Текст книги "Мир астрономии. Рассказы о Вселенной, звездах и галактиках"
Автор книги: Лев Мухин
Жанр:
Астрономия и Космос
сообщить о нарушении
Текущая страница: 5 (всего у книги 17 страниц)
Но вернемся к определению расстояний до планет. Измеряемая величина параллакса для планет бывает меньше одной секунды. Одна угловая секунда составляет 1/200000 радиана (в окружности – 2π радиан, соответственно 1 радиан = 57,3°). Таким образом, если два наблюдателя находятся на расстоянии 10 тысяч километров, они могут измерить расстояния, в 200 тысяч раз превышающие длину базы, что дает возможность определять расстояние до всех планет.
Наблюдение неба с примитивными инструментами. XIII век.
Понятно, что в древние времена еще не было синхронной работы обсерваторий на таких больших базах, и поэтому не могло быть достаточных точностей определения. Тем не менее Гиппарху, по-видимому, впервые удалось определить параллакс Луны, используя то обстоятельство, что солнечное затмение 129 года до нашей эры в Геллеспонте было полным, а в Александрии было закрыто 4/5 солнечного диска. Зная расстояние между этими пунктами, Гиппарх смог найти значение параллакса, а значит, и расстояние от Луны до Земли.
Стоунхендж – обсерватория бронзового века. 2000 год до нашей эры. Реконструкция.
Быть может, одной из самых древних известных истории обсерваторий являются знаменитые развалины Стоунхенджа в Англии. Этому сооружению около 4 тысяч лет, и, по-видимому, его арки являются огромными визирами, позволявшими с точностью более 1° отмечать восходы и заходы Солнца и Луны в дни солнцестояний и равноденствий. Нельзя исключить того, что еще более древние «обсерватории» были на территории Армении. А первая настоящая астрономическая обсерватория появилась в Европе лишь в XVI веке.
Тихо Браге и другие
Знатный датский дворянин Тихо Браге провел довольно бурную молодость. Он дрался на дуэли и в результате носил на переносице протез из золота и серебра, так как во время дуэли лишился носа – весьма заметной части человеческого лица. Астрономией Тихо заинтересовался в 14 лет, на первом курсе наблюдал затмение Солнца. В это время он учился в Копенгагенском университете.
Слава Тихо Браге как астронома связана, в частности, с его наблюдениями новой звезды, появившейся на небе в созвездии Кассиопеи в 1572 году. Заметим, что эта вспышка поколебала веру многих образованных людей того времени в учение Аристотеля, утверждавшего, что все неизменно в этом мире. Тихо Браге проводил тщательные измерения положения «новой» звезды на небе, изменения ее яркости и цвета и в 1573 году опубликовал книгу о своих наблюдениях, хотя поначалу сильно сомневался, совместимо ли это с его дворянским достоинством.
Король Дании Фредерик отдал в распоряжение Тихо Браге небольшой островок Хвен неподалеку от Копенгагена, где Браге и выстроил себе обсерваторию, оборудованную новыми измерительными инструментами для определения положения светил на небе и расстояний между ними. Браге сам изобретал эти инструменты, квадранты и секстанты, а искусный механик швед Й. Бюрги изготавливал их.
Здание обсерватории Тихо называл «Небесным замком», «Дворцом Урании», музы – покровительницы астрономии. Обсерватория представляла собой в плане точный квадрат, ориентированный по сторонам света. «Дворец Урании» был трехэтажным зданием. На первом этаже в трех комнатах жила многочисленная семья астронома, четвертая комната использовалась как гостиная, хотя в ней находился один из лучших инструментов Браге – большой стенной квадрант. На этом же этаже располагались кухня и музей. Там же Тихо Браге соорудил небольшую «насосную станцию», подававшую воду во все помещения обсерватории. Не каждый королевский дворец в то время мог похвастаться водопроводом. На втором этаже были отведены специальные комнаты для короля и королевы на случай их визита на остров. И самое главное – на втором этаже находились четыре обсерватории. В помещениях третьего этажа жили ученики и сотрудники великого астронома, а в подвале размещалась химическая лаборатория.
К 1584 году возникла необходимость сооружения еще одной обсерватории, и вскоре рядом с «Небесным замком» – Ураниеборгом вырос «Звездный замок» – Стьернеборг. Над входом в подземное помещение Стьернеборга было выбито латинское изречение: «Non fasces nec opes sola artis sceptra perennant» – «Ни власти, ни богатства, а только науки скипетр вечен».
Тихо прожил на острове в окружении учеников и помощников более 20 лет, с 1576 по 1597 год, выполнив огромный объем наблюдений. В них он достиг поразительной точности. Ведь совсем недавно, во времена Коперника, ошибки при наблюдениях составляли примерно 10′ (10 минут). Тихо улучшил эту величину более чем на порядок! Такая величина ошибки для дотелескопической астрономии приближалась к теоретическому пределу. Например, средняя ошибка при определении положения некоторых фундаментальных звезд была всего 32″,3.
Датский астроном Тихо Браге (1546–1601) проводит наблюдения в обсерватории.
Интересно, что великий астроном не признавал гелиоцентрической системы Коперника, считая его, однако, выдающимся астрономом. Правда, не настолько, чтобы поместить его портрет в ряду портретов величайших астрономов мира, висевших на стенах Стьернеборга, – Тимохариса, Гиппарха, Птолемея, Альбаттани и… самого Тихо.
К числу выдающихся достижений Тихо следует отнести его наблюдения за кометой 1585 года. Измеряя параллакс кометы, он установил, что она находится гораздо дальше от Земли, чем Луна. Этим он полностью опроверг утверждение Аристотеля о том, что кометы – образование подлунных сфер.
Браге вел многолетние и систематические наблюдения звезд и планет. Он составил впервые после Гиппарха и Птолемея каталог, который почти сто лет оставался самым лучшим и надежным справочников для любого астронома. Браге непрерывно занимался определением положения Луны и планет, и здесь его данные также были лучшими для своего времени.
Обсерватория «Ураниеборг» на острое Хвен, где работал Тихо Браге.
После смерти короля Фредерика Браге вынужден был покинуть Данию и переселился в Прагу, где в то время правил император Рудольф II – большой любитель алхимии и астрологии. В последний год своей жизни Браге взял к себе в помощники молодого И. Кеплера, который и получил пост директора императорской обсерватории в 1601 году, после кончины наставника.
Если Браге мы называем величайшим астрономом эпохи дотелескопической астрономии, то Кеплер – основоположник теоретической астрономии. Основу его исследований бесспорно составили наблюдения Тихо Браге. Он первым опроверг древний астрономический канон, согласно которому планеты имеют круговые орбиты, и показал, что движение планет происходит по эллиптическим траекториям.
«Это было так, как будто я бы проснулся и увидел новый свет», – воскликнул Кеплер после того, как убедился в правильности проделанных вычислений, результат которых сейчас во всех учебниках называется первым законом Кеплера. Это правило он получил, обрабатывая данные наблюдения за положением Марса. Но именно исследование Марса открыло Кеплеру общие закономерности планетных движений.
Законы Кеплера.
В 1618 году вышла его книга «Краткое изложение коперниковой астрономии» – первый полный учебник астрономии. В этом учебнике в форме вопросов и ответов приводились впервые правильные данные о Солнечной системе, давались элементы орбит планет. Кеплер был не только блестящим математиком, по своему духу он был прежде всего физиком, всегда стремился к тому, чтобы найти правила, по которым построен окружающий мир. Три таких правила ему удалось открыть: это три знаменитых закона, носящих его имя.
Сам Кеплер считал это главным результатом всей своей жизни. «Я писал свою книгу для того, чтобы ее прочли, теперь или после – не все ли равно? Она может сотни лет ждать своего читателя, ведь самому богу пришлось тысячи лет дожидаться того, кто постиг его работу».
Интересно, что в 1612 году Кеплером впервые была разработана оптическая теория телескопа, и один из типов телескопа был назван его именем, хотя сам Кеплер никогда не занимался практическим изготовлением оптических инструментов.
Телескопы – новая эра астрономии
Итак, через три года после смерти Тихо в Европе появились первые телескопы.
Напомним в двух словах о том, что представляет собой телескоп. Точно так же, как и человеческий глаз, это разновидность фотографической камеры. Но если наш глаз способен различать две точки объекта на угловом расстоянии около одной минуты, то телескоп с диаметром линзы или зеркала, равным 300 миллиметрам, а это в 100 раз больше диаметра зрачка глаза (3 мм), будет иметь разрешение примерно 0,4″. При диаметре 1,2 метра можно различать две неподвижные звезды с угловым расстоянием между ними 0,1″ и т. д.
Самый крупный современный телескоп имеет диаметр зеркала 6 метров. Он расположен в Советском Союзе в предгорьях Северного Кавказа близ станции Зеленчукская на высоте около двух километров.
Даже современные телескопы не могут дать изображения диска звезды, поскольку диаметр (видимый) ближайших звезд менее 0,01″. В современной оптической астрономии предпочитают использовать зеркала вместо линз, поскольку технически легче изготовить большое зеркало, чем однородный стеклянный диск такого же диаметра, который был бы пригоден для изготовления линзового объектива.
Но вернемся к временам Кеплера и Галилея. Имя изобретателя телескопа неизвестно. Мы знаем лишь одно: в 1604 году торговец стеклами для очков голландец Янссен «снял копию» с телескопа, принадлежащего неизвестному итальянцу. А уже в 1608 году сразу два человека, Липперсгей и Метиус, сделали «заявку» на изобретение телескопа. Но телескоп оставался не более чем забавной игрушкой в руках людей, был предметом развлечения на многочисленных ярмарках до той поры, пока Галилей, бывший, кроме всего прочего, мастером на все руки, не изготовил в 1609 году свой первый телескоп, который он направил на небо.
Интересно, что телескоп и микроскоп появились почти одновременно. Оба эти инструмента, один предназначенный для изучения макро-, а другой для исследования микрообъектов, произвели революционный переворот в естествознании.
Именно наблюдения и удивительные открытия Галилея, сделанные им с помощью телескопа, способствовали признанию гелиоцентрической системы мира Коперника. Сначала Галилей писал о своих открытиях лишь друзьям и знакомым, а 8 марта 1610 года появилась его книга «Звездный вестник», в которой и были изложены основные результаты. Что же удалось увидеть Галилею в телескоп?
Естественно, что прежде всего он направил его на Луну. Оказалось, что граница между светлой и более темной частью отнюдь не резкая. На рисунках Луны, сделанных Галилеем, видны светлые пятнышки в более темной части нашего спутника, а сама граница между освещенной и темной частями сильно изрезана. Галилей сразу догадался, что поверхность Луны не хрустальная, как учили в древности, а покрыта возвышенностями и долинами. Правда, он считал, что более светлые части поверхности – это суша, а более темные – водная гладь. Светлые точки на темной половине Луны – вершины гор, освещаемых лучами Солнца.
Но самое удивительное обнаружилось 7 января 1610 года, когда Галилей открыл три спутника у Юпитера, а 13 января увидел и четвертый. Стало ясно, что район Юпитера как бы наша Солнечная система в миниатюре.
Галилео Галилей (1564–1642) – великий итальянский ученый, один из основателей фундаментальных наук: физики, механики, астрономии.
Мы помним, в какие времена жил и работал Галилей. Ведь всего десятью годами ранее в Риме на Площади Цветов пылал факелом Джордано Бруно. Поэтому нет ничего удивительного в том, что, ища покровительства сильных мира сего, Галилей назвал открытые им новые небесные тела «медичейскими звездами» в честь великого герцога Тосканского Джулиано Медичи. Однако это название спутников Юпитера сегодня забыто. Весь мир знает их сейчас как Галилеевы спутники.
Открытия Галилея были сенсационны. Его тактический ход с названием спутников оказался правильным. В шахматной партии комментатор поставил бы около него восклицательный знак: уже 5 июня 1610 года Галилея уведомили о том, что отныне он – первый математик Пизанского университета и философ светлейшего герцога. Дополнительно к этому ученый получил денежный оклад – тысячу флорентийских скуди в год. Галилей 12 июня 1610 года удостоился титула математика его светлости герцога Тосканского, что сильно упрочило общественное положение ученого. А в этом он очень нуждался.
Телескоп Галилея, дающий 30-кратное увеличение.
«Лучшее – враг хорошего», – гласит пословица. Хотя Галилей, непрерывно совершенствуя свои телескопы, имел лучшие инструменты в Италии, он, конечно, был не единственным астрономом-наблюдателем. Многим хотелось проверить открытия Галилея, а многим и опровергнуть новые данные. Философы Падуанского университета пошли по наиболее легкому и проторенному пути. «Поскольку у Аристотеля, – говорили они, – ничего не сказано о спутниках Юпитера, то их не должно быть на небесном своде». Против Галилея качал плести интриги престарелый астроном Маджини из Болоньи, распространяя письма, в которых обвинял Галилея в лучшем случае в самообмане, а потом и в обмане.
Галилей приехал в Болонью, где был телескоп, и показывал собравшимся у Маджини профессорам Юпитер, но почти все заявили, что не видят никаких спутников. Так, вера в открытие Галилея была подорвана из-за того, что его телескоп был лучше, чем в Болонье, а многие наблюдатели не имели хороших навыков работы с телескопом.
Глобус земного шара.
Но Галилей неожиданно получил очень мощную поддержку с той стороны, с которой менее всего ожидал. Председатель Римской коллегии и иезуитского научного центра астроном и священник X. Клавий в рапорте главе инквизиции кардиналу Беллармину подтвердил истинность открытий Галилея. Серьезная поддержка пришла также из Праги. Главный астроном императора Рудольфа II Кеплер также безоговорочно поддержал Галилея.
Иезуиты пригласили Галилея в Рим и радушно приняли его там 29 марта 1611 года. Галилей к тому времени еще не вступил на свой трагический путь отречения. Все его открытия трактовались церковью в рамках геоцентрической системы мира, и лишь приблизительно в 1613 году Галилей начал борьбу за систему мира Коперника. Многочисленные друзья советовали ему быть осторожным и ограничиться лишь описанием наблюдений. Но Галилей не внял советам. Так была открыта одна из самых трагических страниц в истории науки.
Измерительный циркуль.
Конечно же, у Галилея были союзники. Великий гуманист Кампанелла, автор «Города Солнца», писал Галилею из тюрьмы письма, в которых просил его твердо стоять на позициях коперникианства. По иронии судьбы кармелитский монах Фоскорини также написал письмо, но не Галилею, а генералу своего ордена, в котором защищал систему Коперника. Тем не менее церковь обвинила Галилея в ереси. Сначала ему легко удалось снять с себя все обвинения инквизиции, тем более что сам глава римской церкви папа Урбан VIII был дружески расположен к Галилею… Но… «дружба дружбой, а служба службой», и Галилей в 1616 году снова предстал перед главой инквизиции кардиналом Беллармином, который запретил пропагандировать учение Коперника.
Галилей продолжал свою уничтожающую критику учения Аристотеля, и, конечно же, иезуиты не простили ему этого. Для начала они сделали папу врагом Галилея, и этого оказалось вполне достаточно для того, чтобы в 1635 году ученого вызвали на суд инквизиции, осудили и вынудили торжественно отречься от учения Коперника. Науке был нанесен тяжелейший удар.
Телескопы, аналогичные тем, которые использовал Галилей, могли давать увеличение не более чем в 30 раз. Поэтому, когда на смену им пришли телескопы X. Гюйгенса, одного из родоначальников современной оптики, удалось сделать ряд новых интересных открытий. В 1656 году Гюйгенс обнаружил спутник Сатурна и заинтересовался странными маленькими «шариками», которые были как бы привязаны к планете и все время изменяли свою форму, иногда совсем исчезая. Эти «шарики» наблюдал, еще Галилей. Анализируя форму этих «придатков» планеты, Гюйгенс предположил в 1659 году, что «Сатурн окружен тонким плоским кольцом, которое нигде не соприкасается с ним…». «Следует учесть, – продолжал он далее в своей книге „Система Сатурна“, – что эта гипотеза не является моим измышлением или фантазией… я видел это кольцо собственными глазами».
В те годы из знаменитого на весь мир венецианского стекла, украшавшего дворцы дожей, начали изготавливать самые лучше линзы для телескопов. Итальянец Д. Кассини, приглашенный Людовиком XIV в Париж и ставший там придворным астрономом, используя телескопы с «венецианскими стеклами», сумел открыть еще четыре маленьких спутника Сатурна.
Наблюдая планеты в телескоп, астрономы могли видеть на них пятна и полосы. Уже Гюйгенс заметил и описал экваториальные полосы на Юпитере и пятна на Марсе, а все тот же Кассини, имея лучшие в XVII веке телескопы и наблюдая пятна на Юпитере и Марсе, установил периоды осевого вращения этих планет. Удалось увидеть и затмения спутников Юпитера, когда они вступали в тень планеты.
Ну, и конечно же, исследовали очень много Луну. К середине XVII века появились первые карты спутника Земли. Огромные горы на Луне были названы позднее именами великих ученых – Тихо Браге, Коперника, Платона, Аристотеля.
А 13 марта 1781 года В. Гершель открыл Уран. Жизненный путь Гершеля поначалу никак не мог свидетельствовать о том, что он станет одним из величайших астрономов всех времен. Сын полкового музыканта, он с ранних лет занимался с учителями и отцом музыкой и уже в четырнадцать играл в военном оркестре. Но в доме Гершелей в Ганновере дети занимались не только музыкой. Вильям изучал языки, математику, философию.
Не имея никакой склонности к ратным подвигам и не желая принимать участия в военных действиях прусской армии в Европе, Гершель переехал в Англию. Здесь он получил место дирижера публичных оркестров в Лидсе. Уже в это время астрономия интересует его гораздо больше, чем музыка. Тридцатилетний Гершель покупает учебник астрономии и вскоре начинает строить телескопы.
Я нарочно употребил слово «строить», а не «изготавливать», так как телескопы Гершеля были самыми крупными инструментами XVIII века. Самый большой был, к примеру, столь велик, что наводить его на звезду должны были три человека: Гершель и двое рабочих. Ведь тогда еще не было так называемых параллактических систем, обеспечивающих автоматическое слежение за звездами при помощи часового механизма.
«Уметь видеть, – писал он, – это в некотором отношении искусство, которому должно учиться». Как не вспомнить здесь незадачливых оппонентов Галилея, которые не могли и не хотели видеть спутники Юпитера.
Успехи Гершеля в астрономии превзошли самые смелые ожидания родственников и друзей. Через девять лет после покупки учебника астрономии он открыл новую планету, которую хотел назвать именем короля Англии Георга III, но традиции оказались сильнее и планета получила имя римского божества – Уран.
Открытие новых планет хорошо оплачивалось в то время. За Уран Гершель получил от короля Георга III должность придворного астронома и жалованье 200 фунтов стерлингов в год, деньги по тем временам немалые, хотя, конечно, король Англии мог бы проявить и бóльшую щедрость. Не осталось в стороне и Лондонское королевское общество: оно присудило Гершелю ежегодную золотую медаль и избрало его в свои члены.
Самое интересное в истории открытия Урана состоит в том, что Гершель вначале принял этот объект на небе за комету и некоторое время отстаивал свою точку зрения. Это в известной мере подпортило ему репутацию в элитарном Лондонском королевском обществе.
Итак, 13 марта 1781 года впервые с использованием телескопа была открыта новая планета, седьмая по счету в нашей Солнечной системе. Открытия следующей планеты пришлось ждать довольно долго – около ста лет, и мы чуть позже вернемся к этой удивительной истории. Сейчас же, чтобы не нарушать хронологии событий, перенесемся в самое начало XIX века.
Схема рефлектора Ньютона.
В 1801 году итальянский астроном Д. Пиацци открыл малую планету, расположенную между Марсом и Юпитером. Эта зона Солнечной системы давно интересовала астрономов, так как по всем предположениям здесь должна была бы располагаться планета. Но, как ее ни искали, обнаружить планету не удавалось. Небесное тело, которое открыл Пиацци, было в тысячу раз менее ярким, чем Марс и Юпитер. Пиацци назвал его Церерой, по имени богини – покровительницы Сицилии.
В 1802 году в этой же области неба нашли еще одну малую планету – Палладу, затем Юнону, а в 1807 году – Весту. Но все они были очень маленькие – около нескольких сотен километров в диаметре. А ведь между Марсом и Юпитером ожидалась настоящая, полноценная планета. Ей даже название дали – Фаэтон.
С 1845 года начался новый поток открытий малых планет, получивших название астероидов. В 1852 году их насчитывалось 20, а к 1870 году – 110. К 1938 году число малых планет достигло 1500, и эта зона Солнечной системы получила название пояса астероидов. А как же Фаэтон? Даже сегодня есть ученые, которые считают, что Фаэтон был. Был, а потом взорвался, таким образом и появились астероиды в этом районе. Но эта гипотеза маловероятна.
Расстояние до звезд, их яркость, спектр
Итак, менее чем за два столетия, прошедших со времени внедрения телескопической техники в астрономию, в этой науке произошли поистине поразительные перемены. За это короткое в историческом масштабе время человечество узнало о Солнечной системе гораздо больше, чем за предыдущие тысячелетия развития астрономии. Более того, телескопы предоставили возможность впервые в истории науки провести измерения скорости света. В 1676 году это сделал датский астроном О. Рёмер, который, помимо чисто научной работы, занимался еще и воспитанием наследника французского престола.
Это были времена трех мушкетеров, миледи, кардинала Ришелье. К сожалению, насколько широк круг людей, знакомых с дворцовыми интригами по романам Дюма, настолько же мало известны перипетии великих астрономических открытий тех же самых времен. А ведь наверняка внутреннего драматизма здесь было ничуть не меньше, чем в блистательных романах Дюма.
Итак, О. Рёмер находился в Дании, где он исследовал руины Ураниеборга – знаменитой обсерватории Тихо Браге. Тем временем придворный астроном Кассини, проводя наблюдения в Париже за затмениями спутников Юпитера, установил, что в соединениях моменты затмений первого спутника запаздывают более чем на 10 минут. Рёмер, вернувшись с острова Хвен и узнав об этом, продолжил наблюдения над затмениями спутников Юпитера и очень скоро объяснил факт запаздывания конечностью скорости распространения света. Он вычислил ее из имевшихся в то время данных для орбит планет и получил значение для скорости света 2,3 × 1010 см/сек. Это было одним из величайших достижений астрономии.
Джон Доменико Кассини (1685–1712).
Мы до сих пор говорили о достижениях астрономии в «рамках» Солнечной системы. Не менее впечатляющие успехи были достигнуты в это время при изучении более далеких объектов. Здесь в наблюдении уже не Солнечной системы, а Вселенной бесспорное первенство принадлежало Гершелю. Именно его пионерским работам обязана астрономия появлению первой систематической «инвентаризации» нашего мира, которой астроном занялся после открытия Урана.
Гершель проделал неимоверно тщательную и кропотливую работу: подробный и систематический обзор всего неба. Каждый объект, попадавший в поле зрения его телескопа, заносился в каталог. Поскольку инструменты Гершеля были лучше телескопов Гринвичской обсерватории, ему удалось открыть удивительный факт. Многие объекты, которые до наблюдений Гершеля казались туманными пятнышками, состояли на самом деле из многих тысяч звезд.
Гершель открыл не менее 2500 туманностей и звездных скоплений. И до Гершеля многие ученые считали, что Млечный Путь состоит из огромного числа звездных скоплений. Этой точки зрения придерживался, в частности, И. Кант. Но до наблюдений Гершеля это были чисто умозрительные рассуждения.
Схема затмения спутников Юпитера (рисунок Рёмера). Исследуя затмения спутников Юпитера, Рёмер вычислил примерную скорость света.
В результате «звездного зондирования» Гершелю удалось впервые установить, что «…звездная система, в которой мы живем, …состоящая из многих миллионов звезд, является, по всей вероятности, обособленной туманностью». «То, что Млечный Путь является очень вытянутым слоем звезд различных размеров, – в этом не остается ни малейшего сомнения; точно так же ясно, что и наше Солнце – одно из входящих в него небесных тел».
Гершель первым ввел понятия островных вселенных, сравнимых по размеру с нашей Галактикой. Это был первый человек, шагнувший за пределы известного мира и, в принципе, правильно нарисовавший его структуру. «Caelorum perrupit claustra» («он проник сквозь преграды небес»), – гласит надпись на надгробном камне отца современной астрономии.
Гершель умер в 1822 году, а в 1835 году впервые было измерено расстояние до звезд. Сейчас нам остается лишь гадать, на чем было основано пророческое утверждение Гершеля: «…Я наблюдал звезды, свет от которых, как можно доказать, идет два миллиона лет, прежде чем он достигнет Земли». Это таинственное замечание величайшего астронома, по всей видимости, навсегда останется тайной истории науки.
Метод, который был использован для определения расстояния до звезд через 13 лет после смерти Гершеля, нам уже знаком. Это все тот же метод параллакса, но уже так называемого годичного параллакса, когда в качестве базы используется весь диаметр земной орбиты. Из рисунка становится ясным, что если проводить измерение положения звезды на небе с интервалом в шесть месяцев, то расстояние до звезды можно легко определить, используя данные наблюдений за ее положением на небе и значение диаметра земной орбиты.
Оле Кристенсен Рёмер (1644–1710).
Поскольку ошибки в определении параллакса были заметными, наблюдения за Вегой, альфа Центавра и другими звездами велись в течение нескольких лет различными обсерваториями мира. Для звезды альфа Центавра измеренный параллакс оказался близок к 1″. Легко показать, что в этом случае расстояние до звезды оказывается равным 4 × 1013 километров, или около 4 световых лет.
Познакомившись с понятием параллакса, нам теперь легко определить и термин «парсек». Это расстояние, с которого земная орбита видна под углом в одну секунду. Соответственно и звезда, параллакс которой составляет одну секунду, находится от Земли на расстоянии одного парсека. Использование годичного параллакса позволяет определять расстояния, не превышающие 30 парсек, так как угловые смещения звезд столь малы на этих расстояниях, что точность измерений становится явно недостаточной.
К началу XX века астрономы полностью отдавали себе отчет в том, что размеры нашей Галактики составляют тысячи парсек (пс), а расстояние до ближайших туманностей и того больше. Однако для надежного измерения таких расстояний нужен был новый метод. Этот метод был использован в 20-х годах нашего века Хабблом для определения расстояний до нескольких ближайших галактик, но, прежде чем рассказать об этом, необходимо познакомиться как с развитием телескопических методов, так и с некоторыми свойствами звезд, в особенности с теми, которые придают живописность и непередаваемое разнообразие ночному небу.
Еще со времен Гиппарха и Птолемея было принято различать звезды по степени их блеска. Птолемей установил для различий блеска шесть классов звезд, которые он называл «величинами». Звезда первой величины – самая яркая. Шестой величины – самая слабая. Слово «величина» относится лишь к степени блеска звезды и ничего общего не имеет с ее размерами. К 1843 году на небе насчитывалось 14 звезд первой величины, 51 – второй, 153 – третьей, 325 – четвертой, 810 – пятой и 1871 звезда шестой величины.
Человеческий глаз – очень тонкий оптический инструмент и способен чувствовать бóльшие различия в блеске, чем одна звездная величина. Так, сын В. Гершеля, известный астроном Д. Гершель, продолжавший работу отца, расположил звезды южного неба по степени блеска, используя звездные величины с двумя десятичными знаками!
Метод годичного параллакса.
Но такая точность требовала введения какой-то количественной основы. В 1869 году был сформулирован «психофизический» закон, согласно которому физическое восприятие света уменьшается (или увеличивается) как логарифм интенсивности воздействия. Как можно проиллюстрировать этот факт?
Человеческий глаз устроен так, что если мы будем в комнате последовательно зажигать 1, 2, 3, 4 и т. д. лампочек, то нам будет казаться, что степень увеличения освещенности комнаты при каждом включении следующей лампочки уменьшается. Поэтому можно принять, что звездные величины дают не различие в количестве света, а отношение интенсивностей.
Разброс в значениях отношений блеска для ярких звезд велик, а для слабых практически постоянен. Для слабых звезд уменьшение блеска на одну звездную величину соответствует изменению светового потока в 2,5 раза. Разница в видимых звездных величинах на 5 единиц соответствует изменению светового потока в 100 раз. В Оксфорде в 1850 году решили ввести эти отношения как определение звездных величин:
m1 – m2 = –2,5lg(E1/E2),
где m1 и m2 – звездные величины, а E1, E2 – потоки света от звезды.
Поскольку в нашей формуле для звездных величин в правой части стоит знак минус, то чем ярче звезда, тем меньше ее видимая звездная величина. Так, например, Солнце имеет видимую звездную величину – 26,7, Луна в полнолунии – 12,5, Венера – 5, Сириус – 1,6, Вега – 0, а самая слабая звездочка из сравнительно близких к нам звезда Вольф-359 имеет видимую звездную величину +13,5.
Нужно учесть, что видимая звездная величина ровным счетом ничего не говорит ни о количестве энергии, которую излучает звезда, ни о яркости ее поверхности. Это и понятно, так как видимая звездная величина совершенно не учитывает фактор расстояния. А ведь более близкая к нам небольшая и относительно холодная звезда может выглядеть на небе много ярче, чем отдаленный голубой гигант с огромной светимостью. Поэтому-то и очевидна необходимость введения абсолютной звездной величины и соответственно некоторого астрономического стандартного расстояния. В качестве такого расстояния приняли 10 парсек.
Теперь легко понять, что такое абсолютная звездная величина любой звезды. Это ее видимая звездная величина, если мы поместим светило на расстоянии 10 парсек от Земли. Проделаем мысленно такую операцию с нашим Солнцем. Его абсолютная звездная величина окажется тогда равной 4,8. Солнце будет выглядеть на таком расстоянии очень тусклой звездочкой, в сто с лишним раз менее яркой, чем Сириус.