355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Лев Мухин » Мир астрономии. Рассказы о Вселенной, звездах и галактиках » Текст книги (страница 6)
Мир астрономии. Рассказы о Вселенной, звездах и галактиках
  • Текст добавлен: 5 мая 2017, 20:30

Текст книги "Мир астрономии. Рассказы о Вселенной, звездах и галактиках"


Автор книги: Лев Мухин



сообщить о нарушении

Текущая страница: 6 (всего у книги 17 страниц)

Для чего нам понадобился разговор о яркости звезд? Дело в том, что если две звезды находятся от нас на различном расстоянии, то, зная расстояние до ближайшей звезды, можно без труда определить и расстояние до более далекой. Здесь важно только одно условие. Эти звезды должны быть одинаковы.

Действительно, представьте себе два одинаковых источника света. Расстояние между вами и первым источником 1 метр. Расстояние до второго неизвестно, но его ничего не стоит узнать, измерив силу света или освещенность от этих источников. Поскольку яркость источников обратно пропорциональна квадрату расстояния, то, зная интенсивность I1 и I2 обоих источников и расстояние до первого источника, без труда находим:

I1/I2 = l2

Этот метод дает возможность измерять расстояния более значительные, чем методы тригонометрических параллаксов. Мы не будем сейчас вдаваться в подробности, как узнать, что две звезды одинаковы. О классификации звезд и их свойствах необходим отдельный разговор. Примем пока на веру утверждение, что во Вселенной действительно есть яркие звезды одного и того же класса, как говорят астрономы. Для проблемы определения расстояний самыми интересными оказался класс переменных звезд, известных под названием цефеид.

Вообще говоря, переменные звезды, другими словами, звезды, изменяющие блеск на глазах людей и поколений, известны давно. Например, еще в древнем мире выделялась звезда дьявола – Алголь (созвездие Персея). Но лишь в 1782 году друг Гершеля астроном-любитель Д. Гудрайк исследовал периодические изменения ее блеска, хотя переменность этой звезды была замечена за 100 лет до него. Затем через два года он открыл переменность звезды δ Цефея. В настоящее время насчитывается более 14 тысяч переменных звезд, причем причины переменности у разных звезд – совершенно разные.

Но цефеиды – это звезды, которые ведут себя так же, как звезда δ Цефея: кривая блеска у них имеет один максимум и один минимум. Периоды изменения бывают достаточно большими – до 40–60 суток (долгопериодические цефеиды) – и короткими, преимущественно около 12 часов (короткопериодические цефеиды). Очень важно то обстоятельство, что цефеиды – яркие звезды, они примерно в сто раз, а есть такие, что и в 1500 раз ярче нашего Солнца, и поэтому их можно наблюдать не только в нашей Галактике, но и в других. Причем у более ярких цефеид период изменения блеска больше, чем у слабых.

В начале XX века удалось установить однозначную связь между периодом цефеид и их истинной яркостью. Это было принципиальным достижением. Ведь как бы далеко ни находилась цефеида, период колебаний блеска можно определить без труда.

Затем из установленной зависимости между яркостью и периодом вычисляется абсолютная звездная величина цефеиды, а потом и расстояние до нее. Именно таким путем, когда удалось установить присутствие цефеид в туманности Андромеды, было определено, что она удалена от нас почти на миллион парсек. Но это было уже в XX веке, когда мощные телескопы позволили «разрешить» маленькое туманное пятнышко (а именно так мы видим невооруженным глазом туманность Андромеды) на отдельные звезды.

Однако если цефеиды – маяки Вселенной, как их иногда называют, – оказались удобным инструментом для определения расстояний до ближайших галактик, то изображения далеких галактик, полученные даже на самых больших в мире телескопах, слабы и расплывчаты. Их сколь-либо детальная структура неразличима, а о разрешении их на отдельные, даже очень яркие звезды не может быть и речи. Как же можно определить расстояние до таких слабых и далеких объектов?

Галактики тоже делятся на специфические группы. В частности, они различаются по форме. Бывают эллиптические, спиральные галактики и неправильные. Внутри каждого типа также можно выделить отдельные классы галактик. Как правило, галактики одного класса имеют примерно одинаковую светимость. Конечно, на небе они могут сильно отличаться по яркости, так как находятся на разных расстояниях. Но если удастся установить, что класс их одинаков и, следовательно, равны их абсолютные светимости, то далее вступает в игру закон обратных квадратов, так же как и в случае цефеид. Таким способом можно оценивать расстояния до сотен миллионов парсек.

Телескоп-рефлектор Гершеля с диаметром зеркала 122 сантиметра.

Дальше уже становится трудным распознать тип структуры очень далеких галактик. И здесь астрономам помогло одно счастливое обстоятельство. Часто галактики образуют скопления, которые видны намного отчетливее, чем обычные галактики. Так вот, в подавляющем числе скоплений самый яркий компонент – гигантская эллиптическая галактика. Такая галактика светит в 100 раз ярче, чем наша. Именно они и используются как индикаторы расстояний на самых больших масштабах расстояний во Вселенной (до 1010 парсек).

Ну а дальше уже приходится работать с законом Хаббла, гласящим, что скорость разбегания галактик пропорциональна их расстоянию от нас V = Hr, где H – постоянная Хаббла. Скорость измеряется по величине красного смещения, о котором у нас шел разговор в первой главе. Но для того чтобы измерять красное смещение, астрономы должны были научиться работать в различных диапазонах спектра. Что это значит?

Явление дисперсии – зависимости коэффициента преломления света от длины волны – известно уже давно. Еще Ньютон в 1665 году, используя стеклянную призму, разложил солнечный свет на отдельные цвета – получил первую спектральную картину. Но действительное начало спектроскопических работ в астрономии мы должны связать с именем баварского самоучки И. Фраунгофера, который, тщательно изучая преломление света различных цветов призмами, открыл в спектре Солнца более 500 темных линий, названных впоследствии его именем. Фраунгофер был уверен, «…что причина возникновения этих линий и полос лежит в самой природе солнечного света».

Однако объяснить природу этих линий Фраунгофер не смог. Лишь в 50-х годах XIX века, после смерти Фраунгофера, благодаря работам Кирхгофа и Бунзена были установлены основные законы спектрального анализа. К этому времени число фраунгоферовых линий в спектре Солнца уже исчислялось тысячами. Кирхгофу удалось отождествить часть этих линий с эмиссионными линиями некоторых земных элементов. Поясним, что это такое.

Если вы подойдете к своей газовой плите и в голубое пламя горелки поместите щепотку соли, пламя немедленно окрасится в желтый цвет. Этот желтый цвет обязан своим происхождением парам натрия (химическая формула поваренной соли – NaCl). Вы наблюдаете таким образом эмиссию – излучение паров натрия. Но если вы будете пропускать свет от источника с более высокой температурой, чем температура пара натрия, вы получите линию поглощения на той самой длине волны (в желтой части спектра), на которой ранее излучал Na. Именно эти явления поглощения и эмиссии излучения и лежат, по сути дела, в основе спектрального анализа, получившего бурное развитие в астрономии после работ Кирхгофа.

Рефлектор У. Парсонса.

Спектральный анализ предоставил поразительную возможность детального определения химического состава атмосфер далеких планет и звезд. Поскольку спектральные линии для каждого элемента точно известны, любые их сдвиги за счет доплеровского эффекта дают возможность вычислять скорость объекта.

Но мне хотелось бы подчеркнуть незаменимость спектрального анализа для астрономии как инструмента при определении химического состава и физических свойств далеких небесных объектов. Ведь сравнительно недавно, 150 лет тому назад, французский философ-позитивист О. Конт писал о небесных телах в своем курсе философии: «Никогда никакими средствами мы не сможем изучать их химический состав… любое знание температур звезд неизбежно должно быть навсегда скрыто от нас». Сегодня благодаря астрономическим наблюдениям с использованием спектральной аппаратуры мы знаем и химический состав, и температуру звезд.

Прошло лишь 50 лет после появления «пророческого» высказывания Конта, а физика и астрономия нанесли ему решительный удар. В 1893 году было установлено, что чем выше температура излучающего тела, тем больше максимум излучения сдвинут в сторону коротких волн (закон Вина). Поразительно, что всего за двадцать лет до открытия этого физического закона известный ватиканский астроном патер Секки оценивал температуру Солнца в несколько миллионов градусов, и в это же время для того же Солнца французский физик Пуйе давал цифру в 2000 °C.

Смысл закона Вина состоит в следующем. Вы начинаете нагревать кусок железа. Сначала он темный, затем при температуре 600° появляется так называемое вишневое каление. Будем повышать температуру – появится красное каление, а перед началом плавления – желтое и белое. (Вспомним известное выражение «добела раскаленный».)

Но красный цвет соответствует более длинным волнам в оптическом спектре. Затем идет оранжевый с более короткими длинами волн, чем у красного, длина волны желтого цвета еще короче. Чем выше температура излучателя, тем более короткие длины волн соответствуют максимуму энергии в спектре излучения.

Открытие этого закона незамедлительно позволило установить правильную температуру нашего Солнца. Она оказалась равной примерно 6000 °C. А сейчас мы знаем температуры многих тысяч звезд, знаем химические элементы, присутствующие в этих звездах.

Итак, оптические исследования с помощью телескопов, несомненно, явились фундаментом всей современной астрономии. Они позволили установить размеры планет и расстояния до них, расстояния до звезд и галактик, определить химический состав звезд и температуру. Но, пожалуй, самое главное – то, что наблюдательная астрономия помогла человечеству раздвинуть границы мира и создать объективно верную картину Вселенной.

Прежде чем перейти к разговору о других методах наблюдательной астрономии, мне хотелось бы сделать небольшое «лирическое» отступление. В астрономии, как ни в какой другой науке, ярко проявилась роль любителей и самоучек. Вряд ли мы узнали бы сегодня о музыкальных наклонностях Гершеля, если бы он не занялся астрономией. Бывший музыкант стал великим астрономом и обессмертил свое имя открытиями именно в этой области знания.

Его друг, тоже астроном-любитель, открыл δ Цефея – переменную звезду.

Самоучка Фраунгофер открыл новый этап в наблюдательной астрономии.

Знаменитый астроном и математик Ф. Бессель начинал свой путь клерком торговой конторы в Бремене. Но кто знал бы об этом, если бы сейчас в любом курсе высшей математики не было бы функций Бесселя? Бессель – автор знаменитых «кенигсбергских таблиц», которые до сегодняшнего дня составляют постоянную часть астрономических ежегодников.

Фридрих Вильгельм Бессель (1784–1846) – немецкий астроном, математик, геодезист. Получил значение годичного параллакса звезды 61 Лебедя.

Я уже упоминал о том, что первоклассный астроном В. Ольберс был практикующим врачом. Сегодня каждый студент физфака и даже школьник знает про парадокс Ольберса. Метод Ольберса для вычисления орбит комет использовали целые поколения астрономов. Но ведь деньги-то на жизнь Ольберс получал от врачебной практики днем, а бессмертие зарабатывал ночью!

Еще пара исторических примеров. Основоположник систематического изучения солнечных пятен – аптекарь из Дессау Швабе впервые устанавливает цикличность их появления в первой половине XIX века.

В конце XIX века богатый американский аристократ П. Ловелл строит обсерваторию в Аризоне и своими наблюдениями вносит заметный вклад в исследование планет Солнечной системы.

Очарование и притягательность неба столь велики, что именно в астрономии мы видим наибольшее число примеров абсолютно бескорыстного стремления людей самых различных профессий к познанию тайн мира. Даже сегодня любители вносят свой вклад в наблюдения. Им особенно везет при открытии новых комет. Мне кажется, что этот поистине удивительный феномен в истории астрономии, к сожалению, мало известен широкому кругу читателей, совершенно недостаточно отражен в нашей научно-популярной литературе.


Всеволновая астрономия

Исследования в видимой области спектра охватывают очень узкую часть всего диапазона электромагнитных колебаний, поскольку человеческий глаз практически нечувствителен к длинам волн короче 3900 А и длиннее 7600 А (ангстрем). На рисунке не указан диапазон сверхдлинных радиоволн в тысячи километров длиной, поскольку в астрономии этот район длин волн не используется.

Гамма-излучение занимает область спектра короче 0,1 A. Этот тип излучения хорошо известен на Земле, оно возникает в процессах радиоактивного распада, но приходит на Землю также из космоса. От 0,1 до 100 A простирается диапазон рентгеновского излучения, которое с увеличением длины волны примерно при 3100 А переходит в так называемый дальний ультрафиолет. Ближний ультрафиолет занимает довольно узкий участок в спектре от 3100 до 3900 A. Справа от видимого света располагаются инфракрасные лучи с длинами волн от 0,76 до 1 миллиметра, а затем начиная с одного миллиметра весь дальний участок спектра занимают радиоволны.

Зачем нам понадобилось знакомство со спектром электромагнитных колебаний? Дело в том, что небесные объекты излучают не только в видимой области спектра. Так, например, рентгеновское и гамма-излучение, приходящие на Землю из космоса, несут информацию о грандиозных процессах, происходящих в глубинах Вселенной. Читатель, наверное, слышал термин «радиогалактики», то есть галактики, излучающие в радиодиапазоне. Кроме того, радиометоды дают неоценимую возможность определения расстояний до некоторых небесных тел.

Начнем с радиодиапазона. (Кстати, мы уже говорили об этом участке электромагнитного спектра колебаний, когда обсуждали историю открытия реликтового фона излучения неба.) Компании Bell везло на крупные открытия. Начало радиоастрономии тоже связано с работами инженера этой компании – К. Янского. В 1931 году он экспериментировал с вращающейся радиоантенной для выяснения возможных источников радиошума, которые могли бы помешать установлению коротковолновой радиотелефонной связи. Он работал, в частности, на волне 14,6 метра и столкнулся с непонятным на первый взгляд явлением. Шум, который он исследовал, имел максимум интенсивности, причем максимум был периодическим, с периодом в 23 часа 56 минут. Период этот обладал удивительным постоянством.

Довольно быстро Янский догадался, что максимум помех не связан с Землей, а приходит из космоса. Ведь за 23 часа 56 минут Земля делает полный оборот вокруг своей оси (по обычным часам, отсчитывающим солнечное время), и все звезды снова возвращаются в исходное положение относительно любого пункта Земли. Более того, удалось установить, что источник радиоволн находится в созвездии Стрельца, то есть, по-видимому, Янский занимался прослушиванием центра нашей Галактики. С этого момента и появилось новое направление в астрономии – радиоастрономия.

Радиотелескопы внешне абсолютно не похожи на оптические телескопы. Если диаметр рекордного зеркала Зеленчукского телескопа равен шести метрам, то размеры антенн радиотелескопов достигают иногда сотен метров. Задача радиоастрономов состоит в том, чтобы при помощи приемных устройств определить интенсивность и временные характеристики сигналов в различных диапазонах длин радиоволн, приходящих из космоса.

В принципе радиоастрономия очень похожа на оптическую, их отличают лишь диапазон волн и, соответственно, приемные устройства. Эта наука начала развиваться исключительно быстрыми темпами, хотя поначалу астрономы не обратили внимания на открытие Янского. В известном смысле пресса проявила тогда большую дальновидность, чем ученые. Космический шум транслировался по радио, о нем писали в газетах. Радиотехники и радиолюбители заинтересовались этим, и в 1936 году появились сообщения о шипящих звуках, исходящих, по-видимому, от Солнца. Но и эти факты не насторожили астрономов-профессионалов.

Лишь один человек во всем мире сделал должные выводы из открытия Янского. Это был американский радиолюбитель-коротковолновик Г. Рёбер. На свои средства он построил всю аппаратуру, в том числе и радиотелескоп с жестяным зеркалом диаметром в 9,5 метра, установленным на деревянной раме. Он использовал несколько приемников, настроенных на фиксированные длины волн: 9,33; 62,5 и 187 сантиметров. К весне 1939 года Рёбер наблюдал космическое радиоизлучение на длине волны 1,87 метра, а к 1944 году составил первую радиоастрономическую карту в районе Млечного Пути, где были нанесены контуры радиоизлучающих участков неба. В 1945 году он составил новую карту для волны 62,5 сантиметра. На этой карте он специально выделил созвездия Лебедя, Тельца, Девы и Кассиопеи, что, как мы увидим позже, полностью отражало существование там мощных источников радиоизлучения. Если Янского можно считать отцом радиоастрономии, то Рёбера можно смело назвать первым радиоастрономом.

Дальнейшим успехам радиоастрономии способствовало бурное развитие радиолокации, поскольку в радиолокации использовались особо чувствительные приемники. Можно было бы ожидать, что радары будут принимать не только сигналы от вражеских самолетов, но и космический шум. Так оно и оказалось. Только по вполне понятным причинам сведения о космических помехах появились в открытой печати лишь после окончания второй мировой войны. Помехи же, и очень мощные, наблюдались еще в 1942 году английскими радарами на волнах 5,45 и 3,75 метра. Этот факт был отражен в секретных донесениях, а в 1946 году появилась публикация, связывающая это явление с солнечной активностью.

Известные советские физики Н. Мандельштам и Н. Папалекси предлагали использовать радиолокацию для исследования небесных тел еще в 1928 году. Их идея была реализована после войны в 1946 году, когда с помощью радиолокационного метода было измерено расстояние до Луны на волнах 2,7 и 2,5 сантиметра. Годом раньше было обнаружено собственное радиоизлучение Луны, а через 10 лет ученые выяснили, что и другие планеты излучают в радиодиапазоне.

Речь сейчас шла главным образом о непрерывном радиоизлучении, которое принимается радиоастрономами в форме увеличения уровня шума. Но в космосе есть не только шум. Некоторые космические объекты излучают отдельные радиоволны. Мы видим, что ситуация становится похожей на оптическую спектроскопию, о которой недавно говорилось. И действительно, в последнее время достижения радиоспектроскопии очень значительны. Например, с помощью этого метода удалось открыть в межзвездных облаках большое количество органических молекул. К сегодняшнему дню число наименований органических соединений в космосе превысило пятьдесят.

Но началась радиоспектроскопия с открытия радиолинии межзвездного водорода с длиной волны 21 сантиметр. Эта знаменитая длина волны в течение многих лет рассматривалась как возможный канал связи между внеземными цивилизациями. Существование этой линии предсказал еще в 1944 году молодой голландский студент Ван де Хюлст, но оценки всех реальных возможностей наблюдений этой линии были проделаны крупным советским астрофизиком И. Шкловским.

Значение этой радиолинии, разумеется, не ограничивается вопросом контакта с другими мирами. Исследование глубин Вселенной на волне 21 сантиметр дает возможность «буквально пересчитать все водородные атомы межзвездной среды» (И. Шкловский), измерить такой принципиальный параметр межзвездных облаков, как их температуру, изучить динамические процессы в облаках, и, наконец, на этой волне можно зондировать, «видеть» нашу Галактику гораздо лучше, чем в видимом диапазоне, так как излучение с этой длиной волны не поглощается, в отличие от электромагнитных колебаний видимого диапазона, межзвездной средой. Поэтому на волне 21 сантиметр можно исследовать районы Галактики, находящиеся от нас на противоположной от центра Галактики стороне, на расстоянии многих тысяч парсек.

В Советском Союзе значительный вклад в радиоастрономические исследования был сделан В. Троицким, И. Шкловским, Н. Кардашевым, В. Гинзбургом и др. Так, например, академик В. Гинзбург и его ученики создали теорию «синхротронного» излучения. Теория эта – крупнейшее достижение советской науки.

Физические процессы, ответственные за радиосигналы от различных космических объектов, можно грубо разбить на две группы – тепловое и нетепловое радиоизлучение. Начнем с теплового. В любом нагретом теле мы имеем дело с тепловым движением атомов молекул и электронов. Разумеется, движение свободных электронов происходит в металлах или в плазме. Но нам сейчас особенно важен сам факт движения.

При столкновении часть кинетической энергии атомов или электронов переходит в электромагнитные волны и излучается в пространство. Именно такое излучение и называется тепловым. Совершенно ясно, что оно практически ничем (за исключением длины волны) не отличается от обычного излучения нагретого тела в видимой области спектра. Таким образом, любое нагретое тело излучает в радиодиапазоне, хотя и с существенно меньшими интенсивностями, чем в видимом и инфракрасном.

Но существуют и нетепловые формы радиоизлучения, и синхротронное излучение является как раз одной из форм нетеплового излучения. Синхротронным излучение названо потому, что оно впервые наблюдалось в мощных ускорителях – синхротронах. Это излучение возникает при взаимодействии релятивистских электронов с магнитными полями. (Релятивистской называется частица, скорость которой сравнима со скоростью света. Электроны с энергией больше 1 МЭВ считаются релятивистскими.)

Если в пространстве есть магнитное поле, то релятивистский электрон, так же, как и «нормальный», в соответствии с известными законами физики будет закручиваться по спирали вокруг магнитной силовой линии. Однако если электрон, движущийся в магнитном поле с небольшой скоростью, будет излучать при торможении в магнитном поле более или менее одинаково во всех направлениях, то в релятивистском случае излучение будет направлено в сторону движения электрона. А раз электрон движется по спирали, наблюдатель будет «видеть» вспышки радиоизлучения на различных частотах.

Синхротронное излучение электронов.

Поскольку энергия электронов велика (больше 1 МЭВ), а мы знаем, что подобная энергия соответствует температуре 1010 K, такое излучение – типичный пример нетеплового излучения. За возникновение электромагнитных колебаний в этом случае несут ответственность совершенно другие физические процессы, нежели хаотическое движение частиц в нагретом теле. Чтобы у читателя не возникло недоуменных вопросов, заметим, что излучение в виде «вспышек» можно было бы наблюдать только от отдельного электрона. Реальные же сигналы обусловлены взаимодействием многих электронов с магнитными полями космоса.

Важно, что синхротронное излучение как раз и является типичным нетепловым процессом и по целому ряду физических характеристик его можно отличить от теплового. Один из главных критериев здесь состоит в следующем: если радиоизлучение какого-либо источника имеет тепловой характер, то его интенсивность должна заметно расти с уменьшением длины волны.

Кстати говоря, и Янский, и Рёбер сначала считали, что имеют дело с тепловым радиоизлучением. Поэтому Рёбер и перешел на более короткие волны, чем Янский, в надежде получить более мощный сигнал. Рёбер думал, что на волне 9 сантиметров сигнал будет в 104 раз больше, чем у Янского. Ничего подобного ему увидеть не удалось. Более того, на этой волне он вообще не смог обнаружить космический радиошум. Поэтому-то сейчас нетрудно отличить тепловое излучение от нетеплового: нужно, в частности, провести измерение от какого-либо источника на нескольких длинах волн. Кроме того, нужно принимать во внимание, что даже при современных параметрах радиоаппаратуры тепловое радиоизлучение от ближайших звезд дает очень слабый сигнал, находящийся на пределе возможности его обнаружения.

Современные радиотелескопы – поистине циклопические сооружения. Советский радиотелескоп РАТАН-600 имеет диаметр главного зеркала 588 метров. У радиотелескопа в ФРГ параболическая антенна диаметром в 100 метров, а вес всего антенного комплекса составляет 3200 тонн. В фокусе параболической антенны собирается поток электромагнитного радиоизлучения, а специальное устройство, размещенное в фокусе телескопа, направляет его излучение в усилительные тракты приемника. Гигантский телескоп с антенной в форме полусферы диаметром 300 метров находится в кратере потухшего вулкана на острове Пуэрто-Рико.

В принципе работа современного радиотелескопа ничем не отличается от работы обычного радиоприемника. Но, поскольку радиоастрономия имеет дело с сигналами очень малой интенсивности, здесь приходится использовать огромные антенны, которые помогают услышать самые слабые сигналы из космоса. Одна из разновидностей радиоастрономических методов – радиоинтерферометрия – дает возможность исследовать источники радиоизлучения на небе с рекордным разрешением – одна десятитысячная доля секунды. Чтобы понять, что означает подобное разрешение, заметим, что под таким углом можно было бы увидеть с Земли след космонавта на Луне!

За 50 лет своего развития радиоастрономические методы исследования буквально открыли нам новый мир. Эти 50 лет ознаменовались крупнейшими открытиями. Об одном из них мы уже говорили – это обнаружение реликтового излучения. Второе открытие было не менее сенсационным. Речь идет о знаменитых пульсарах – нейтронных звездах, существование которых было предсказано теоретиками за 30 лет до их открытия.

Нейтронная звезда была впервые обнаружена с помощью радиотелескопа аспиранткой известного английского радиоастронома профессора А. Хьюиша – Д. Белл. (Здесь мне хочется немного отвлечься и сказать о том, что история науки знает немало примеров, когда работу делает один человек, а лавры достаются другому или другим. Вспомним хотя бы драматическую историю Р. Франклин, связанную с открытием двойной спирали ДНК. Загляните в книгу Д. Уотсона «Двойная спираль», и вам станет ясно, что страсти в мире науки по своему накалу не уступают страстям героев Шекспира.)

Итак, Д. Белл открыла вращающиеся нейтронные звезды – пульсары. За это открытие А. Хьюишу присудили Нобелевскую премию в области астрофизики. Ну а что же мисс Белл? Ее имя известно сегодня любому человеку, интересующемуся астрофизикой.

Но, разумеется, на «текущем счету» радиоастрономии не только реликтовое излучение и пульсары. Открыты мощные дискретные источники радиоизлучения, и в первую очередь ярчайший источник в созвездии Лебедя – Лебедь-Α. Расстояние от этого источника до нашей Галактики огромно – около 200 мегапарсек, что примерно в 300 раз больше расстояния до туманности Андромеды. И хотя Лебедь-Α в сотни раз дальше от нас, чем эта знаменитая туманность, поток радиоизлучения от Лебедя-Α в 100 раз больше. Но ведь это означает, что его мощность примерно в 10 миллионов раз превышает мощность излучения в радиодиапазоне туманности Андромеды.

В метровом диапазоне Лебедь-Α светит примерно так же, как и Солнце. Однако до Солнца 8 световых лет, а до Лебедя-Α – около 700 миллионов световых лет. Проделайте сами элементарный расчет и вы увидите, что мощность радиоизлучения Лебедя-Α в 1028 раз превосходит мощность радиоизлучения Солнца. До открытия этого источника (1946 год) астрономии не были известны столь грандиозные явления.

Сразу хочу оговориться, что сейчас мы не затрагиваем вопросов «почему?». Мы ведем разговор лишь в плане «что» и «как». О том, чем обусловливается излучение нейтронных звезд, дискретных источников и других объектов во Вселенной, мы будем говорить в последующих разделах книги.

Вернемся к великим радиоастрономическим открытиям XX века. Речь сейчас пойдет о том, как удалось обнаружить, пожалуй, самые загадочные наблюдаемые объекты Вселенной – знаменитые квазары. К 1960 году несколько радиоисточников было надежно отождествлено со звездами, что явилось большим сюрпризом для астрономов. Ведь потоки радиоизлучения даже от близких к нам звезд очень малы. Радиоисточники отождествлялись всегда с галактиками и туманностями. Тем не менее упомянутые источники обладали вполне приличной интенсивностью.

Американский астроном М. Шмидт решил исследовать оптический спектр одного из таких источников, который наблюдался на небе как звездочка 13-й величины. Первые же результаты Шмидта оказались совершенно обескураживающими. Линии спектра этой звездочки – источника 3C 273 – не удавалось отождествить ни с какими известными лабораторными линиями! Наконец, Шмидту удалось доказать, что в спектре 3C 273 присутствуют некоторые линии водорода. Но эти линии имеют настолько сильное красное смещение, что объект должен удаляться от нас со скоростью 42 тысячи км/сек. Тогда расстояние до него около 2 миллиардов световых лет (600 мпс)! И светимость источника в этом случае должна в 100 раз превышать светимость нашей Галактики, относящейся к разряду гигантских.

Итак, среди многих тысяч звезд 13-й величины оказался объект, заведомо меньший, чем Галактика, и в то же время намного более яркий. Этот объект вряд ли когда-либо удалось бы обнаружить, если бы он не был радиоисточником. Таким образом, радиоастрономы помогли «оптикам» в этом случае открыть так называемый квазизвездный источник – квазар.

Эти объекты занимают особенное место в астрономии как новый класс объектов наряду с галактиками и звездами, но природа их до конца не понята. Свет, излученный некоторыми квазарами, путешествовал во Вселенной более 10 миллиардов лет, прежде чем попал в объектив телескопа. И. Шкловский считал открытие квазаров величайшим достижением астрономии XX века.

Современную астрономию называют всеволновой. Возможность работы по всему диапазону электромагнитного спектра принесла революционные открытия и неизмеримо повысила уровень наших знаний о самых различных объектах Вселенной. Всего 50 лет назад астрономия напоминала человека, лишенного радости видеть цвета и краски окружающего мира. И вдруг в какой-то момент на него обрушилось буйство красок и вся окружающая природа предстала в совершенно ином виде. Переворот в астрономии был еще радикальнее, поскольку наблюдения в видимом оптическом диапазоне ограничиваются поглощением света в межзвездной среде. С освоением новых участков спектра у астрономов в буквальном смысле слова упала с глаз пелена.

Теперь посмотрим, что дали наблюдения неба в инфракрасной области спектра, располагающейся на шкале длин волн между видимым светом и радиоволнами. Человеческий глаз, как уже говорилось, не в состоянии увидеть инфракрасное излучение. Мы можем его только почувствовать, поднеся, скажем, руку к горячему утюгу. Поэтому в инфракрасной астрономии в качестве приемников радиации используются специальные устройства, например, хорошо известная каждому школьнику термопара.


    Ваша оценка произведения:

Популярные книги за неделю