355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Лев Мухин » Мир астрономии. Рассказы о Вселенной, звездах и галактиках » Текст книги (страница 3)
Мир астрономии. Рассказы о Вселенной, звездах и галактиках
  • Текст добавлен: 5 мая 2017, 20:30

Текст книги "Мир астрономии. Рассказы о Вселенной, звездах и галактиках"


Автор книги: Лев Мухин



сообщить о нарушении

Текущая страница: 3 (всего у книги 17 страниц)

Эти два типа взаимодействия обладают очень малым радиусом действия: сильное работает на расстоянии порядка 10–13 сантиметра, а радиус действия слабого по порядку величины составляет около 10–16 сантиметра.

Сейчас на повестке дня с особой остротой стоит проблема создания единой основополагающей теории, объединяющей все известные силы. Пока удалось объединить электромагнитные и слабые силы. Возникла модель так называемых электрослабых взаимодействий. На очереди – модели великого объединения, или, как их еще называют, гранд-модели. Совершенно ясно, что законченная гранд-теория должна с единых позиций объяснить действие всех сил в микромире.

Это очень многообещающее направление в физике. Гранд-модели предсказывают массу удивительных вещей и, в частности, распад протона. Сейчас экспериментаторы пытаются обнаружить это явление, осуществить, как считают многие физики, эксперимент века. В случае успеха Природа воздаст должное пытливости человеческого ума.

Физика микромира, так же как и физика макромира, имеет дело с огромными энергиями. Недаром в разных странах мира: в СССР, в США, Швейцарии, ФРГ – построены ускорители, на которых удается исследовать частицы с энергиями порядка сотен ГЭВ. Эта энергия соответствует температурам в миллион миллиардов градусов. Может ли современная экспериментальная физика подняться еще выше по шкале энергии?

Тридцать с лишним лет назад Э. Ферми выдвинул идею ускорителя-гиганта, опоясывающего весь земной шар. Такой ускоритель представлял бы собой расположенное в космосе огромное кольцо вокруг Земли с радиусом около 7 тысяч километров. Это дало бы возможность достигнуть энергий в 107–108 ГЭВ, или 1020–1021 K. Ясно, что постройку такого ускорителя нельзя назвать делом ближайшего будущего.

Попытки разработки гранд-моделей, где при еще более высоких энергиях объединяются и электрослабые, и сильные взаимодействия, требуют энергии порядка 1014–1016 ГЭВ (1026–1028 К!). Для получения таких энергий нужно было бы построить кольцевой ускоритель порядка размеров Солнечной системы. Это уже чересчур не только для физики обозримого будущего, но и для научной фантастики. Ведь пока диаметр самого большого кольцевого ускорителя – «всего» 2,2 километра.

При переходе к высоким энергиям порядка 1014 ГЭВ мир элементарных частиц должен стать в известном смысле проще. Ярмарочное обилие их должно «испариться» и число частиц существенно уменьшиться.

Здесь уместна следующая аналогия. Число минералов на Земле исчисляется несколькими тысячами. Но Давайте начнем увеличивать температуру Земли. Стоит нам достичь двух-трех тысяч градусов, когда плавятся самые тугоплавкие минералы, – и мы будем иметь достаточно гомогенную жидкость. Это будет расплав, не содержащий ни одного минерала. В нем будут присутствовать лишь элементы таблицы Менделеева, а их всего около сотни. Охладим его, и по мере охлаждения в нем начнут возникать множество самых различных типов минеральных зерен. Быть может, именно так, по мере перехода к неизмеримо более высоким температурам происходит некоторое «упрощение» системы элементарных частиц.

Но так ли на самом деле оптимистично выглядят перспективы теории элементарных частиц? Объединение электромагнитных и слабых взаимодействий – действительно триумф теоретической физики, причем триумф, увенчанный убедительным экспериментом. Мы знаем теперь, как ведет себя вещество и что оно собой представляет до энергий 100 ГЭВ. Но насколько справедлива экстраполяция на энергии 1014 ГЭВ? Ведь здесь разница в 12 порядков, в тысячу миллиардов раз?

Нельзя исключить того, что здесь мы можем столкнуться с неизвестными явлениями, с новой физикой. Большинство физиков не верит, что между энергиями в 102 ГЭВ и 1014 ГЭВ лежит «пустыня», что здесь не могут проявиться какие-то новые явления, и поэтому вопрос о том, какие частицы можно считать истинно элементарными, остается открытым.

Нам же важно сейчас отметить следующее. В нашем мысленном эксперименте мы начали сжимать Вселенную для того, чтобы посмотреть, что будет при этом с веществом. Мы дошли до энергии в сотни ГЭВ. Здесь есть эксперимент, здесь можно с уверенностью сказать, что физика дает хорошие прогнозы по интересующему нас вопросу. Теперь можно подвести некоторые итоги.

Этой энергии соответствует температура 1015 K. Ясно, что ни атомных ядер, ни протонов, ни нейтронов при такой температуре нет. Есть лишь частицы, претендующие на роль истинно элементарных: лептоны, фотоны да вырвавшиеся на свободу кварки. Весь этот кварко-лептонный суп находится в состоянии, близком к термодинамическому равновесию. Это означает, что концентрация частиц поддерживается постоянной, скорости их рождения и гибели равны.

Можно, конечно, пойти дальше и пытаться смотреть, что будет с веществом при более высоких энергиях. Теоретики выпустили огромное количество работ, посвященных этой теме. Но, во-первых, твердо установившейся теории здесь нет, во-вторых, когда мы приближаемся к планковскому порогу, мы волей-неволей должны рассматривать Вселенную, радиус кривизны которой меньше размеров элементарных частиц, с плотностью вещества, достигающей 1094 г/см3. Это, вообще говоря, terra incognita для современной физики, и вряд ли кто-либо возьмется сказать, что представляет собой сверхплотная Вселенная. Можно надеяться, однако, лишь на то, что в этих экстремальных условиях применимы понятия плотности энергии и давления. Мы чуть позднее в самых общих чертах поговорим об очень-очень ранней Вселенной, а пока попытаемся описать ее начиная с времен от 10–10 секунды после Большого Взрыва.

Здесь при температурах 1015 K и плотностях, больших, чем плотность атомных ядер, основную роль играют адроны, лептоны и фотоны. Их энергия очень велика, а поскольку их много, они дают основной вклад в плотность энергии и определяют динамику расширения Вселенной.

В самой Вселенной в это время непрерывно идут реакции рождения пар частиц и античастиц, например, электронов и позитронов при столкновении энергичных фотонов: γ + γ  e+ + e; происходят также реакции между электронами и позитронами с образованием нейтрино и антинейтрино: e+ + e  ν + ν.

Для нас очень важно сейчас не забыть о кварках. Ведь именно кварки по мере остывания Вселенной образуют нейтроны и протоны; кроме этого, они участвуют в реакциях образования мезонов. Период свободной жизни для кварков кончается при энергиях 1 ГЭВ: они попадают в адронный «мешок» и навсегда становятся «невидимками», давая жизнь новым фундаментальным частицам.

Плотность упала до значений 1014 г/см3, прошла одна десятитысячная доля секунды после начала Большого Взрыва. Именно в эти моменты времени начинается так называемая адронная стадия эволюции Вселенной. Она продолжается недолго, чуть меньше секунды, но за этот короткий промежуток времени происходит очень много важных событий.

Температура еще достаточно высока, и в условиях обилия высокоэнергичных лептонов непрерывно идут реакции взаимных превращений нейтронов и протонов:

p + e  n + ν

p + ν  n + e+

При температуре больше 1011 K концентрации протонов и нейтронов примерно одинаковы. Но с понижением температуры концентрация протонов возрастает. Действительно, ведь масса протона меньше массы нейтрона, и поэтому в указанных выше реакциях образование протона при определенной температуре становится более выгодным энергетически. С дальнейшим понижением температуры эти реакции вообще прекращаются, и мы уже имеем дело с «замороженными» концентрациями протонов и нейтронов во Вселенной, когда Снейтр.прот. ≈ 0,15.

Здесь возникает естественный вопрос. Ведь во время адронной эры во Вселенной должны присутствовать как частицы, так и античастицы. А речь шла сейчас лишь о протонах. Где же антипротоны? Почему наша Вселенная несимметрична в зарядовом отношении? Почему в ней есть вещество и почти нет антивещества?

Вопрос этот очень сложный и, нужно сказать честно, не имеющий на сегодняшний день окончательного решения. Более того, некоторые ученые, например лауреат Нобелевской премии по физике X. Альвен, считают, что антивещество представлено во Вселенной на паритетных началах с обычным веществом. Большинство ученых находит, что X. Альвен не прав. Но в науке голосование не принято, и на поставленные вопросы надо пытаться давать исчерпывающий ответ.

Итак, если изначально число частиц и античастиц было одинаковым, то в принципе все они за какое-то время должны были бы в результате аннигиляции превратиться в фотоны, в свет, в нейтрино и антинейтрино. Но этого нет, и, по крайней мере, для нашей Галактики твердо установлено отсутствие звезд и планет из антивещества.

С другими участками Вселенной, которые можно наблюдать сегодня, дело посложнее. Ведь, наблюдая другие галактики, астрономы имеют дело лишь с квантами электромагнитного излучения, и поэтому, если бы какая-либо удаленная галактика состояла из антивещества, мы не могли бы узнать об этом даже в принципе, поскольку антивещество излучает фотоны так же, как и обычная материя. Это, кстати говоря, один из сильных аргументов Альвена и его немногочисленных сторонников.

Тем не менее гипотеза зарядовой асимметрии Вселенной имеет веские экспериментальные подтверждения. Дело в том, что обычное вещество во Вселенной присутствует заведомо. Если бы какие-то галактики состояли из антивещества, то в космосе должны были интенсивно проходить процессы аннигиляции электронов и позитронов, а также протонов и антипротонов. В результате в спектрах гамма-излучения этих галактик должен был бы наблюдаться избыток квантов с энергией ~ 0,5 МЭВ. Но подобный факт не удалось отметить в наблюдениях.

Вещество Вселенной все-таки состоит, по всей видимости, из протонов. Почему? Здесь мы должны вернуться снова в область высоких температур и объединения взаимодействий, когда могли идти экзотические реакции рождения кварков и антикварков.

Так вот, работами последних лет достаточно убедительно показано, что в этих реакциях кварков должно рождаться чуть больше, чем антикварков. Насколько? Ответ таков: на три миллиарда антикварков должно родиться 3 миллиарда и еще три кварка. Тогда 6 миллиардов кварков и антикварков проаннигилируют, а три оставшихся кварка «упадут» со временем в адронный «мешок» и образуют протон или нейтрон. Важно отметить, что в результате всех этих процессов во Вселенной на один протон приходится примерно миллиард фотонов и миллиард нейтрино.

Таким образом, вопрос о том, почему наша Вселенная состоит из вещества, а антивещество отсутствует, находит решение с использованием гранд-моделей.

Мы остановились на моменте времени в развитии Вселенной, когда установилось определенное отношение между нейтронами и протонами. Следующий важный процесс в расширяющейся горячей Вселенной – начало синтеза элементов.

До сих пор Вселенная представляла собой горячий котел, заполненный лишь частицами. С понижением температуры появляются условия для образования простейших атомных ядер. Прошло чуть больше ста секунд, температура упала до миллиарда градусов. Почему эта температура критична для нас? Собственно, не для нас, конечно, а для физики ранней Вселенной. Да просто дело в том, что энергия фотонов и лептонов уже недостаточна при этой температуре, чтобы развалить при ударе ядро атома.

Заметим, что субстрата для образования атомов водорода в ранней Вселенной более чем достаточно. Это протоны и электроны. А вот при миллиарде градусов начинается уже синтез ядер атома гелия. Этот синтез проходит в несколько этапов. Сначала протоны захватывают нейтроны и образуются ядра дейтерия: р + n → D + γ. Два ядра дейтерия, взаимодействуя между собой, могут образовать изотоп гелия гелий-3 и изотоп водорода – тритий:

D + D → 3H + p

D + D → 3He + n → 3H + p.

Далее тритий, взаимодействуя с дейтерием, дает окончательно гелий-4:

3H + D → 4He + n.

В этих условиях, казалось бы, самое время «свариться» и другим элементам, более тяжелым, чем водород и гелий. К примеру, почему бы путем столкновений между теми же ядрами гелия или ядер гелия с нейтронами и протонами не получить новые элементы?

Но природа поставила здесь барьер, и барьер этот непреодолим: не существует стабильных изотопов с массой 5 или 8. Поэтому в гигантской водородной бомбе, которой была наша Вселенная миллиарды лет назад, синтезировались лишь легкие элементы – водород, гелий да немного лития. Разумеется, сегодня мы видим вокруг нас не только гелий и водород, но и массу других элементов. Но для образования этих элементов нужны другие условия, нежели те, что были в ранней Вселенной. В частности, нужна большая температура и плотность в течение более длительного времени. Когда в дальнейшем мы будем говорить о звездах, мы увидим, как синтезируются в природе более тяжелые элементы.

Процесс синтеза ядер легких элементов продолжался около трех минут после начала Большого Взрыва. С падением температуры синтез гелия прекратился, и теперь уже «заморозились», то есть остались неизменными, относительные концентрации гелия и водорода: ядра водорода составляли 70 процентов вещества Вселенной, ядра атомов гелия – 30.

Необходимо заметить, что отношение концентраций ядер гелия и водорода друг к другу сильно зависит от темпа расширения и, соответственно, от средней плотности вещества во Вселенной. Поэтому в какой-то мере это отношение может использоваться для проверки правильности той или иной космологической модели. Оценки содержания гелия в горячих звездах во внешней атмосфере Солнца, в солнечном ветре и т. д. дает достаточное основание для подтверждения правильности «стандартной» теории (дающей цифру в 30 процентов для гелия).

Кроме термоядерного синтеза легких элементов, в первые секунды происходил еще один очень важный и бурный процесс. Мы уже говорили о том, что в состав горячего вещества Вселенной входили лептоны – легкие частицы, и сейчас нам надо посмотреть, что происходило с электронами, позитронами и нейтрино по мере остывания гигантского первичного котла. При температурах выше примерно пяти миллиардов градусов электроны и позитроны присутствуют в раскаленной плазме в одинаковых концентрациях. Конечно, реакции аннигиляции, происходящие при столкновении электрона и позитрона, идут при любой температуре: e+ + e → 2γ; e+ + e → 2ν + ν. Но при высокой температуре эти реакции компенсируются процессом рождения пар: γ + γ → e + e+ или ν + ν → e+ + e.

С падением температуры реакции аннигиляции становятся «главными», так как энергии частиц для рождения пар уже не хватает.

Нейтрино исключительно слабо взаимодействуют с веществом, для них прозрачен даже наш земной шар. Поэтому примерно через 0,3 секунды после Большого Взрыва нейтрино начинают «игнорировать» все вещество Вселенной (включая, конечно, и электроны с позитронами). Их число уже не меняется. Говорят, что произошло отделение нейтрино от вещества. Этот процесс происходит при температуре больше десяти миллиардов градусов.

С понижением температуры продолжает играть роль реакция рождения электронов и позитронов из энергичных фотонов, но при пяти миллиардах градусов идет уже только реакция аннигиляции. Это приводит к тому, что излучение становится главной, основной частью Вселенной.

Реакции аннигиляции несколько подогревают наш мир, но конец взаимодействия лептонов, конец лептонной эры уже близок. Ее сменяет эра радиации, или, как ее еще называют, эра фотонной плазмы. Напомним, что число фотонов в миллиард раз превышает к этому моменту число выживших протонов.

Итак, бурная молодость Вселенной закончилась. Она была непродолжительной. Что значат несколько минут по сравнению с многими миллиардами лет?

Но именно эти несколько минут определили весь будущий облик нашего мира. Изменись хоть немного темп расширения Вселенной в эти первые сотни секунд, изменился бы и химический состав Вселенной. Например, если бы «замораживание» нейтронно-протонного состава произошло раньше, чем через одну секунду после Большого Взрыва, то бóльшая часть вещества Вселенной состояла бы не из водорода, а из гелия, и наверняка мы имели бы совершенно другой мир, чем тот, который перед нами сегодня.

Итак, когда прошли процессы аннигиляции, главную массу вещества Вселенной составляли фотоны, нейтрино и примесь высокотемпературной нейтральной плазмы, состоящей из протонов, ядер атомов гелия и электронов. Нейтрино, как мы уже говорили, с веществом не взаимодействует, а фотоны, наоборот, энергично рассеиваются на электронах, и поэтому вещество для них непрозрачно. Но с понижением температуры фотоны постепенно теряли свою энергию и в конце концов, когда «термометр» стал показывать примерно 4000 K, начались процессы рекомбинации электронов и ядер атомов гелия.

Энергии фотонов уже недостаточно, чтобы ионизировать атомы, и во Вселенной появляются сначала атомы гелия, а затем и водорода, который становится главным элементом мира.

Процесс рекомбинации начался, когда Вселенной было около 300 тысяч лет, и закончился еще через 700 тысяч лет. Этот период также очень важен для космологии. Фотоны, как мы знаем, взаимодействовали с высокотемпературной плазмой, и она была для них непрозрачной. Но, как только гелий и водород стали нейтральными, фотоны получили возможность распространяться свободно, произошло, как принято говорить в космологии, отделение вещества от излучения. С этого момента Вселенная стала прозрачной для фотонов, а они продолжали остывать по мере расширения Вселенной.

Как мы знаем по температуре реликтового излучения, «остыли» они довольно сильно, от 4000 K до 3 K, то есть температура уменьшилась за это время более чем в тысячу раз. Ну а Вселенная соответственно увеличила свои размеры примерно в тысячу раз.

Итак, мы остановились на моменте времени, когда Вселенная еще молода. Ей примерно миллион лет. Она заполнена фотонами, водородом, гелием и нейтрино. Правда, многие физики уверены в том, что есть еще целый зоопарк различных таинственных частиц, в частности гравитонов и монополей.

В принципе на этом можно было бы и закончить рассказ о детстве нашей Вселенной, о первых этапах ее эволюции, и перейти к таким интересным вопросам, как образование звезд и галактик. Но мне хотелось бы, быть может, в нарушение законов жанра научно-популярной литературы, снова коротко обсудить ранние этапы развития мира. Дело в том, что эта часть нашего рассказа, с одной стороны, была перенасыщена информацией, а с другой – эта информация носила довольно расплывчатый характер. И чтобы не сложилась ситуация, когда за деревьями не видно леса, попробуем взглянуть снова на главные моменты эволюции и на некоторые нерешенные вопросы.


Новые подходы

Итак, самое начало рождения, планковское время 10–43 секунды. Плотность вещества 1094 г/см3. Температура 1032 K.

В этом случае более удобно (и понятно) говорить о том, что Вселенная заполнена самыми различными видами излучения, полями чудовищной плотности. Частиц нет.

Итак, эта смесь различных типов излучений начинает расширяться. Почему? Неизвестно. Это первая фаза Большого Взрыва. Попытки описать поведение этих самых-самых ранних стадий Вселенной ограничены на сегодняшний день несовершенством физики. Многие физики полагают, что вот-вот будет создана «идеальная» физическая теория, позволяющая объяснить «все», в частности, такой вопрос: имеет ли время начало, что происходит в допланковскую эпоху?

На эти вопросы нельзя закрывать глаза. Ведь с чисто философской точки зрения планковские константы не должны ограничивать уровень нашего познания. Сейчас физики думают, что на расстояниях меньше 10–33 сантиметра континуум пространства-времени распадается, приобретает структуру, напоминающую мыльную пену, где каждый пузырь появляется за счет квантовых флуктуаций гравитационного поля. Я уже не говорю о том, что при гигантских энергиях, соответствующих планковским масштабам, многие частицы, считающиеся сейчас элементарными, например кварки, могут быть вовсе не элементарны. И перед физикой элементарных частиц, и перед космологией стоит, как Эверест, проблема создания единой теории объяснения мира.

Может показаться забавным тот факт, что эта теория уже имеет название – супергравитация. Название, бесспорно, красивое, но о предсказательной силе этой теории пока еще нечего говорить. Выдающийся физик современности С. Хокинг полагает, что к концу нашего столетия теоретическая физика будет закончена как наука, другими словами, реализуется мечта Эйнштейна о создании полной единой теории, описывающей мир. Бесспорно, бурное развитие науки дает известные основания для подобной точки зрения, но… Природа любит делать сюрпризы, и современная физика вряд ли от них застрахована.

Сегодняшняя физика берется объяснить все или почти все, что происходило во Вселенной, начиная с времен 0,01–1 секунды от Большого Взрыва. Этому в немалой степени способствует состояние термодинамического равновесия на самых ранних этапах жизни Вселенной. Огромные температуры обеспечивали это равновесие.

Почему равновесие так важно для последующей истории вещества? Почему мы можем не обращать внимания на то, что было в момент времени, скажем 10–20 секунды, а сразу «начать» с 10–2 секунды? Да по той простой причине, что если вещество находится в состоянии термодинамического равновесия, оно «не помнит» своей предыстории, ему, веществу, совершенно безразлично, каким путем его «довели» до состояния равновесия.

Простой пример. Вода в чашке на столе находится в равновесии с собственным паром при температуре, скажем, 20 °C. Но я могу получить эту воду самыми различными путями. Можно, например, нагревать кусок льда от температуры, близкой к абсолютному нулю, до комнатной, причем это можно делать в течение года или часа. Можно, наоборот, сконденсировать водяной пар из горячих вулканических источников. Можно развалить молекулы воды на атомы, получить гремучий газ, взорвать его и иметь в конце концов ту же чашку с водой. Молекулы воды памяти не имеют. Их поведение в чашке будет определяться только температурой и давлением в комнате.

То же самое и со Вселенной. Раз мы знаем, что она в равновесии в момент времени 0,1 секунды, нам, с точки зрения термодинамики, все равно, что с ней было до этого момента. Подтверждение удивительной эффективности методов теоретической физики в космологии мы находим в многочисленных наблюдательных данных. Здесь и красное смещение далеких галактик, и изотропность реликтового фона, и распространенность легких элементов. Но чем дальше мы пытаемся заглянуть в глубины времени, тем больше подводных камней возникает на нашем пути.

Пытливому уму человека мало одной сотой секунды, когда он может разобраться достаточно аккуратно с физическими процессами, происходящими в мире после его рождения. И сегодня появляются такие теории и модели мира, по сравнению с которыми бледнеют сюжеты самых смелых фантастических романов. Естественно, что эти модели создаются не на песке. Их появление стимулировано тем обстоятельством, что стандартная модель Фридмана сталкивается с существенными трудностями при попытках экстраполяции ее на раннюю эпоху.

Один пример. Почему Вселенная на больших масштабах столь однородна и изотропна? Реликтовое излучение в любой точке неба имеет с очень высокой точностью одинаковую температуру. Но это означает, что в далеком прошлом разные точки пространства, которые не могли ничего «знать» друг о друге, имели одинаковую температуру. Почему? Эта проблема имеет название проблемы горизонта, так как точки пространства, о которых мы говорили, не могли «видеть» друг друга, не могли обменяться сигналами, одна точка по отношению к другой находилась как бы за горизонтом.

Есть и другие трудности в стандартной модели. Для их преодоления недавно была разработана так называемая теория раздувающейся Вселенной, в рамках которой решается и проблема горизонта, и целый ряд других трудностей. Эта теория оперирует с такими удивительными понятиями, как «ложный вакуум», энергия которого в процессе раздувания мира переходит в обычную горячую плазму стандартной модели.

Но это еще не все. Согласно этой теории наблюдаемая Вселенная составляет ничтожную часть мира как целого. В мире может быть много «пузырьковых» вселенных, образовавшихся из полостей в ложном вакууме.

Фактически мы подходим здесь к идее, противоречащей на первый взгляд здравому смыслу, к идее рождения вселенных «из ничего». Эта идея, как пишет один из ее сторонников, кажется абсурдной всем, кроме теоретиков.

Модель раздувающейся Вселенной ставит очень трудные (сегодня, быть может, непреодолимые) задачи при «переводе» понятий, которыми она оперирует, на обычный, доступный каждому человеку язык. Так, например, академик Я. Зельдович использует вместо термина «ложный вакуум» термин «состояние», но суть дела от этого не меняется: во-первых, нелегко наглядно представить себе этот самый ложный вакуум, а во-вторых, если бы в модели раздувающейся Вселенной использовалось только это понятие, автору было бы, наверное, легче. Но когда даже в популярном изложении модели говорят о «доменах с переходом типа медленного скатывания», заранее предполагается знакомство читателя с разновидностями теорий великого объединения, квантовой хромодинамикой и т. д.

Поэтому, на мой взгляд, попытка «переложения» модели на обычный язык неизбежно будет связана с ее профанацией. Вот почему я сразу перешел к некоторым выводам из этой модели, которые, естественно, при такой манере изложения придется принять на веру.

Итак, мы упомянули о доменах. Это область пространства, содержащая нашу Вселенную. Модель раздувающейся Вселенной по-новому заставляет взглянуть на структуру нашего мира. Так, если на некотором этапе раздувания вся наблюдаемая Вселенная была размером с теннисный мяч, то вся область расширения (домен), в которой она умещалась, могла быть на 10–20 порядков больше. И таких доменов с разными вселенными могло быть много. Вывод состоит в том, что только малая часть пространства-времени мира в целом в ходе эволюции превращается во Вселенную.

Здесь мы вступаем в область довольно смелых спекуляций. Прежде чем совершить этот рискованный шаг, мне хотелось бы подчеркнуть, что на временах, больших, чем 10–30 секунды, темп расширения в модели раздувающейся Вселенной совпадает со стандартной фридмановской моделью. Само раздувание происходит в первые ничтожные доли секунды после «начала» и заканчивается примерно через 10–30 секунды. Главное, что отличает фридмановскую модель от модели раздувающейся Вселенной – геометрические факторы, о которых мы только что говорили.

Сценарий раздувающейся Вселенной имеет дело с картиной мира, в корне отличающейся от картины мира Фридмана, в которой между понятиями «мир» и «Вселенная» можно было поставить знак тождества. Вместо однородной и изотропной Вселенной мы получили мир предельно неоднородный и неизотропный, состоящий из множества огромных доменов размером 1050–10100 сантиметров. И лишь в одном из них словно дырка в куске хорошего швейцарского сыра сидит наша наблюдаемая Вселенная размером «всего лишь» в 1028 сантиметров.

Физические же параметры этой экзотической модели (температура, плотность энергии) через 10–30 секунды совпадают полностью с параметрами Вселенной Фридмана. Ну а теперь, если это короткое отступление успокоило читателя, поговорим немного о еще более рискованных вещах.

Я думаю, что вопрос о множественности вселенных – один из самых волнующих как с физической, так и с философской точки зрения. Этот вопрос очень глубокий и содержит в себе массу проблем. Из них главная, бесспорно, следующая. Если существует ансамбль вселенных, то каковы они? Похожи на нашу или нет? И чем, вообще говоря, определяется сходство или различие?

В декабре 1981 года в Таллине состоялся Международный симпозиум «Поиск разумной жизни во Вселенной». Большой интерес вызвал доклад И. Новикова, А. Полнарева и И. Розенталя «Численные значения фундаментальных постоянных и антропный принцип». В этой работе очень наглядно проявился новый (и очень модный) подход к вопросу, почему Вселенная именно такая, какой мы ее наблюдаем. Этот вопрос можно перефразировать следующим образом: почему значения фундаментальных физических констант имеют именно такие значения, которые наблюдаются в нашей Вселенной, а не какие-либо другие?

Сторонники антропного принципа дают достаточно простой ответ: «Вселенная такова, какой мы ее видим, потому, что в ней существуем мы». Этот залихватский ответ не может, разумеется, доставить чувства удовлетворения. Формулировка ответа сама по себе выглядит сомнительной. Действительно, более правильно было бы сказать: «Мы (наблюдатели) существуем потому, что Вселенная именно такая, какой мы ее видим».

Нельзя не согласиться с С. Хокингом, который говорит о том, что должно быть более глубокое объяснение устройства мира, чем то, которое предлагает нам антропный принцип. Это объяснение в первую очередь должно ответить на вопрос, который уже был поставлен выше. Почему скорость света имеет значение 300 тысяч км/сек, а не 500 тысяч км/сек? Почему заряд и масса элементарных частиц такие, а не какие-либо другие, и т. д.

Скажем сразу, что современная физика здесь бессильна. Мы можем говорить сейчас лишь о том, что было бы с Вселенной, если изменить численные значения физических констант. Это очень увлекательная проблема, и существенный вклад в ее решение внес советский физик И. Розенталь. Следуя сейчас, в частности, его идеям, можно обсудить возможный облик ансамбля вселенных с различными значениями физических «постоянных». Основная мысль здесь состоит в том, что даже небольшие их изменения приведут к радикальной перестройке структуры и свойств Вселенной.

Операция варьирования фундаментальных констант может показаться сначала и бессмысленной и неправомочной. Ведь недаром они называются фундаментальными, неизменными. Но… поскольку, с одной стороны, мы подошли к понятию ансамбля вселенных, а с другой стороны – сегодня нам неизвестно, в силу каких причин константы физики имеют именно те значения, которые они имеют, подобная операция выглядит достаточно логично.

Лишь в том случае, если в любой из возможных вселенных в силу каких-то пока неизвестных причин физические константы такие же, как и в нашем мире, ситуация становится тривиальной: в мегамире есть ансамбль одинаковых миров.

Разумеется, слово «тривиальной» использовано здесь в физическом смысле. С философских позиций реализация подобного случая не менее, а быть может, и более интересна, чем ансамбль вселенных с различными физическими константами. Вернемся, однако, непосредственно к предмету нашего обсуждения. Рассмотрим сначала, как будет выглядеть Вселенная, в которой масса электрона будет несколько больше, чем сейчас в нашей Вселенной.


    Ваша оценка произведения:

Популярные книги за неделю