355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Лев Мухин » Мир астрономии. Рассказы о Вселенной, звездах и галактиках » Текст книги (страница 4)
Мир астрономии. Рассказы о Вселенной, звездах и галактиках
  • Текст добавлен: 5 мая 2017, 20:30

Текст книги "Мир астрономии. Рассказы о Вселенной, звездах и галактиках"


Автор книги: Лев Мухин



сообщить о нарушении

Текущая страница: 4 (всего у книги 17 страниц)

Атом водорода в нашей Вселенной абсолютно стабилен. Он мог бы быть неустойчив при очень высоких температурах ~ 1010 K, когда энергетически разрешена реакция.

p + e → n + ν

А при низких температурах эта реакция строго запрещена. Действительно, нейтрон тяжелей протона. В энергетических единицах (вспомним, что E = mc2) mn – mp ~ 1,3 МЭВ, а me ~ 0,5 МЭВ. Мы видим, что масса электрона существенно меньше, чем разница масс нейтрона и протона. Поэтому указанная выше реакция коллапса атома водорода запрещена. Для того чтобы она «пошла», массу электрона нужно увеличить примерно в три раза.

С помощью квантовомеханических расчетов можно оценить время жизни нового атома водорода с более тяжелым электроном. В случае троекратного увеличения массы электрона время жизни модифицированного водорода будет всего около месяца; если увеличить массу электрона в 4 раза, то новый атом будет жить и того меньше – сутки.

Если мы вспомним, что в нашей Вселенной было 70 процентов водорода и 30 гелия, то сразу видно, что дело плохо. В такой Вселенной невозможна жизнь, поскольку в ней не было бы ни одного атома водорода, ни одной водородсодержащей молекулы. Все звезды и галактики в этой Вселенной состояли бы из одних нейтронов.

Вселенная без водорода получится также и в том случае, если слегка (на проценты) увеличить степень сильного взаимодействия. Тогда оказывается возможным существование стабильного ядра гелия-2:

p + p → 2He + γ

Реакция проходила бы очень быстро, и водород выгорел бы в первые же минуты существования Вселенной. Опять мы получили бы Вселенную без водорода, а значит, и без жизни.

Вариации слабых взаимодействий также коренным образом повлияют на структуру мира. Если мы увеличим константу слабого взаимодействия всего в 10 раз, то время жизни нейтрона станет порядка 10 секунд вместо 10 минут в нашей Вселенной. Но 10 секунд – время весьма малое по сравнению с эпохой космического нуклеосинтеза, а в отсутствие нейтронов нуклеосинтез (образование элементов) просто не мог бы идти. В этом случае мы бы имели Вселенную почти без нейтронов, состоящую только из водорода, – довольно однообразная картина.

Вариации других физических постоянных также сильно искажают облик мира, как и в тех коротких примерах, которые мы сейчас рассмотрели. Константы в этих примерах менялись независимо друг от друга, индивидуально. А что, если попробовать изменить набор констант согласованно? В упоминавшемся уже докладе И. Новикова и других была поставлена именно такая задача. Оказалось, что есть два «острова устойчивости» для существования сложных стабильных структур, но один из них находится в планковской области, где масса каждого объекта порядка планковской массы. В таких вселенных жизнь вряд ли возможна. Наша Вселенная попадает в другую область устойчивости.

Вывод этой работы состоит в том, что могут быть вселенные с слегка другим набором констант, но тем не менее существования жизни в них исключить нельзя. Разумеется, о формах жизни в других вселенных можно строить сейчас лишь совершенно беспочвенные предположения.


Неортодоксальные взгляды

В заключение мне кажется необходимым вкратце остановиться на так называемых неортодоксальных точках зрения на эволюцию и происхождение нашего мира. Неортодоксальные позиции потому так и названы, что они не находятся в русле генерального направления современной космологии. Но наука тем и хороша, что к ней более, чем к любой другой отрасли человеческой деятельности, применимо выражение: «В спорах рождается истина». А споры по поводу происхождения, эволюции и структуры Вселенной происходят и по сей день.

Форма дискуссий не всегда имеет парламентский характер. Год назад в солидном научном журнале появилась статья X. Альвена – непререкаемого авторитета в области физики плазмы. Название статьи очень симптоматично: «Космология: миф или наука?» Альвену нельзя отказать в том, что он очень четко использует некоторые слабости стандартной модели, в том числе проблемы сингулярности и горизонта. Большинство современных космологов, согласных с моделью Большого Взрыва, он называет «верующими фанатиками» или «верующими Большого Взрыва».

Одно из основных положений, которое защищает Альвен, состоит в том, что Вселенная существенно неоднородна по своей структуре, она имеет клеточное строение. Одна клетка от другой отделяется плазменными стенками, во Вселенной в равных количествах присутствует материя и антиматерия. Вселенная вечна и бесконечна. Альвен делает и более радикальное предположение, отказываясь от ОТО и считая, что мир может быть вполне объяснен в терминах ньютоновской механики.

С идеями Альвена перекликается и космологическая модель Р. Омнеса, который также «предпочитает» зарядово-симметричную Вселенную. Проделав соответствующие теоретические оценки, Омнес сделал вывод об отталкивании нуклонов и антинуклонов при температуре порядка нескольких тысяч миллиардов градусов. При этой температуре горячее вещество превращается в эмульсию, смесь капель вещества и антивещества. Далее, с понижением температуры происходит их разделение в астрономических масштабах. Теория Омнеса вызывает возражения, которые основываются главным образом на наблюдательных астрономических данных. В то же время эта теория, как отмечает Я. Зельдович, «красива», а это, как мы уже говорили, один из важных критериев правильности.

Не один Альвен является приверженцем вечной и безграничной Вселенной. Крупные астрофизики Г. Голд, Г. Бонди и Ф. Хойл (один из наиболее известных астрофизиков XX века и автор ряда научно-фантастических романов) еще в 1948 году выдвинули модель так называемого «стационарного состояния». Эта модель описывает вечно расширяющуюся, безграничную Вселенную. Плотность ее имеет, как это следует из самого названия модели, постоянную величину. Как это может быть, если Вселенная расширяется? Ведь плотность вещества должна в этом случае падать.

Авторы модели стационарного состояния постулируют непрерывное рождение вещества. Если мы вспомним идею о рождении Вселенной из вакуума, то, быть может, рождение частиц, компенсирующих падение плотности из неизвестного с-поля, покажется и не столь удивительным. Рождение частиц происходит по всему пространству, и поэтому теорию стационарной Вселенной называют также теорией непрерывного творения материи.

Интересно, как авторы модели обходят вопрос о реликтовом излучении. Они предполагают (и это предположение в известной мере не является надуманным), что в межзвездном и межгалактическом пространстве могут находиться небольшие частицы графита размерами около 1 миллиметра. Они могут поглощать свет звезд, а затем переизлучать его как раз в форме реликтового фона.

Теория стационарной Вселенной не пользуется сейчас популярностью, поскольку многие данные наблюдательной астрономии свидетельствуют против нее. Но огромный научный авторитет Хойла, Бонди, Голда, их смелые идеи в значительной мере способствовали общему развитию космологии в процессе острейших споров вокруг их модели.

Создание новых моделей имеет под собой очевидную психологическую подоплеку. Теория Большого Взрыва неизбежно сталкивается с проблемой (тайной) сингулярности, камнем преткновения всей современной физики. Поэтому вполне понятно стремление тем или иным путем обойти эту трудность. Сингулярность как дамоклов меч продолжает угрожать космологии, и пока физика не разберется с этой проблемой, не будет стройной и законченной теории происхождения мира. Теорию Большого Взрыва нельзя считать неуязвимой, и поэтому, хотя на сегодняшний день она кажется наиболее правдоподобной, ей придется «держать удары» по слабым местам. А эти удары бесспорно будут наноситься.

Навязчивая идея стационарности мира порождает и другие попытки объяснения красного смещения – одной из основ моделей расширяющейся Вселенной. Очень популярна (среди неспециалистов) мысль о старении фотонов. Суть заключается в том, что кванты света могут терять энергию в пространстве, пока они дойдут до земных наблюдателей. За счет чего происходят подобные потери энергии? Здесь предлагается несколько механизмов. Во-первых, само старение. Но это предположение совершенно не укладывается в рамки современной физики. Во-вторых, рассеяние на пылинках. Но в этом случае красное смещение очевидным образом должно было бы зависеть от длины волны излучения.

Эксперименты решительно противоречат этой идее, демонстрируя равенство смещений для оптического и радиодиапазонов. Тем не менее идея, считающаяся надуманной и неверной, продолжает развиваться и в самое последнее время, лишний раз демонстрируя подсознательную тягу людей к стационарности и покою. Борьба идей в космологии, на мой взгляд, отчетливо показывает, что большая часть человечества по своей природе не приемлет катаклизмов.

В заключение этого краткого обзора «альтернативных» моделей подчеркнем, что, несмотря на некоторые (принципиальные!) нерешенные вопросы в современной космологии, не существует теории, более разработанной и лучше объясняющей эксперимент, наблюдательные данные, чем теория Большого Взрыва.


Будущее Вселенной

Занимаясь вопросом о прошлом нашего мира, мы познакомились с многими удивительными вещами. Сегодняшний мир, содержимое Вселенной, его свойства – предмет дальнейших бесед. Но в космологии есть еще один вопрос, на котором нельзя не остановиться, – будущее нашего мира. Ясно, что проблема эта, кроме всего прочего, имеет глубокий философский смысл.

В какой-то мере проблема дальнейшей судьбы Вселенной проще, чем проблема начала. Здесь возможны только два (в простейшем случае) варианта. Первый состоит в том, что Вселенная будет постоянно расширяться в течение неограниченного времени. Второй обрекает Вселенную на грандиозную катастрофу – «коллапс в огненной смерти, когда небо становится все горячее и горячее, пока оно наконец не обрушится на нас и не загонит нас в пространственно-временную сингулярность с бесконечной температурой» (Дайсон).

Во втором варианте опять на сцене появляется сингулярность, но на этот раз не порождающая, а уничтожающая наш мир. По крайней мере, в этом случае можно с уверенностью сказать, что жизнь во Вселенной (так, как мы ее понимаем и видим сегодня) исчезнет за миллионы лет до того, как мир сожмется в точку. Избежать этого, быть может, удастся, научившись путешествиям в другие вселенные или предотвращая процесс обратного сжатия, но рассуждения на эту тему сегодня еще преждевременны, человечеству угрожает гибель от термоядерной катастрофы в более обозримое время и от более низких температур, чем в сингулярности.

Чем определяется «выбор» вариантов? Мы уже говорили об этом: значением средней плотности вещества во Вселенной. Эта цифра, несмотря на большое число наблюдательных данных, многочисленные теоретические оценки, известна не с очень высокой точностью. Если учесть только массу галактик, а затем усреднить ее по объему Вселенной, то получится значение средней плотности ρчас = 3 · 10–31 г/см3. Но, кроме галактик, в космосе есть еще ионизированный газ, черные дыры, потухшие звезды и другие виды материи. Значение средней плотности галактик много меньше значений критической плотности (ρкр = 10–29 г/см3), при котором фаза расширения обязательно должна смениться фазой сжатия.

Однако в астрофизике существует так называемая проблема скрытой массы – трудно наблюдаемых форм вещества в космосе. Эта масса может находиться как в скоплениях галактик, так и в пространстве между скоплениями. Оценки скрытой массы поднимают значение средней плотности вещества Вселенной почти до ее критического значения. К самой серьезной переоценке ρср (плотности с учетом скрытой массы) привели результаты экспериментов, проведенных в Советском Союзе группой исследователей под руководством В. Любимова. Физика опять столкнулась с ситуацией, когда мир элементарных частиц снова во весь голос заявил о своем прямом воздействии на космологию.

В институте экспериментальной и теоретической физики долгое время изучалось поведение нейтрино, которые до последнего времени считались безмассовыми частицами. Но вот в 1980 году группа В. Любимова опубликовала поистине ошеломляющий результат. Масса покоя нейтрино оказалась отличной от нуля! Очень малой, но все-таки не нуль! Оценки дали значение массы нейтрино около 5 · 10–32 грамма. Нейтрино в 20 тысяч раз легче электрона и в 40 миллионов раз легче протона.

На первый взгляд это открытие важно лишь для физики элементарных частиц. Но только на первый взгляд. Все дело в том, что нейтрино очень много во Вселенной, не меньше, чем фотонов, а их несколько сот «штук» в одном кубическом сантиметре пространства. Сразу же возникает желание проделать элементарный расчет: умножить вес одного нейтрино на число их в кубическом сантиметре. Результат получается поразительным: ρнейтр. = 10–29 г/см3, то есть плотность нейтрино примерно равна критической. А тут еще надо учесть, что масса была определена лишь у одного типа нейтрино, а их как минимум четыре. Предполагается, что массы остальных типов нейтрино могут быть больше, чем масса электронного нейтрино, определенная физиками из ИТЭФ.

Если учесть все эти соображения, то средняя плотность материи во Вселенной заведомо больше критической, и, следовательно, расширение должно обязательно смениться сжатием. Чтобы этот вывод не звучал слишком категорично, сделаем оговорку, смысл которой состоит в том, что безусловно следует подождать подтверждения экспериментальных результатов группы Любимова. Если они будут подкреплены независимыми данными, то окажется, что мы живем в нейтринной Вселенной и очень многие ее свойства определяются присутствием в нашем мире этих частиц. Масса обычного вещества в этой Вселенной составляет лишь 3 процента от массы всех нейтрино.

Тем не менее имеющаяся все-таки на сегодняшний день неопределенность в значении средней плотности Вселенной дает нам моральное право рассмотреть альтернативный сценарий ее будущего.

Итак, пусть ρср < ρкр.

Что случится в этом случае с пространством и веществом? Будущую жизнь мира можно разделить на шесть основных этапов. Первый из них займет примерно 1014 лет. Почему?

Мы знаем из школьных курсов астрономии, что видимое вещество вселенных сосредоточено в основном в галактиках и звездах. Для простоты не будем говорить сейчас о пыли, газе и других формах вещества в космосе. О происхождении галактик и звезд, их дальнейшей судьбе у нас пойдет подробный разговор в следующих разделах книги, а сейчас мы постараемся «сжать» масштаб времени и посмотреть, что с ними будет через сто тысяч миллиардов лет.

Хорошо известно, что звезды светят за счет происходящих в них термоядерных реакций. Но для прохождения этих реакций необходимо топливо. Водород – главное горючее в термоядерных реакциях, а запасы его не беспредельны. Кроме того, чем массивнее звезда, тем быстрее она расходует ядерное горючее. К примеру, наше Солнце будет работать стабильно, как гигантский термоядерный реактор, еще примерно 10 миллиардов лет.

Затем наступает очередь выгорания других элементов, более тяжелых, чем водород, и в конце концов звезда умирает, перестает светить. Заметим, что у звезд разной массы этот процесс происходит по-разному, но, не вдаваясь сейчас в подробности, еще раз подчеркнем, что через 1014 лет на небе погаснут звезды.

Параллельно с этими грустными событиями звезды будут терять планеты из-за возмущений орбит при сближении с другими звездами. Это процесс довольно редкий, но, поскольку мы оперируем сейчас огромными промежутками времени, его нужно учитывать.

Мне, правда, не совсем понятно, почему процесс потери планет выделяется некоторыми астрофизиками в отдельную стадию. Во-первых, не все звезды имеют планеты. Во-вторых, масса планет в тысячи, а то и в миллионы раз меньше массы звезды. В-третьих, если звезда гаснет, то не все ли равно обитателям планет, где они находятся: рядом с мертвой звездой или в каком-либо другом месте космоса. Короче говоря, я не вижу смысла выделения потери планет звездами в отдельный этап, но, следуя традиции, замечу, что это займет промежуток времени примерно в 1017 лет.

Следующий этап в жизни Вселенной действительно грандиозен, и здесь снова центральную роль играет большая шкала времен, на которой уже необходимо учитывать тесные сближения звезд. При таких сближениях одна звезда может передать свою кинетическую энергию другой. В результате такого «обмена» возможен вылет одного из партнеров за пределы Галактики, в то время как другая звезда, потеряв часть своей энергии, приблизится к центру Галактики. Если каждую звезду уподобить молекуле газа, то процесс вылета аналогичен испарению, в связи с чем этот этап в жизни Вселенной был назван испарением галактик.

После «испарения» приблизительно 90 процентов массы Галактики гравитационное поле начнет «подгребать» к центру мертвые звезды и вещество с малой кинетической энергией. Дело кончится тем, что в результате может образоваться сверхмассивная черная дыра в центре Галактики. Этот период можно назвать периодом уборки Вселенной – все «лишнее» уходит в черные дыры.

Часы показывают 1018 лет. Далее на авансцену опять выступают законы микромира. Мы помним, что теории Великого объединения предсказывают нестабильность протона, его распад. Правда, возможное время этого распада очень велико: все протоны во Вселенной должны исчезнуть через 1030–1032 лет.

Если протон действительно нестабилен, то вещество звезд, не проглоченных сверхмассивными черными дырами в центрах галактик, будет слегка подогреваться при протонных распадах. Самые массивные мертвые звезды будут иметь температуру примерно 100 K, а менее массивные – всего около 3 K.

Итак, через 1031–1032 лет во Вселенной не останется протонов. Если на время забыть о существовании черных дыр, то вся Вселенная будет заполнена электрон-позитронным газом, нейтрино и фотонами. Их концентрация будет убывать по мере расширения Вселенной. Никаких особенных изменений не будет происходить еще примерно 10100 лет.

Заключительный, финальный аккорд в жизни нашего мира связан с квантовым испарением черных дыр. Более подробно мы будем об этом говорить позже, а сейчас напомним читателю, что в 1974 году появилась историческая работа С. Хокинга, в которой было показано, что гравитационная могила, черная дыра не вечна, она очень медленно «испаряется», теряя свою массу в виде квантов света. Но это будет происходить, когда космические часы покажут 10100 лет. Столь огромный срок трудно себе представить.

Неопределенность наших сегодняшних знаний о значении средней плотности не позволяет сделать точный выбор между двумя вариантами будущей судьбы нашего мира. Остается открытым и вопрос о том, что будет после возможного коллапса Вселенной, произойдут ли повторные Большие Взрывы с последующими повторными Большими Коллапсами?

На этом мы прервем краткое описание космологических проблем, связанных с происхождением и эволюцией нашего мира.

Мы говорили здесь об огромных масштабах расстояний в нашей Вселенной, о смерти звезд, о галактиках, упоминали о черных дырах. Но не было сказано ни слова о том, как люди научились исследовать объекты, находящиеся от Земли на расстояниях многих тысяч световых лет, какими средствами человечество в течение своей истории получало и накапливало сведения об этих объектах. Ведь только гигантский труд многих тысяч астрономов-наблюдателей позволяет, с одной стороны, понять свойства «внеземного» мира, а с другой – использовать данные наблюдательной астрономии для создания непротиворечивой космологической системы мира. И наконец, зачастую именно с помощью этих наблюдений утверждается или отрицается истинность сложнейших теоретических построений.

Астрономы наблюдают

Ян Гевелий (1611–1687) – польский астроном, механик, оптик, художник – и его жена Эльжбета – первая женщина-астроном нового времени – наблюдают звездное небо.

Астрономия древности

Таинственное звездное небо издавна привлекает внимание людей. Нам кажется, что все небесные тела расположены как бы на поверхности огромной сферы, в центре которой находится Земля, и в какой бы точке земной поверхности мы ни оказались, все они расположены одинаково далеко от нас. Если мы внимательно будем смотреть на небо в течение нескольких ночей, то заметим, что в расположении звезд наблюдается определенный порядок и закономерность и этот порядок сохраняется в течение всего времени наших наблюдений.

Наверное, через какое-то время нам захотелось бы отождествить определенные группы звезд на небе с очертаниями знакомых фигур – треугольники, квадраты, буквы. Наши предки давным-давно проделали эту операцию, объединив группы наиболее ярких звезд в созвездия.

Некоторым созвездиям давали названия предметов, которые напоминали человеку очертания фигур, образованных яркими точками на небе (Северная Корона, Треугольник, Стрела, Весы и т. д.).

Значительное число созвездий было названо именами сказочных героев греческих легенд. Например, название шести близких друг другу созвездий – Цефей, Кассиопея, Андромеда, Персей, Пегас, Кит – иллюстрируют известную легенду о Персее и Андромеде. Другие созвездия получили названия животных – Большая Медведица, Лев, Дракон, Малый Пес, Заяц и т. д.

Название по крайней мере одного созвездия связано с исторической реальностью. Жена египетского царя Птолемея III славилась своими удивительно красивыми волосами. Во время военного похода своего мужа в Сирию она была очень обеспокоена и поклялась, что, если Птолемей III вернется живым и невредимым, срежет волосы и поместит их в храме. После удачного окончания похода царица сдержала клятву, но… вызвала тем самым гнев мужа: короткая стрижка царицы с точки зрения моды была несколько преждевременна.

К счастью, ей на помощь пришел придворный астроном Конон Самосский. Он сказал царю, что волосы Вероники уже на небе, чтобы каждый человек мог созерцать их красоту. Царь потребовал доказательств, и находчивый астроном указал ему на группу слабых звезд, которая действительно несколько напоминала волосы. Царь успокоился, а в небе с тех пор рядом с созвездием Гончих Псов появилось созвездие Волосы Вероники.

Сегодня ночное небо разделено на 88 отдельных созвездий.

Созвездия Персея. Возничего. Рыси. Фрагмент «Звездного атласа» Яна Гевелия.

Не только созвездия, но и отдельные звезды (как правило, наиболее яркие) имеют свои названия: Сириус, Вега, Бетельгейзе и др.

Многие тысячелетия истории человечества тесно связаны с наблюдениями небесных светил. Астрономию можно смело считать самой древней наукой, которая возникла отнюдь не на основе абстрактного стремления к познанию. Такие чисто астрономические процессы, как смена дня и ночи, смена времен года, определяли распорядок жизни первобытных племен на самых ранних стадиях развития человечества как вида. Наверное, можно считать, что потребность ориентироваться во времени и пространстве возникла в самые отдаленные эпохи, одновременно с развитием охоты, рыболовства, смены территорий кочевыми племенами.

В дальнейшем без астрономических данных невозможно было бы развитие сельского хозяйства и мореплавания. Итак, движущей причиной астрономических наблюдений были материальные потребности общества. Подтверждением этой мысли является хорошо известный факт независимого возникновения древней астрономии в разных частях света и в разных странах. Здесь и астрономия в Вавилоне, Китае, астрономия древних майя и многих других народов.

Конечно, все это было лишь на самых ранних стадиях развития человечества. Кто скажет сегодня, что исследование красных смещений у квазаров необходимо для путешествия из Европы в Америку или для запуска спутника? Но в древние времена астрономия самым прямым образом влияла на жизнь общества. В частности, необходимость измерять промежутки времени привела к тому, что тщательным образом стал измеряться так называемый синодический период в 29,5 дня, через который повторяются фазы Луны. Луна стала элементом культа у многих древних народов, ей приносились жертвы, первое ее появление и особенно полнолуние отмечалось специальными церемониями. Лунный период стал таким образом самой древней календарной единицей.

Вообще нужно сказать, что развитие человеческой культуры и весь путь нашей цивилизации оказался бы совершенно иным, если бы земная атмосфера была непрозрачной и люди были бы лишены возможности видеть звездное небо. Но человечеству дано счастье общения со звездами, и это общение не только вдохновляло поэтов и философов, но и определило весь путь развития современной науки.

Кажется вполне естественным, что первой астрономической проблемой древней астрономии была проблема календаря. Она особенно остро проявилась с возникновением развитого земледелия. Чисто лунный счет, конечно же, не мог удовлетворить людей, поскольку, например, в более высоких широтах особенно важен годичный период Солнца, ярко проявляющийся в климатических изменениях. Приспособление лунного календаря к солнечному году произошло задолго до нашей эры.

В какой-то мере детальное исследование неба стимулировалось требованиями астрологии. Поэтому в древних текстах можно обнаружить астрономические наблюдения гораздо более подробные и детальные, чем это требовалось в целях составления точного календаря. Примерно две с половиной тысячи лет тому назад жрецы Ассирии умели предсказывать даты затмений, и это также отражено в текстах, хотя жрецы и не указывают, на чем основывались их предсказания.

В Древнем Вавилоне впервые вводится количественное, а не качественное описание положения звезд и планет на небе. Если раньше положение звезды характеризовалось ее местом в каком-либо созвездии, то еще за три столетия до нашей эры появились халдейские таблицы с понятиями долготы и широты. Более того, есть некоторые основания считать, что в Древнем Вавилоне впервые появился астрономический инструмент – астролябия, предназначенный как раз для определения широты и долготы. Во II веке до нашей эры астролябия применялась великим астрономом древности Гиппархом.

Также до нашей эры были созданы небесные глобусы с изображением на их поверхности неподвижных звезд. Известно, что Архимед соорудил уникальный глобус, на котором с помощью сложных механических приспособлений можно было воспроизводить движение звезд! Об этом глобусе упоминал Цицерон. Аналогичные астрономические инструменты были известны и в Китае, и у арабов, где астрономические исследования получили широкое развитие.

Бог Мардук и богиня тьмы Тиамат. Междуречье. VII век до нашей эры.

Бог Солнца древних майя. Копан, Гондурас. 750 год нашей эры.

Самый древний из известных нам небесный глобус, «глобус Фарнезе», сделанный из мрамора, хранится сейчас в Неаполе. Время его изготовления датируют III веком до нашей эры. В одной из частных коллекций в Англии сохранился глобус Улугбека – великого узбекского астронома. Сам глобус выполнен из бронзы, а в его поверхность вставлены серебряные звезды.

Автор геоцентрической системы мира Птолемей создал также новый астрономический инструмент – астролабон. С помощью этого инструмента можно было измерять долготу и широту звезд. Птолемей же вслед за Гиппархом создал каталог звезд, который насчитывал 1022 звезды (в каталоге Гиппарха их было 850).

К одним из самых ранних астрономических наблюдений можно отнести определение положения Солнца с помощью гномона, представляющего собой простой стержень, установленный вертикально на горизонтальной площадке. С помощью этого простого устройства можно было определять моменты равноденствий, солнцестояний, продолжительность года, широту места наблюдения.

Представления о мире: древних индийцев,

народов Междуречья,

древних египтян,

древних греков.

Используя тот факт, что высота Солнца над горизонтом изменяется и имеет максимум (летнее солнцестояние) и минимум (зимнее), можно определить продолжительность года как промежуток времени между двумя летними или зимними солнцестояниями. Судя по всему, именно таким способом в Древнем Египте впервые была определена продолжительность года (2700 год до нашей эры).

Одной из самых трудных астрономических задач древности было определение размеров небесных тел и расстояний до них. Античные мыслители внесли выдающийся вклад в эту проблему. Начиная от наивных представлений Анаксимандра, который предполагал, что Земля представляет собой цилиндр с отношением диаметра к высоте равным 3:1, и до времен Птолемея прошло почти пятьсот лет. Но за это время произошли существенные перемены в сознании ученых и философов о размерах окружающего мира. Так, если Платон оперирует расстояниями в сотни тысяч километров, то Архимед уже использует миллионы километров, а Птолемей «располагает» звезды в бесконечности.

Восход Солнца по представлениям древних египтян.

Определение, собственно, даже не определение, а вычисление расстояний до небесных тел было очень неточным. Так, Птолемей вычислил, что расстояние от Земли до Солнца составляет 1210 радиусов Земли.

Здесь пора сказать о том, как измеряются расстояния до небесных тел. Метод этот хорошо известен топографам и состоит в определении параллакса какого-либо небесного объекта. Что такое параллакс и как человеческий глаз – основной инструмент наблюдений в древности – определяет расстояния?

Водяные часы.

Встаньте перед стеной, поставьте свой палец перед лицом и сориентируйте его на какой-либо точке стены, закрыв один глаз. Вам будет казаться, что положение пальца относительно выбранной точки на стене будет изменяться. Какова величина этого изменения? Порядка 3°, если вы держите большой палец на расстоянии вытянутой руки, а сам большой палец будет виден в этом случае под углом в 1°.

Заметим, что угловая протяженность Солнца и Луны составляет примерно 1/2°. Видимое угловое смещение и называется параллаксом. Метод параллакса используется топографами, землемерами, астрономами. Так, чтобы измерить ширину реки, топографу совершенно не нужно ее переплывать. Он проведет это измерение следующим образом. На одном берегу точно определит расстояние между двумя точками. Затем, используя угломерный инструмент, померяет из этих двух точек углы между направлением на какой-либо предмет на противоположном берегу и линией, соединяющей точки. Зная сторону треугольника и два угла в основании, можно теперь без труда определить ширину реки.

Астролябия. Прибор для определения широты и долготы. 1468 год.

Примерно так же поступают и астрономы. Только здесь необходимо измерять углы и расстояния с очень большой точностью. В древние времена эти точности были невелики, не удавалось, например, определить достаточно аккуратно угловой размер Солнца.


    Ваша оценка произведения:

Популярные книги за неделю