но если v выше этого предела, то энергия освобожденного электрона равна энергии hфотона, уменьшенной на работу выхода электрона. Теория Эйнштейна так точно описала это явление, что Р. А. Милликен смог в 1916 г. из наблюдений частоты света и энергии фотоэлектронов дать верное определение значения h.

Исходя из тех же соображений, Эйнштейн установил в 1912 г. основной фотохимический закон, согласно

которому при всякой фотохимической реакции происходит сначала поглощение кванта света, а затем вызванное им превращение в одном атоме или молекуле. Этот закон также был признан правильным, после того как многие исследователи, особенно Эмиль Варбург (1846-1931) и Джемс Франк, благодаря большому трудолюбию и проницательности ясно установили побочные реакции и прочие усложнения, часто присоединявшиеся к описанному элементарному акту поглощения фотона, в силу чего число превращенных молекул становилось иногда меньше, а иногда в тысячи раз больше, чем это соответствует закону.

Явление, обратное фотоэлектрическому эффекту, заключается в возникновении излучения из-за захвата электрона атомом или молекулой. Если этот захват происходит в одном элементарном акте, то возникает фотон, энергия hv которого равна кинетической энергии электрона (сложенной с величиной соответствующей работы выхода). При возникновении рентгеновских лучей в трубке Рентгена происходит как раз торможение электронов на антикатоде во многих элементарных актах. Но наибольшая возможная частота (или наименьшая возможная длина волны) всегда соответствует кинетической энергии электронов. Это утверждает открытый в 1915 г. В. Дюане и Ф. Л. Гунтом закон, определяющий границу спектра торможения со стороны коротких длин волн. В 1912 г. при открытии интерференции рентгеновских лучей этот закон еще не был известен, поэтому М. Лауэ должен был, согласно своей теории, ожидать гораздо больше точек интерференции, чем фактически оказалось, и ошибочно приписал их отсутствие селективным свойствам атомов кристалла. Согласно закону Дюане-Гунта фактически не оказалось волн короткой длины, которые должны были бы появиться в недосчитанных точках.

Еще яснее, пожалуй, обнаруживается реальность светового кванта в найденном в 1923 г. А. X. Компто-ном рассеянии рентгеновских лучей, поскольку при этом играет роль не только энергия светового кванта,

но и его импульс. Уже Рентген заметил, что эти лучи испытывают диффузное рассеяние во всех телах. Это рассеяние, отчасти происходящее с неизменной длиной волны, как это было давно известно в случае света, было одной из основных предпосылок успешности опытов по интерференции в кристаллах. Но Комптон показал, что наряду с этим появляется рассеяние с увеличенной длиной волны, иначе говоря, с уменьшенной частотой. Теория этого явления, развитая Комптоном и независимо от него П. Дебаем, является по существу применением законов сохранения энергии и импульса к взаимодействию между квантом света и свободным электроном. Квант света несет с собой определенные энергию и импульс. После удара часть энергии и импульса переходит к электрону, а квант летит дальше в другом направлении с уменьшенной энергией и, следовательно, уменьшенной частотой. Это представление подтвердилось во всех соответствующих опытах.

Однако мы зашли слишком далеко вперед и должны немного вернуться. В 1875 г. Генрих Фридрих Вебер (1842-1913) получил для удельной теплоты обеих модификаций углерода – алмаза и графита, а также для бора и кремния гораздо меньшие значения, чем это вытекает из закона Дюлонга-Пти (гл. 10). При этом он показал также, что при возрастании температуры эти значения все больше и больше приближаются к теоретическим значениям. Эйнштейн, который в качестве цюрихского студента слушал Вебер а, дал в 1907 г. теорию этого явления. Согласно статистике Больцма-на – Гиббса энергия гармонических осцилляторов является линейной функцией абсолютной температуры; поэтому удельная теплота системы, состоящей из подобных осцилляторов, остается постоянной. Но согласно статистике Планка энергия при падении температуры уменьшается гораздо быстрее и удельная теплота падает при низких температурах экспоненциально до нуля. Благодаря тому, что Эйнштейн приписал атомам твердых тел устойчивые положения покоя, вокруг которых они колеблются с определенной частотой, он

смог качественно объяснить наблюдаемое уменьшение удельной теплоты. В 1911 г. П. Дебай дополнил это представление: он приписал упругим собственным колебаниям твердого тела энергию, заданную Планком для осциллятора. Так получился знаменитый закон пропорциональности удельной молярной теплоты третьей степени температуры, который хорошо описывает факты при температуре, близкой к абсолютному нулю. Измерения В. Нернста и других подтвердили это впоследствии для многих тел.

Три важных открытия принес 1913 г. Во-первых, Дж. Франк и Г. Герц исследовали торможение электронов атомами газа при их соударениях; перенос энергии от ударившегося электрона на встреченный им атом происходит лишь в определенных дискретных количествах, зависящих от природы атома. Объяснение было очевидным: атомы имеют дискретные состояния энергии, точно так же, как это утверждал Планк для резонатора, но эти уровни энергии не равноотстоящие. Если атом будет возбужден, находясь в начальном состоянии, т. е. на самом низшем уровне, то электрон должен доставить ему разницу в энергии между самым высоким уровнем и основным; тогда электрон теряет точно это количество энергии. Те же исследователи показали также, что отнятая у электрона энергия зачастую испускается в виде светового кванта и что частота этого излучения вычисляется из равенства энергии кванта hи потерянной электроном энергии. В работах Франка и Герца нашла, таким образом, прямое экспериментальное подтверждение гипотеза о дискретных уровнях энергии.

Вторым большим экспериментальным открытием с течение 1913 г. было открытие расщепления спектральных линий водорода под действием электрического поля, обнаруженное Иоганном Штарком. Но большее значение, чем оба эти открытия, имело теоретическое открытие Нильсом Бором атомной модели, которая

представляет собой изменение модели Резерфорда путем введения квантовых условий. В то время как модель Резерфорда допускала для движения электрона вокруг атомного ядра непрерывный ряд траекторий, эти квантовые условия отобрали из них дискретный ряд круговых траекторий. Согласно обобщению А. Зоммер-фельда (1916) допустимы также эллипсы. Квантовые условия гласили: фазовые интегралы для каждого дозволенного пути являются целыми кратными кванта действия h. Но так как с каждой орбитой связана также энергия движения, то тем самым получается теория дискретных уровней энергии. Если атом при испускании одного кванта переходит от более высокого уровня Е1к более низкому уровню Е2, то в соответствии с идеями, подтверждаемыми фотоэлектрическим эффектом, квант должен иметь частоту

Напротив, при поглощении одного кванта энергии h атом переходит от состояния Е2к состоянию Е1. Это, между прочим, мысль, которую уже в 1912 г. применил Дж. Дж. Томсон для объяснения характеристических К-, L-, М-излучений элементов. Так, по Бору, возникают линейчатые спектры.

Первую победу эта теория одержала после объяснения Бором спектра водорода. В 1885 г. Иоганн Якоб Бальмер (1825-1898) указал на пропорциональность частотлиний, лежащих в видимой области, выражению

1/22-1/m2 причем т может принимать все значения ряда

чисел 3, 4, 5, 6 и т. д. Теперь Бор нашел для своих круговых орбит (а Зоммерфельд также для допущенных им эллипсов) дискретные уровни энергии, пропорциональные 1/m2 коэффициент пропорциональности -

универсальная постоянная. Следовательно, частоты, соответствующие переходам от одного из этих уровней к

другому, согласно соотношению (I) точно уДовлетво-* ряют формуле Бальмера. Коэффициент пропорциональности – константа Ридберга – получается в соответствии с очень точными измерениями Ф. Пашена (гл. 4). При этом оказалось, что первоначальная теория Зом-мерфельда имеет то преимущество, что она для любого уровня энергии невозбужденного атома допускает несколько орбит. При возбуждении атома электрическим или магнитным полем различные орбиты первоначально единого уровня получают немного отличающиеся между собой значения энергии; уровень «расщепляется», и этому соответствует расщепление спектральных линий согласно приведенной формуле (1). Так стала возможной теория эффекта Штарка, которую дали еще в 1916 г. Карл Шварцшильд (1873-1916) и П. С. Эпштейн. В том же году Дебай и Зоммерфельд разработали теорию нормального эффекта Зеемана.

Если атомное ядро окружено более чем одним электроном, как это имеет место у всех элементов, за исключением водорода, ионизованного гелия и других многократно ионизованных атомов, то вычисление квантовых траекторий и уровней энергии удается только с приближением. Но и тогда атомная модель Бора дает общую систематику линейчатых спектров, включая спектры, лежащие в области рентгеновских лучей. Благодаря квантовым условиям становится возможной также систематика полосатых спектров, испускаемых многоатомными молекулами. Экспериментальные факты, накопленные спектроскопистами в течение десятилетий, сделали возможным глубокое объяснение свойств электронных оболочек атомов в свете теории квантов.

Под руководством В. Косселя (1916) был открыт путь для понимания казавшейся ранее таинственной периодической системы химических элементов. В 1913 г. рентгеноскопия окончательно установила, что эта система представляет собой классификацию элементов соответственно возрастанию зарядов ядер. Но как объ-

яснить приблизительную периодичность химических свойств и спектральных линий? Этот вопрос совершенно висел в воздухе до 1925 г., когда С. Гоудсмит и Г. Е. Уленбек приписали на основе спектральных данных электрону магнитный момент и момент вращения, «спин», – две величины, тесно связанные с константой Планка. В том же году В. Паули установил «принцип исключения», утверждающий, что в электронной оболочке атома не существует двух электронов, которые имели бы одинаковые значения всех квантовых чисел. Исследование, шаг за шагом контролируемое спектральным наблюдением, показало, почему первые периоды системы содержат по 8 элементов, следующие по 16, затем по 32, почему, далее, каждый период начинается со щелочного металла и заканчивается благородным газом. Еще раз, таким образом, два совершенно различных круга идей – старый из химии и новый из квантовой теории – неожиданно встретились и естественно объединились.

Благодаря атомной модели Бора новый подъем испытала также теория магнетизма. Движение электронов по определенным орбитам возобновляло гипотезу Ампера о молекулярных токах (гл. 5). Теперь присоединилось еще указание величины момента каждого элементарного магнита. Это – целое кратное «магнетона Бора» – величины, опять-таки тесно связанной с константой Планка h. Правильность этого теоретического следствия подтвердили в 1921 г. В. Герлах и О. Штерн, изучая магнитное отклонение лучей атомов серебра, причем магнитный момент этих атомов оказался точно равным одному магнетону.

Теория Бора при всех своих больших и прочных успехах имела, однако, одну систематическую ошибку.

Она применяла классическую или релятивистскую механику для определения орбит электронов и после этого без всякой внутренней связи с этим определением изгоняла преобладающее большинство этих орбит, как не удовлетворяющих квантовым условиям. Более цельной и еще более успешно объясняющей спектры является основанная в 1924-1926 гг. волновая, или квантовая, механика, которая в последнее время совершенно вытеснила свою предшественницу.

Первый шаг сделал в 1924 г. Луи де Бройль. На основе теории относительности он сопоставил с каждым движением материальной точки волну, длина которой вычисляется из механического импульса частицы посредством константы Планка h. Совершенно из других соображений Э. Шредингер в 1926 г. установил для такой волны дифференциальное уравнение в частных производных, подобное волновому уравнению. Он показал, что из этого уравнения при подходящих граничных условиях можно вывести заключение о ряде дискретных значений энергии. Для атома водорода он получил те же уровни энергии, что и в теории Бора; его теория допускала, таким образом, также формулу Бальмера для спектра водорода. В 1925 г. Борн, Гей-зенберг и Иордан создали квантовую механику, которая хотя и казалась вначале отличной от теории Шре-дингера, но все же была математически идентична с этой теорией, как это доказал Шредингер еще в 1926 г. Отношение между длиной волны и импульсом, установленное де Бройлем, входило также и в эту теорию.

Квантовая механика математически применяется с большим мастерством, но ее физическое содержание, по моему мнению, до сих пор не вполне ясно. Она опирается на результаты спектроскопии, значение которых особенно велико в связи с тем, что здесь в измерениях достигается совершенно необычная для физики точность, превосходящая даже точность знаменитых астрономических измерений. Для материальных волн имеется хотя менее точное, но зато более наглядное

доказательство. Как предположил В. Эльзасер в 1925 г. (гл. 12), электронные лучи, когда они падают на кристаллы, дают явления интерференции, подобные тем, которые наблюдаются в случае рентгеновских лучей. Это подтвердили в 1927 г. Дэвиссон и Джермер, а также Г. П. Томсон. Подобные опыты с диффракцией лучей атомов гелия, атомов и молекул водорода произвели в 1929 г. О. Штерн и в 1931 г. Т. Г. Джонсон. Все эти опыты количественно подтвердили формулу де Бройля.

Достижения этой теории накоплялись очень быстро. Особенно поражающий успех она имела в применении к радиоактивному распаду при испускании -лучей. Согласно этой теории существует «туннельный эффект», т. е. проникновение через потенциальный барьер частицы, энергия которой, согласно требованиям классической механики, недостаточна для перехода через него. Г. Гамов дал в 1928 г. объяснение испускания а-частиц, основанное на этом туннельном эффекте. Согласно теории Гамова атомное ядро окружено потенциальным барьером, но -частицы имеют определенную вероятность его «перешагнуть». Эмпирически найденные Гейгером и Нэттолом соотношения между радиусом действия а-частиц и полупериодом распада (гл. 11) получили на основе теории Гамова удовлетворительное объяснение.


    Ваша оценка произведения:

Популярные книги за неделю

    wait_for_cache