355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Лев Мухин » Мир астрономии. Рассказы о Вселенной, звездах и галактиках » Текст книги (страница 13)
Мир астрономии. Рассказы о Вселенной, звездах и галактиках
  • Текст добавлен: 5 мая 2017, 20:30

Текст книги "Мир астрономии. Рассказы о Вселенной, звездах и галактиках"


Автор книги: Лев Мухин



сообщить о нарушении

Текущая страница: 13 (всего у книги 17 страниц)

Итак, ядерные реакции в процессе старения Солнца пойдут вокруг ядра. Но из-за его вырожденности, из-за его высокой теплопроводности энергия здесь не запасается, она «накачивается» в оболочку, и наступит время, когда оболочка «разбухнет» от избытка энергии. В ней разовьются очень бурные конвективные процессы, гораздо более мощные, чем в сегодняшнем Солнце. Этот процесс займет немного времени, какие-нибудь миллионы лет.

Нет, не беспокойтесь, ведь мы помним, что все эти катаклизмы начнутся скорее всего через несколько миллиардов лет, так что пока развитию нашей цивилизации со стороны термоядерных реакций на Солнце прямой угрозы нет. Ну а загадывать, что будет с человечеством даже через тысячу лет, даже при спокойном Солнце, дело гораздо более сложное, чем прогнозировать поведение светила через пару миллиардов лет. Ведь поведение человечества нельзя описать точными физическими законами.

Итак, Солнце вновь раздуется, закипит, да так, что здесь уже и от планет земной группы вряд ли что-нибудь останется, кроме оплавленных камней. Светимость Солнца возрастает при этом чудовищном кипении в тысячу с лишним раз, да еще вдобавок к этому оно станет очень большим. Короче говоря, наш желтый карлик станет красным гигантом.

Размеры этого гиганта огромны. Солнце может «раздуться» до орбит Меркурия или даже Земли. А затем красный гигант сбросит с себя все, кроме того, что находится у него в центре. Это очень интересный процесс, до конца не понятый современной астрофизикой. Почему звезда «хочет» избавиться от лишней массы? Почему она с колоссальной энергией выбрасывает часть своего «тела» в пространство?

Эти процессы связаны с нарушением равновесия. Только за один год Солнце может потерять одну миллионную часть своего веса. Гигант начнет худеть. И за какие-нибудь десять-сто тысяч лет от него останется лишь центральная часть – ядро, о котором мы уже говорили. Гигант как бы сбросит все, что оказалось ненужным ему на этой стадии эволюции.

Звездная материя образует около оставшегося ядра так называемую планетарную туманность, которая постепенно исчезнет, рассеется в космическое пространство. Этот своеобразный звездный стриптиз приведет к тому, что рано или поздно на месте Солнца останется только его гелиевое ядро – белый карлик.

Мы уже говорили о свойствах ядра, которое представляет собой вырожденный газ. Возможно, дальнейшая судьба белого карлика определяется его массой и температурой. В случае нашего Солнца есть вариант, при котором белый карлик будет просто остывать в течение миллионов лет и превратится в «черный карлик» – холодную маленькую звезду размером с земной шар, которую из какой-нибудь другой планетной системы и наблюдать-то невозможно.

И белый и черный карлик полностью оправдывает свое название: это действительно карликовые звезды. Мы помним, что спутник одной из ярчайших звезд, Сириуса, – белый карлик. Диаметр его всего-навсего 4200 километров, меньше, чем диаметр Земли. Называется он Сириус В. А пример эволюции Солнца, который мы сейчас (в сильно упрощенном виде) рассмотрели, приводит нас к более общей проблеме – проблеме эволюции звезд вообще.


Эволюция звезд

Мы уже рассмотрели достаточно подробно протозвездный этап эволюции. После фрагментации часть облака сжимается в протозвезду, и, когда включаются протон-протонные реакции (или C – N – О-цикл), протозвезда становится звездой, поскольку именно тогда гравитация и газовое давление в точности уравновешивают друг друга. Звезда «прописывается» на главной последовательности, но «место прописки» зависит от массы звезды. Звезды большой массы располагаются вверху диаграммы Герцшпрунга – Рессела, маломассивные звезды – в ее нижней части.

По сравнению с временем протозвездной стадии период пребывания на главной последовательности велик. Звезды медленно меняют свои характеристики, находясь на главной последовательности, но все таки меняют. Запасы ядерного горючего в них ограниченны. Кроме того, наблюдаются смены тепловых режимов. Так что изменения со звездами происходят. Наша задача – посмотреть, как они идут у звезд различной массы.

Перетекание вещества в двойной системе с образованием аккреционного диска.

Оценки показывают, что у звезды с массой в одну четвертую часть массы Солнца водород будет гореть в протон-протонном цикле около 70 миллиардов лет. Это означает, что даже самые старые из звезд малой массы за время существования Вселенной не успели выжечь свой водород и уйти с главной последовательности. Поэтому многие астрофизики считают вопрос об эволюции таких звезд малоинтересным и тривиальным.

Действительно, все изменения в звезде сводятся к тому, что немного увеличивается ее яркость, слегка уменьшается температура (за счет изменения радиуса). Вот, собственно говоря, и все. Структура звезды очень долгое время остается без изменений. Более того, в звездах с массой меньше 0,08 М термоядерные реакции вообще не зажигаются, так как температура в их недрах оказывается недостаточной для этого. Такие звезды сразу переходят в состояние вырожденных красных карликов.

Теперь о жизненном пути более массивных звезд. Возьмем, к примеру, звезду с массой, равной пяти солнечным. Как мы уже знаем, такие звезды всегда имеют конвективное ядро. В нем водород сгорает достаточно быстро – всего за 64 миллиона лет. После сгорания водорода, по мере затухания протон-протонного цикла звезда начинает сжиматься. Эта стадия занимает еще меньше времени – около двух миллионов лет.

Но по мере сжатия звезды увеличивается как температура ядра, так и температура прилегающих к нему областей. В ядре водород уже выгорел, оно состоит из гелия, а в околоядерном районе водорода вполне достаточно. И вот по прошествии двух миллионов лет загорается в термоядерных реакциях водород в тонком слое около ядра. Теперь внутренняя часть звезды имеет гелиевое изотермическое ядро, окруженное слоевым источником термоядерных реакций.

Пока это немного напоминает структуру центральных частей красного гиганта, внутри которого также находится изотермическое ядро. По мере горения водорода в околоядерной области сходство звезды с красным гигантом становится все больше и больше. Оценки показывают, что сжатие звезды должно смениться расширением, и внешние слои звезды становятся конвективными. Звезда переходит в стадию красного гиганта.

Весь этот процесс, начиная с момента возгорания водорода в околоядерной области и кончая стадией красного гиганта, занимает немногим более двух с половиной миллионов лет. Мы видим, что массивная звезда ведет очень бурную, богатую событиями жизнь. За ничтожный по космологическим масштабам срок (менее 70 миллионов лет) она успевает полностью изменить свой облик. Но это еще не все.

Фаза красного гиганта – финишная прямая для более легких звезд. Мы разбирали уже пример с Солнцем. Наша более массивная звезда будет продолжать свою жизнь дальше. Расчеты показывают, что после фазы красного гиганта снова начинается сжатие. Температура в центре звезды повышается, и когда она достигнет ста миллионов градусов, включается тройной α-процесс – синтез углерода из гелия. Мы видим в этот момент (еще через 6 миллионов лет) на небе яркую горячую звезду.

Далее история повторяется. Гелий выгорает в ядре, образуя углеродную центральную часть с гелиевой околоядерной областью – слоевым источником термоядерных реакций. Потом звезда снова расширяется, переходя в стадию сверхгиганта. Этот процесс занимает около десяти миллионов лет.

Таким образом, достаточно массивные звезды довольно быстро уходят с главной последовательности, образуя семейство гигантов. Красные гиганты, в свою очередь, превращаются со временем в карликовые звезды, о которых мы уже говорили. Эта общая тенденция хорошо согласуется с различными наблюдательными данными. Но тем не менее следует иметь в виду, что мы сейчас рассматривали эволюционный путь одиночной звезды.

Может возникнуть вопрос об эволюции звезд с массой большей, чем пять масс Солнца. Попробуем хотя бы качественно ответить на последний вопрос. Вспомним, что чем больше масса звезды, тем больше температура в ее центральных частях. Поэтому вполне возможны варианты, при которых образуется не только гелиевое ядро. В последующих циклах термоядерных реакций могут получиться углеродно-кислородный, магниевый, а быть может, и железный белый карлик.

Что касается эволюции звезд в двойных системах, то здесь, безусловно, есть свои интересные особенности.

Еще в 1951 году советские ученые заметили одно весьма необычное явление. В тесных двойных системах компонент с большей светимостью обладал заметно меньшей массой. Этот парадокс получил название «парадокса Алголя», мы уже упоминали об этой знаменитой звезде. Действительно, астрономы столкнулись здесь с необычной ситуацией. Массивный компаньон двойной системы вел себя «нормально», то есть находился на главной последовательности, а менее массивная звезда почему-то явно приближалась по своей светимости к «субгигантам».

Объяснение этого факта оказалось нетривиальным.

Предположим, что звезда высокой светимости когда-то задолго до настоящего времени обладала большей массой и превратилась в красного гиганта с раздувшейся оболочкой. Оболочка, естественно, слабо связана со звездой. В этом случае второй компаньон пары начинает перетягивать на себя вещество гиганта, и в конце концов масса его становится больше массы гиганта. Звезда в этом случае начинает эволюционировать быстрее, она тоже превращается в гиганта, а тогда сосед, в свою очередь, перетянет часть массы на себя и т. д.

Попеременный обмен массой хорошо объясняет тот факт, что подавляющее большинство взрывающихся и вспыхивающих звезд принадлежит к двойным системам. Процесс перекачки массы объясняет и «парадокс Алголя», поскольку светимость ставшей менее массивной компоненты системы почти не изменяется во время перекачки. А почему, собственно, в двойных системах должны наблюдаться вспышки?

Иногда маленькое пятнышко на фотопластинке задает столько загадок, что на решение их уходят многие и многие годы. Примерно пятьдесят лет назад были на небе обнаружены объекты особого класса, спектры которых указывали на присутствие красного гиганта радиусом в 200 раз больше солнечного внутри горячего газового облака. Гигант сам не сумел бы столь сильно нагреть облако, и поэтому предполагалось, что внутри облака гигант имеет горячий невидимый спутник. Кроме того, некоторые особенности излучения этих объектов лучше всего объясняются наличием маленького горячего спутника, расположенного вплотную к своему гигантскому соседу. Такие пары получили название симбиотических звезд.

Ясно, что именно в симбиотических парах процессы приливного перетекания вещества будут особенно эффективны. Но каким образом перетекание инициирует вспышку?

Существует две модели этого явления. Согласно одной из них вокруг горячего спутника вследствие перетекания образуется аккреционный диск. Вещество гиганта не может попасть непосредственно на поверхность спутника из-за высокой скорости их взаимного обращения. В процессе своего формирования диск разогревается примерно до 100 тысяч K и становится мощным источником излучения. Это излучение и выбрасывает из симбиотической системы большие количества вещества.

Другая модель также связана с переносом вещества от красного гиганта к партнеру. Но если в дисковой модели в принципе неважно, какая звезда является партнером (главную роль играет диск), то в новой модели компаньоном гиганта должен быть белый карлик. Вещество гиганта, перетекая на карлик, накапливается на его поверхности. Но это вещество – водород! Он образует оболочку, которая постепенно разогревается излучением карлика. В конце концов температура в оболочке поднимается настолько, что в ней начинаются термоядерные реакции – происходит вспышка. При этом выбрасываются значительные массы вещества – до одной десятитысячной массы Солнца.

Существование подобных вспышек не вызывает никаких сомнений. Они хорошо известны астрономам, наблюдавшим двойные системы. На месте очень слабой звездочки вдруг появляется яркая звезда, светимость которой в десятки и сотни тысяч раз превышает светимость Солнца. Через некоторое время, исчисляемое обычно месяцами, ее светимость уменьшается, и она становится видной на небе как карликовая звезда низкой светимости. Такие звезды получили название «новых». Ежегодно у нас в Галактике вспыхивает несколько десятков новых звезд. Зажигаются новые и в других галактиках.

Мы видим, что эволюция звезд в двойных системах может проходить весьма причудливым образом. Сюрпризы двойных систем бывают иногда особенно неожиданны. Возьмем, например, так называемые звезды-бегуны. Это горячие яркие звезды спектрального класса О. Нормальные звезды этого класса имеют сравнительно небольшие скорости движения по отношению к другим звездам – около 10 км/сек. Но есть звезды этого же класса – бегуны, которые двигаются со скоростями, в десять раз большими! Вдобавок они всегда одиночны. Почему?

Представим себе двойную систему, в которой компаньоны вращаются вокруг общего центра масс, подчиняясь закону всемирного тяготения. В принципе такая система очень устойчива. Но если более тяжелый компонент по какой-либо причине взорвется и заметная часть массы в результате взрыва быстро покинет двойную систему, устойчивость нарушится, и второй компаньон, как камень, выброшенный из пращи, улетит из системы. Именно подобный механизм и вызывает появление на небе звезд-бегунов.

Отвлечемся от двойных систем и обратим внимание на еще один необычный тип звезд: «бурые карлики». Значение их велико в первую очередь для проблемы космологии. Бурые карлики – это субзвезды, газообразные тела с размерами в несколько раз больше Юпитера. При их гравитационном сжатии выделяется тепловая энергия, которая производит достаточное количество тепла для их довольно тусклого свечения, но которой явно не хватает, чтобы вспыхнули термоядерные реакции. Ясно, что время свечения таких объектов по космологическим меркам невелико – миллионы лет, и астрономам крупно повезло, когда сравнительно недавно такая субзвезда была обнаружена в 28 световых годах от Солнца.

Значение же этих объектов для космологии состоит в том, что бурые карлики наряду с нейтрино и черными дырами могут быть компонентами «скрытой» массы Вселенной. В принципе, пространство между звездами может быть заполнено бесчисленными бурыми карликами, которые просто-напросто довольно быстро «умирают» – перестают светить и становятся недоступными для наблюдений.

Мы сейчас довольно бегло обсудили эволюцию звезд различной массы, остановившись, естественно, на наиболее общих закономерностях. Это обсуждение никоим образом не исчерпывает всего разнообразия явлений, происходящих в мире звезд. А некоторые из этих явлений были известны людям тысячи лет тому назад.


Взрывающиеся звезды

В 1915 году центральное бюро астрономических сообщений получило телеграмму следующего содержания: «Звезда раздувается и лопается». Телеграмма была направлена в связи с очередной вспышкой новой. Мы помним, что при вспышке светимость новой в сотни тысяч раз может превышать светимость Солнца. А может ли звезда светить так же, как миллиарды Солнц?

На первый взгляд подобный вопрос кажется абсурдным. И тем не менее во Вселенной происходят поражающие воображение человека явления поистине циклопических масштабов, когда одна звезда вдруг становится почти столь же яркой, как гигантская, содержащая сотни миллиардов звезд галактика.

В 1885 году в астрономической обсерватории в Тарту была обнаружена новая звездочка. Располагалась она поблизости от центра туманности Андромеды и имела блеск примерно 6,5 звездной величины. А это значит, что, обладая хорошим зрением, ее можно было наблюдать и без оптических инструментов. Поскольку сама туманность Андромеды имеет блеск 4,4m, сразу становится ясно, что в этом случае блеск отдельной звезды лишь в четыре с небольшим раза слабее блеска гигантской галактики, превышающей по своим размерам нашу.

Однако в то время мало что было известно о структуре галактик и расстоянии до них. Поэтому открытию 1885 года не было придано никакого значения. А ведь знай тартуские астрономы о том, что туманность Андромеды находится от нас на расстоянии свыше 2 миллионов световых лет и содержит сотни миллиардов звезд, они, бесспорно, смогли бы оценить всю грандиозность открытого ими явления, когда одна-единственная звезда светила ярче многих миллиардов звезд.

В 1895 году в NGC 5253 вспыхнула звезда, блеск которой превышал блеск всей галактики в 100 раз! Конечно, NGC 5253 гораздо меньше туманности Андромеды, но тем не менее и в ней есть несколько миллиардов звезд. В 1972 году в NGC 5253 снова зарегистрировали чудовищный взрыв. За последние 90 лет астрономы наблюдали около 100 подобных катаклизмов. Для того чтобы отличить эти вспышки от вспышек обычных новых, в 1934 году американские астрономы Ф. Цвикки и В. Бааде предложили называть новый класс объектов «сверхновыми».

Нельзя, конечно же, говорить о том, что лишь в первой половине XX века люди смогли оценить грандиозный масштаб этого явления. В записях китайских и японских астрономов мы находим описание неожиданно появившейся на небе звезды – «звезды-гостьи». Она вспыхнула в 1054 году и была много ярче Венеры. За последнюю тысячу лет в нашей Галактике наблюдалось пять сверхновых: в 1006, 1054, 1572, 1604, 1667 годах. Остальные вспышки происходили в других галактиках.

Изучая зависимость блеска сверхновых от времени, астрономы установили, что существует два типа «кривых блеска» у сверхновых. В первом случае имеется ярко выраженный и достаточно продолжительный максимум блеска (до месяца), после которого блеск звезды линейно спадает. Во втором случае максимумы блеска выражены гораздо хуже, а спад блеска существенно круче.

Выделение двух групп кривых блеска и исследование спектров при вспышках позволило подразделить сверхновые на два типа – сверхновые I типа и сверхновые II типа. Очень скоро выяснилось весьма интересное и довольно загадочное обстоятельство. Оказалось, что в эллиптических галактиках вспыхивают только сверхновые I типа, в то время как в спиралях возгораются сверхновые как II, так и I типов. Этот наблюдательный факт чрезвычайной важности сразу позволил связать теорию звездной эволюции с характеристиками сверхновых.

Дело в том, что в эллиптических галактиках нет массивных звезд. Звездное население этих галактик составляют главным образом звезды, масса которых близка к массе Солнца. Там (в эллиптических галактиках) рождение звезд давно прекратилось, и основную часть населения составляют очень старые, маломассивные звезды.

Остатки взрыва сверхновой в Крабовидной туманности.

Естественно, что миллиарды лет тому назад и в эллиптических галактиках были массивные звезды. Но они давно прошли или стадию красных гигантов, или еще один интересный этап, о котором речь пойдет ниже. В любом случае ясно, что сверхновые I типа до взрыва представляют собой старые звезды малой массы, порядка массы Солнца или чуть больше.

Но ведь когда мы обсуждали судьбу Солнца, мы видели, что никакие взрывы ему не грозят. Стадия красного гиганта, планетарная туманность, белый карлик – вот стандартный путь звездной эволюции.

Астрономам-наблюдателям хорошо известен факт образования планетарных туманностей. В нашей Галактике ежегодно образуется несколько таких объектов, и, следовательно, ровно такое же число звезд с массой, примерно равной солнечной, заканчивают свой путь на главной последовательности, превращаясь в белые карлики.

Однако примерно один раз в 50–100 лет происходит вспышка сверхновой I типа. Важно, что взрывается звезда с массой, примерно равной массе Солнца. Значит, в одном из ста случаев мы имеем отклонение от стандартного пути звездной эволюции. Сотня звезд «идет в ногу» по главной последовательности к закономерному концу, а одна уходит с проторенной дороги и идет своим путем. Почему?

Гипотез здесь, естественно, немало, но «хорошего» ответа на этот интригующий вопрос нет. Мы поговорим о некоторых моделях взрывов сверхновых I типа. Но, перед тем как перейти к описанию природных процессов, приводящих звезду к драматическому финишу, остановимся вкратце на некоторых сравнительных характеристиках вспышек сверхновых I и II типа.

При взрывах звезд выбрасывается огромное количество вещества. При вспышках новых оно достигает 10–4–10–5 массы Солнца. А при взрыве сверхновой II типа масса выброшенного газа превосходит массу Солнца. Образуется огромная оболочка, туманность, существующая десятки тысяч лет. Но если во время взрыва выбрасывается столь большая масса, то это неопровержимо свидетельствует о том, что взорвалась достаточно массивная звезда. Вывод этот подкрепляется оценками, согласно которым при взрыве сверхновой I типа образуется оболочка с массой «всего» в 0,1 массы Солнца.

Итак, в случае сверхновых I и II типов мы имеем дело с грандиозными взрывами. Каков механизм этих взрывов и в чем их причина? Это очень трудный вопрос, и мы начнем его обсуждение со сверхновых II типа. Здесь ясности больше, хотя, конечно, и в этом случае понятие ясностей весьма относительно, поскольку природа не очень-то прислушивается к расчетам теоретиков.

В предыдущем разделе мы утверждали, что судьба звезды, вообще говоря, определяется ее массой. Мы подчеркивали, что у массивных звезд ядро может претерпевать ряд превращений, когда идет последовательная смена циклов термоядерных реакций – протон-протонный, C – N – О, тройной α-процесс. Когда в ядре истощается гелий, начинается горение углерода с образованием более тяжелых элементов.

Во всей этой цепочке событий могут возникнуть некоторые неустойчивые состояния ядра звезды, которые «столкнут» ее с обычного эволюционного пути и превратят в сверхновую II типа. Хорошо известно, например, что скорость генерации энергии в термоядерных реакциях очень чувствительна к температуре. Повышение температуры повышает давление в ядре, а это, в свою очередь, приводит к расширению и охлаждению ядра, и такая обратная связь поддерживает постоянный уровень температуры.

Остатки взрыва сверхновой в NGC 6992.

Но если этот механизм обратной связи хорошо работает в протон-протонном цикле, то в реакциях с участием углерода температурная зависимость для выхода энергии гораздо более сильная, чем в протон-протонном цикле. При некоторых условиях процесс горения углерода в центре красного гиганта может принять катастрофический характер и полностью взорвать звезду. В этом, кстати говоря, и состоит некоторая трудность модели: звезда должна взорваться без остатка, а наблюдения показывают, что взрывы некоторых сверхновых оставляют после себя в качестве остатков очень интересные объекты – нейтронные звезды.

Можно представить себе и несколько иной ход событий. Горение углерода проходит без катастрофы. Но тем не менее ядро звезды очень горячее, и в нем будет образовываться множество нейтрино. Чрезвычайно слабо взаимодействуя с веществом, они могут уносить большое количество энергии. Интересно, что этот процесс называется URCA-процессом (по-русски читается УРКА). Читатели, знакомые со слэнгом, оценят точность термина, поскольку нейтрино уносят энергию незаметно, «тайком». (Автор термина знаменитый физик Гамов говорил, что в Рио-де-Жанейро есть казино URCA, где игроки незаметно теряют деньги. Звезды также незаметно теряют энергию в процессе испускания нейтрино).

Гибель гипотетической планетной системы, когда центральная звезда вспыхивает как сверхновая.

Теряя постепенно энергию, ядро звезды все больше сжимается и нагревается. Наконец оно вступает в стадию катастрофического сжатия – коллапса. В конце этой стадии происходит всплеск нейтринного излучения высокой энергии. Оболочка взрывается, а ядро коллапсирует в нейтронную звезду или черную дыру.

Рассмотрим эти процессы несколько подробнее, с привлечением некоторых других идей. Пусть мы имеем достаточно массивную звезду с массой больше десяти солнечных масс. Температура в центре такой звезды – несколько миллиардов градусов, гелия и водорода там уже нет. Такая звезда очень быстро эволюционирует, образуя в центре железное ядро.

Она имеет к этому моменту времени достаточно сложную структуру. Железное ядро окружено углеродно-кислородной «мантией», содержащей потенциальное ядерное горючее, легкие элементы. Самые внешние слои звезды представляют собой смесь водорода и гелия. Мы уже говорили о ядре, в котором идет горение углерода. В железном ядре ядерное горючее исчерпано, тем не менее звезда огромными темпами теряет энергию за счет УРКА-процесса. В то же время происходит увеличение температуры ядра за счет его сжатия.

Можно представить себе, к чему приводит рано или поздно рост температуры ядра. Ядра железа при некоторой критической температуре начнут разваливаться на нейтроны и ядра гелия-4. Это очень важный момент, так как начиная именно с него рост температуры прекращается, поскольку большая часть энергии идет на диссоциацию ядер железа. Дополнительно к этому огромная энергия уносится нейтрино.

Все это приводит к тому, что ядро теряет упругость, начинает катастрофически сжиматься, причем время этого сжатия очень мало меньше секунды. Естественно, оболочка начинает падать на ядро. Плотность и температура ее при этом резко возрастают, и в результате она взрывается, как чудовищная термоядерная бомба. Таким образом, мы видим здесь сочетание двух процессов – гравитационного коллапса ядра и термоядерного взрыва оболочки. Первый процесс обеспечивает энергией нейтрино и процессы диссоциации ядер, второй, собственно говоря, – прямое следствие первого.

В какой мере приведенную выше картину взрыва сверхновой II типа можно считать обоснованной? Полной теории этого явления не существует. Не совсем ясно, как происходит коллапс ядра. Многие расчеты говорят, что коллапс приводит к появлению черной дыры, в то время как наблюдательные данные свидетельствуют о том, что остатком взрыва сверхновой II типа является нейтронная звезда. Мы также не говорили о роли вращения, которое в принципе может прекратить на определенном этапе сжатие ядра.

Остатки взрыва в созвездии Лисички.

Но если в изучении процессов сверхновых II типа определенный прогресс налицо, то со сверхновыми I типа дело обстоит гораздо хуже. Мы уже говорили, что сверхновая I типа возникает в результате взрыва обычной звезды с массой, близкой к массе солнца. Что мешает ей превратиться в белый карлик?

Здесь нет единой точки зрения. Существует гипотеза, согласно которой взрыв сверхновой I типа связан с эволюцией звезды, находящейся в тесной двойной системе, с перекачкой материала на белый карлик. Механизм перекачки таков, что масса белого карлика постепенно увеличивается, переходя некоторый предел (предел Чандрасекара), после чего он начинает коллапсировать и сбрасывать оболочку.

Подчеркнем еще раз, что законченной теории, полностью объясняющей путь эволюции звезд, вспыхивающих, как сверхновые, нет. Поэтому проблема сверхновых – одна из узловых проблем современной астрофизики. Она тесно связана с пульсарами, черными дырами, космическими лучами и нуклеосинтезом.

Что же остается после чудовищных взрывов звезд? Прежде всего сброшенные при вспышке внешние слои звезды, разлетающиеся со скоростью около 10 тысяч км/сек. Именно по этому признаку (большая скорость) остатки от вспышек сверхновых отличаются от других туманностей, например планетарных, расширяющихся со скоростью порядка десятков километров в секунду.

Из-за огромной мощности взрыва оболочка при разлете сгребает межзвездный газ, и общая картина остатков взрыва получается довольно сложной. Ведь масса выметенного при взрыве межзвездного газа достигает 8 тысяч солнечных масс. Несмотря на масштабы процесса, мы можем наблюдать его ограниченное время.

Непосредственно после взрыва в течение сотен лет можно видеть так называемые оптические остатки сверхновой. В течение десятков тысяч лет можно будет исследовать послевзрывные процессы, изучая рентгеновское и радиоизлучение остатков вспышек сверхновых. Однако через сотни тысяч лет и это станет невозможным. Астрономам останутся для наблюдения лишь пульсары, радиоизлучение которых будет последним свидетелем происшедшей катастрофы.

Сюрпризы гравитации

Большой экваториальный телескоп Пулковской обсерватории (конец XIX века).

Нейтронные звезды

В астрофизике, как, впрочем, и в любой другой отрасли науки, наиболее интересны эволюционные проблемы, проблемы, связанные с извечными вопросами «что было?» и «что будет?».

Что случится со звездной массой, примерно равной массе нашего Солнца, мы уже знаем. Такая звезда, пройдя через стадию красного гиганта, станет белым карликом. Белые карлики на диаграмме Герцшпрунга – Рессела лежат в стороне от главной последовательности.

Белые карлики – конец эволюции звезд солнечной массы. Они являются своеобразным эволюционным тупиком. Медленное и спокойное угасание – конец пути всех звезд с массой, меньше солнечной.

А что можно сказать о более массивных звездах? Мы увидели, что их жизнь полна бурными событиями. Но возникает естественный вопрос о том, чем же заканчиваются чудовищные катаклизмы, наблюдаемые в виде вспышек сверхновых?

В 1054 году на небе вспыхнула звезда-гостья. Она была видна на небе даже днем и погасла лишь через несколько месяцев. Сегодня мы видим остатки этой звездной катастрофы в виде яркого оптического объекта, обозначенного в каталоге туманностей Месье под номером MI. Это знаменитая Крабовидная туманность – остаток взрыва сверхновой.

В 40-х годах нашего столетия американский астроном В. Бааде начал изучать центральную часть «Краба» для того, чтобы попытаться отыскать в центре туманности звездный остаток от взрыва сверхновой. Кстати говоря, название «краб» этому объекту дал в XIX веке английский астроном лорд Росс. Бааде нашел кандидата на звездный остаток в виде звездочки 17m.

Но астроному не повезло, у него не было подходящей техники для детального исследования, и поэтому он не смог заметить, что звездочка эта мерцает, пульсирует. Будь период этих пульсаций яркости не 0,033 секунды, а, скажем, несколько секунд, Бааде, несомненно, заметил бы это, и тогда честь открытия первого пульсара принадлежала бы не А. Хьюишу и Д. Белл.

Лет за десять до того, как Бааде направил свой телескоп в центр Крабовидной туманности, физики-теоретики начали исследовать состояние вещества при плотностях, превышающих плотность белых карликов (106–107 г/см3). Интерес к этому вопросу возник в связи с проблемой конечных стадий эволюции звезд. Интересно, что одним из соавторов этой идеи был все тот же Бааде, который как раз и связал сам факт существования нейтронной звезды с взрывом сверхновой.


    Ваша оценка произведения:

Популярные книги за неделю