Текст книги "Основы зоопсихологии"
Автор книги: Курт Фабри
Жанры:
Биология
,сообщить о нарушении
Текущая страница: 22 (всего у книги 34 страниц)
Как уже отмечалось, наиболее низкоорганизованные формы многоклеточных беспозвоночных стоят на том же уровне психического развития, что и высшие представители простейших. Но то, что здесь не обнаруживаются существенные различия в поведении, несмотря на глубокие различия в строении, не должно нас удивлять, ибо, как уже говорилось, простейшие олицетворяют собой совершенно особую, рано отклонившуюся филогенетическую ветвь, которая до известных пределов развивалась параллельно ветви низших многоклеточных животных.
Что же касается поведения кольчатых червей, то оно вполне отвечает стадии элементарной сенсорной психики, ибо слагается из движений, ориентированных лишь по отдельным свойствам предметов и явлений (или их сочетаниям), причем это те свойства, которые, по Леонтьеву, оповещают о появлении жизненно важных условий среды, от которых зависит осуществление основных биологических функций животных. Эта ориентация осуществляется, таким образом, на основе одних лишь ощущений. Перцепция, способность к предметному восприятию, еще отсутствует. Не исключено, правда, что у некоторых наземных улиток, как и у упомянутых выше свободно плавающих хищных моллюсков и полихет, уже намечаются зачатки этой способности. Так, виноградная улитка обходит преграду еще до прикосновения к ней, ползет вдоль нее, но только если преграда не слишком велика; если же изображение преграды занимает всю сетчатку, улитка наталкивается на нее. Не реагирует она и на слишком мелкие предметы.
В поведении кольчатых червей еще преобладает избегание неблагоприятных внешних условий, как это имеет место у простейших. Но все же активный поиск положительных раздражителей занимает в поведении кольчецов уже заметное место, и это весьма характерно для высшего уровня элементарной сенсорной психики. Так же как и у простейших, в жизни кольчатых червей и других низших многоклеточных беспозвоночных большую роль играют кинезы и элементарные таксисы. Но наряду с ними здесь уже встречаются зачатки сложных форм инстинктивного поведения (особенно у некоторых многощетинковых червей, пиявок, а также улиток) и впервые появляются высшие таксисы, обеспечивающие значительно более точную и экономную ориентацию животного в пространстве, а тем самым и более полноценное использование пищевых ресурсов в окружающей среде. В результате возникли предпосылки для поднятия всей жизнедеятельности на более высокую ступень, что и имело место на стадии перцептивной психики.
Как было показано, у высших представителей рассматриваемой группы беспозвоночных впервые появляются зачатки конструктивной деятельности, агрессивного поведения, общения. Здесь опять подтверждается правило, что высшие формы поведения зарождаются уже на низших стадиях развития психической деятельности.
Давая общую оценку поведению низших многоклеточных беспозвоночных, следует отметить, что, очевидно, первично главная функция еще примитивной нервной системы состояла в координации внутренних процессов жизнедеятельности в связи со все большей специализацией клеток и новых образований – тканей, из которых строятся все органы и системы многоклеточного организма. «Внешние» же функции нервной системы определяются степенью внешней активности, которая у этих животных находится на еще невысоком уровне, зачастую не более высоком, чем у высших представителей простейших. Вместе с тем строение и функции рецепторов, как и «внешняя» деятельность нервной системы, значительно усложняются у животных, ведущих более активный образ жизни. Особенно это относится к свободноживущим, активно передвигающимся формам.
Говоря об обширной и пестрой по составу группе низших беспозвоночных, нужно, конечно, учесть, что поведение этих животных еще очень слабо изучено. Мы, например, еще почти ничего не знаем об онтогенезе поведения этих животных, о том, как формируется и развивается их поведение, да и совершенствуется ли оно вообще в процессе индивидуального развития, на что уже указывалось в части, посвященной онтогенезу поведения. Вполне возможно (если, конечно, исключить метаморфозные преобразования, личиночное поведение у низших многоклеточных и т. п.), что подобное онтогенетическое совершенствование у обсуждаемых животных не является существенным или даже вообще не происходит, ибо жесткость врожденных программ поведения, исключительная стереотипия форм реагирования являются у этих животных определяющей чертой всего их поведения.
Глава 2
ПЕРЦЕПТИВНАЯ ПСИХИКА
Низший уровень развития перцептивной психикиПерцептивная психика является высшей стадией развития психического отражения. Напомним, что эта стадия характеризуется, по Леонтьеву, изменением строения деятельности – выделением содержания деятельности, относящейся к условиям, в которых дан объект деятельности в среде (операции). По этой причине мы встречаемся здесь уже с подлинными навыками и восприятиями. Предметные компоненты среды отражаются уже как целостные единицы, в то время как при элементарной сенсорной психике имело место отражение лишь отдельных их свойств или суммы последних. Предметное восприятие обязательно предполагает определенную степень обобщения, появляются чувственные представления.
Разумеется, перцептивная психика, свойственная огромному числу животных, стоящих на разных ступенях эволюционного развития, обнаруживает в конкретных своих проявлениях большие различия. Поэтому необходимо и на этой стадии развития психики выделить отдельные уровни, из которых здесь будет рассмотрен низший.
На этом уровне находятся прежде всего высшие беспозвоночные – головоногие моллюски и членистоногие (по меньшей мере высшие). Характеристику рассматриваемого уровня психического развития мы дадим на примере насекомых – центрального класса типа членистоногих. (Кроме насекомых к членистоногим относятся ракообразные, паукообразные, многоножки и некоторые мелкие группы.) Насекомые – самый многочисленный класс животных как по количеству видов, так и по количеству особей. Насекомые обитают повсюду на суше (во всех климатических зонах) – как на поверхности, так и в почве, во всех пресных водоемах, а также в воздухе, поднимаясь на высоту до двух километров.
Огромное разнообразие «экологических ниш», занимаемых насекомыми и другими членистоногими, обусловило, естественно, развитие весьма различных форм приспособления в области строения и поведения этих животных. Наиболее существенным и характерным для эволюции членистоногих, особенно насекомых, было завоевание новой среды обитания – суши. Членистоногие – первые наземные животные в истории Земли. Переход на сушу был сопряжен с развитием особых органов передвижения – конечностей в виде сложных рычагов, состоящих из отдельных, соединенных суставами члеников, по которым членистоногие и получили свое название. Такие сложные рычаги (их аналогами являются конечности наземных позвоночных) наилучшим образом служат для передвижения по твердому субстрату путем отталкивания от него. Членистоногие в состоянии передвигаться по суше почти всеми возможными способами (ползание, ходьба, бег как по горизонтальным, так и по вертикальным поверхностям, прыгание, передвижение в толще грунта). В воде членистоногие плавают, ныряют, ползают и даже бегают по ее поверхности.
У насекомых, кроме того, в связи с переходом к жизни в воздушной среде впервые появился и совершенно новый способ передвижения – полет с помощью крыльев. Насекомые способны развить в полете очень большую скорость: у некоторых стрекоз она достигает 90 километров в час, у самца овода – даже 122 километра в час. Поистине поразительна частота взмахов крыльев у многих насекомых. Так, мотылек делает лишь 9 ударов в секунду, пчела же – 190, а комнатная муха – 330, но у некоторых мух и перепончатокрылых скорость вибрации крыльев достигает до тысячи ударов в секунду. Столь быстрые движения и соответственно частоты мышечных сокращений не наблюдаются ни у каких других животных.
Соответственно и крылевая мускулатура насекомых отличается исключительно сложным устройством: она состоит из множества различно располагающихся мышечных пучков, частично действующих как антагонисты. Большую сложность обнаруживают и другие отделы мышечной системы.
Вообще у насекомых (не считая крылевой мускулатуры насекомых) различают следующие отделы мышечной системы: мышцы туловища, заведующие его движениями: мышцы конечностей, с помощью которых движется вся конечность по отношению к туловищу; мышцы отдельных члеников конечностей, мышцы внутренних органов.
Как видно, мускулатура насекомых отличается высокой степенью дифференцированности и специализированности. К тому же подавляющее большинство их мышц – поперечнополосатые. Количество отдельных мускулов исключительно велико – полторы тысячи и более. Внушительна и сила мышц: насекомые способны таскать предметы, иногда в сто раз превышающие их собственный вес. В целом, как отмечал Догель, у членистоногих мышечная система беспозвоночных достигает «апогея своего развития» как в морфологическом, так и в физиологическом отношении.
В соответствии со сложной и высокодифференцированной организацией двигательного аппарата находится и сложное строение центральной нервной системы насекомых, которую, однако, мы можем здесь охарактеризовать лишь в самых общих чертах.
Как и у кольчатых червей, основу всей нервной системы составляют у насекомых метамерно расположенные ганглии, связанные друг с другом межсегментными нервными стволами. Эти стволы сближаются у большинства насекомых настолько, что образуют (хотя бы внешне) одну непарную нервную цепочку. Одновременно имеет место и слияние последовательных метамерных ганглиев.
В связи с отчетливо выраженной цефализацией в головном отделе слившиеся ганглии образовали мощный головной мозг в виде сложно устроенного надглоточного узла, в котором различают три отдела: протоцеребрум, дейтоцеребрум и тритоцеребрум. Передний отдел, протоцеребрум, развит сильнее остальных. Особое внимание заслуживают находящиеся в нем так называемые грибовидные (или стебельчатые) тела – ассоциативные и координирующие центры. В наибольшей степени они развиты у насекомых с особенно сложным поведением – у пчел, прежде всего рабочих особей, и муравьев. С протоцеребрумом связана и пара очень крупных и сложно устроенных зрительных долей, иннервирующих сложные глаза. Дейтоцеребрум (средний отдел головного мозга) иннервирует усики, тритоцеребрум иннервирует область рта и, кроме того, тесно связан с симпатической нервной системой. Вообще для насекомых характерна большая концентрация нервных элементов. Такая концентрация повышает возможности управления отдельными системами органов и поднимает общий морфофизиологический уровень организма как целостной единицы.
Нервная система, и в частности головной мозг, устроена у разных членистоногих, однако, весьма различно. Существенные различия обнаруживаются между низшими и высшими представителями даже в пределах классов, а иногда и отрядов. Так, например, отношение размеров мозга к объему туловища равняется у майского жука 1: 3290, у муравья 1: 280, а у пчелы 1: 174.
На очень высоком уровне развития находится нервная система головоногих моллюсков, в корне отличаясь от таковой других моллюсков. Особенно это относится к их весьма сложно устроенному головному мозгу. Обращает на себя внимание исключительная концентрация мозговых ганглиев: ганглии слились воедино и образовали общую околопищеводную массу. Основания зрительных нервов образуют громадные вздутия – оптические ганглии, которые своими размерами нередко превосходят сами церебральные узлы.
Нервы, отходящие от мозга к эффекторам, достигают очень большой мощности – до миллиметра и больше в диаметре, что в 5–10 раз превышает толщину нервов большинства позвоночных! Этим обеспечивается значительно большая скорость проведения нервных импульсов, чем у низших моллюсков. Соответственно огромной величине глаза исключительно развит и зрительный нерв. Выдающийся советский гистолог А. А. Заварзин показал большое сходство тонкого гистологического строения оптических центров головоногих и позвоночных.
Таким образом, мы видим, что глубокие различия между элементарной сенсорной и перцептивной психикой находят свое воплощение и в структуре нервной системы уже на низшем уровне перцептивной психики.
Специфические условия, в которых живут насекомые, далеко идущее приспособление двигательной активности при обилии и разнообразии качественно весьма различных агентов среды, управляющих их поведением, – все это обусловило появление у данных животных многих, и притом своеобразно устроенных, органов чувств.
Большую роль в жизни насекомых играет зрение. В разном количестве у разных видов имеются простые одиночные глаза. Но главный орган зрения – своеобразный сложный глаз, получивший название фасеточного, так как его поверхность состоит из отдельных, четко ограниченных участков – фасеток. Каждой фасетке соответствует самостоятельный глазок – омматидий, изолированный от своих соседей пигментной прокладкой и функционирующий независимо от них. Общий внешний покров глаза образует над омматидиями утолщения, обозначаемые как роговица или роговой хрусталик и играющие роль диоптрического аппарата глаза. Каждый омматидий содержит 7–8 зрительных клеток, аксоны которых оканчиваются в оптических ганглиях мозга.
Благодаря такому устройству сложных глаз в мозг насекомого передаются «мозаичные» изображения воспринимаемых предметных компонентов среды. Конечно, это не означает, что насекомое действительно видит окружающий мир в виде мозаики. В мозгу поступающие из отдельных омматидиев зрительные раздражения синтезируются в целостную картину, как это имеет место и у позвоночных. Все же нам очень трудно представить себе, как на самом деле видит насекомое.
Еще в прошлом веке делались попытки установить путем фотографирования через фасеточные глаза четкость и дальность зрения насекомых и раков. Позже, в частности в 60-х годах нашего века, такие опыты повторялись, но едва ли возможно таким образом решить проблему, ибо, как известно, видит не глаз, а мозг. Насекомые, очевидно, весьма близоруки: ясное видение, например, бабочки-крапивницы возможно лишь на расстоянии приблизительно 2–3 сантиметров. От объектов, расположенных дальше (уже начиная с 5–7 сантиметров), насекомые получают лишь расплывчатые изображения, но, очевидно, этого достаточно для их общей ориентировки в пространстве.
На расстоянии пчела способна увидеть лишь объекты в сто раз большей величины, чем это необходимо для зрения человека. Отдельный цветок она увидит лишь тогда, когда она приблизится к нему вплотную. Все эти особенности зрения насекомых вполне соответствуют тому микроландшафту, в котором живут эти животные.
Острота зрения (разрешающая способность, т. е. способность видеть две сближенные точки) зависит у насекомых при прочих равных условиях, в частности, от количества омматидиев, которое, однако, сильно колеблется даже в пределах отрядов. Так, в отряде жуков это количество колеблется от трех-четырех десятков до нескольких десятков тысяч. У пчелы каждый глаз состоит приблизительно из четырех тысяч фасеток. Чем мельче фасетки, тем слабее в них освещение, но тем детальнее зрение. Особенно большое значение это имеет для предметного зрения. Кроме того, при более выпуклом глазе оси омматидиев сильнее расходятся, и в результате расширяется поле зрения. Одновременно суживается точка, видимая одной фасеткой, чем также увеличивается острота зрения.
Наилучшим образом насекомые видят подвижные объекты или неподвижные предметы во время собственного движения. Пролетающая над лугом пчела, например, видит покачивающиеся на ветру цветы или же изображение неподвижного цветка скользит по ее фасеточному глазу. В любом случае это подвижное (расплывчатое) изображение заставляет ее спуститься вниз и обследовать растение с минимального, т. е. оптимального для зрения пчелы, расстояния.
Что касается цветового зрения, то видимый ими спектр шире, чем у человека, так как его граница проходит в ультрафиолетовом секторе. Спорный вопрос о способности насекомых к восприятию красного цвета в настоящее время, очевидно, решен в положительном смысле (за исключением медоносной пчелы и некоторых других насекомых). Советский энтомолог Г. А. Мазохин-Поршняков считает, что вообще цветовое зрение у взрослых насекомых представляет универсальное явление. По его данным, цвета различаются даже видами, активная жизнь которых протекает ночью.
До сих пор мы касались только реакции насекомых на свет, который играет в их жизни очень большую роль. Не меньшее, если не большее значение имеют для них запахи. В естественном поведении насекомых стимулы различной модальности всегда выступают в комплексе. Так, уже упомянутые осы рода Philanthus охотятся за пчелами, руководствуясь зрением с расстояния 30 сантиметров, но опознают их по запаху лишь с расстояния 15–5 сантиметров. Во время зрительного поиска оса совершенно не реагирует на запах пчелы.
Аналогично обстоит дело и у других членистоногих. Водяные пауки рода Pirata ориентируются прежде всего по вибрации поверхности воды, в непосредственной же близости от жертвы – зрением (рис. 36). Другие пауки узнают о попадании в их сеть насекомого, воспринимая вибрации паутины. Но обследование жертвы производится сразу тремя способами: паук прикасается к ней передними конечностями, снабженными хеморецепторами, а также так называемыми щупиками (органы осязания), и, кроме того, паук на вкус пробует жертву укусом.
Рис. 36. Водяной наук Pirata бежит по поверхности воды к источнику вибрации (центральная точка). Только непосредственно около неподвижной мухи вид последней приобретает преобладающее влияние и паук сворачивает к ней (опыт Берестынской-Вильчек)
Для ознакомления с таксисами у насекомых рассмотрим в качестве примера фототаксисы. Эти таксисы (положительные или отрицательные) встречаются у насекомых прежде всего в виде тропо-, тело– и менотаксисов, хотя не утратили своего значения и примитивные таксисы. Так, например, положительные и отрицательные клинотаксисы с четко выраженными маятникообразными поисковыми движениями играют ведущую роль в оптической ориентации у многих личинок мух. Тропо– и телотаксисы связаны у них друг с другом многими переходными формами. У взрослых насекомых чаще всего встречаются, однако, четко выраженные телотаксисы. Как правило, тропотаксисное движение очень скоро переходит у них в телотаксисное. У комаров и вшей преобладает тропотаксисная ориентация движения.
Менотаксисы, относящиеся к более сложным формам ориентации, встречаются у высших насекомых (муравьев, пчел, бабочек, жуков). Немецкий исследователь поведения насекомых М. Линдауер выделяет здесь следующие четыре случая: 1) угол фиксации источника света случаен (муравьи, жук-навозник); 2) угол фиксации является врожденным (некоторые бабочки); 3) угол фиксации сообщается особями одного вида друг другу («танцы» пчел, информирующие об угле ориентации по положению солнца); 4) угол фиксации выучивается в индивидуальном порядке. Последний случай можно уже отнести к высшей категории таксисов – мнемотаксисам (выученная ориентация), которые широко распространены среди позвоночных, но также встречаются у высших насекомых (пчел, ос, муравьев) (рис. 37).
Рис. 37. Мнемотаксис у роющей осы Philanthus. После отлета осы кольцо из шишек вокруг норки было перемещено в сторому. После возвращения оса ищет норку внутри кольца и находит ее лишь после повторных облетов (опыт Тинбергена)
Необходимо, однако, подчеркнуть, что и в тех случаях, когда ориентация осуществляется на основе других фототаксисов, поведение насекомых одновременно определяется рядом дополнительных факторов. Например, доказано, что у многих насекомых характер их фототаксисного поведения сильно видоизменяется в зависимости от температуры воздуха, времени дня, физиологического состояния и т. д. Хорошо известно, что муха не реагирует на свет, пока спокойно летает по комнате. Но стоит начать ее преследовать, как у нее сейчас же «просыпается» положительный фототелотаксис: она быстро направляется к источнику света, к окну.
Аналогичным образом насекомые реагируют на разнообразные механические, температурные, химические и оптические раздражения, на силу тяжести, и соответственно у них встречаются во многих различных формах тигмо-, рео-, анемо-, гидро-, гео-, термо-, хемо-, фото– и другие таксисы.