Текст книги "Геометрия, динамика, вселенная"
Автор книги: Иосиф Розенталь
Жанры:
Физика
,сообщить о нарушении
Текущая страница: 8 (всего у книги 11 страниц)
10. ПЛАНКОВСКАЯ ФИЗИКА. ЯВЛЯЕТСЯ ЛИ ТОЧКА ОСНОВНЫМ ЭЛЕМЕНТОМ ФИЗИЧЕСКОЙ ГЕОМЕТРИИ?
Сейчас, по всеобщему убеждению специалистов, при планковских параметрах l~l|, t~t|, M~M| формируется «истинная» физика в том смысле, что понимание происходящих процессов в этой области приведет к построению единой теории поля, квантовой теории гравитации, созданию теории происхождения Метагалактики (а может быть, и Вселенной) и количественному представлению физической геометрии. Меньше внимания (и, по мнению автора, незаслуженно) уделяется перспективам понимания природы фундаментальных физических констант.
Возникает видимое противоречие между нашими стремлениями завершить стройную конструкцию физики и наблюдательными возможностями, весьма скромными сравнительно с планковскими параметрами.
До сих пор физический эксперимент и теория дополняли друг друга. Однако идея об определяющем значении планковских параметров (которую мы назовем планковской физикой) обрекает нас, по крайней мере в настоящее время, на разрыв с этим принципом, на котором базировалась физика как эмпирическая наука.
Сейчас можно наметить лишь некоторые косвенные эмпирические подходы к планковским параметрам. Прежде всего следует отметить гипотетический распад протона. Если нам повезет и распад будет обнаружен, то мы приоткроем окно в мир энергий ~10**15 ГэВ и расстояний ~10**-29 см, что «всего» на три-четыре порядка отличается от планковских параметров. Если нам повезет вдвойне и окажется, что на характеристики распада протона влияет гравитация, то это может послужить эмпирическим базисом для изучения планковской физики.
Второй подход связан с уникальностью значений фундаментальных постоянных, в том числе и размерности пространства. Если вся физика формируется при планковских параметрах, то и хорошо изученные на опыте фундаментальные постоянные также должны быть связаны с этими параметрами.
Многие теоретики возлагают большие надежды на третий подход к «экспериментальному» исследованию фундаментальной физики при планковских параметрах. Крайне вероятно, что Метагалактика в процессе своей эволюции прошла через область, принадлежащую компетенции планковской физики. Изучение реликтовых следов этого процесса должно способствовать проверке планковской физики. Частично этот подход рассматривается в гл.3 нашей книги.
К сожалению, все отмеченные подходы к проверке планковской физики имеют более или менее косвенный характер. Самая прямолинейная проверка – эмпирическое воспроизведение акта рождения Метагалактики – выше человеческих возможностей.
Однако на путях создания объединенной теории поля и подступах к планковской физике возник в некотором смысле не физический, а математический подход. Его нельзя назвать совершенно новым, поскольку в иной модификации он появился вместе с рождением квантовой теории поля много десятилетий тому назад. Кратко его можно сформулировать в одной фразе: «Правильная теория не должна содержать бесконечностей». Этот тезис появился на заре создания квантовой электродинамики. Частично решение проблемы устранения бесконечностей было найдено в конце сороковых годов Р.Фейнманом, Ю.Швингером и С.Томонагой (так называемый метод перенормировок). Однако предложенный метод не устранял полностью все бесконечности, да и сами логические его основы оставляли желать лучшего. По меткому замечанию одного из создателей новой электродинамики – Р.Фейнмана, метод перенормировок – это способ «убирания мусора под ковер». За истекшие десятилетия продвижение в устранении бесконечностей в рамках квантовой электродинамики как изолированной теории было сравнительно невелико. Однако известный прогресс наметился в процессе создания единой теории взаимодействий, когда суммирование бесконечностей от разных взаимодействий привело к конечным результатам. Этот факт вселил надежду, что объединенная теория не должна содержать бесконечностей. конечность всех результатов – критерий истинности объединенной теории. Математическая форма этого критерия, с одной стороны, и относительно малый эмпирический фундамент планковской физики – с другой, стимулировали огромный поток работ, содержащих новые гипотезы и развитие новых методов математической физики. Выживаемость этих подходов может проверить только время. Здесь мы упомянем лишь некоторые из них, руководствуясь в первую очередь их доступностью и популярностью.
Дж. Уилер полагал, что на малых расстояниях должна существенно усложниться геометрия (топология) физического пространства. В общем виде такая гипотеза кажется весьма правдоподобной, однако конкретное ее воплощение, предложенное Уилером, по-видимому, неверно, поскольку оно не учитывает квантовых свойств элементарных частиц (в частности, их спинов) и разнообразие типов взаимодействий.
М.А.Марков предложил модифицировать уравнения ОТО таким образом, чтобы при M << M| модифицированные уравнения и
p уравнения ОТО совпадали, а при M>~ M| гравитационное
p взаимодействие исчезало и взаимодействие в уравнениях ОТО описывалось бы исключительно λ-членом, что соответствует вакуумному состоянию (см. разд.5 гл.3).
Б. де Витт и С.Хокинг предлагают сложную процедуру квантования с учетом различных возможных топологий в планковской области.
Но, пожалуй, наиболее популярной в настоящее время является гипотеза о том, что элементарным физико-геометрическим объектом является не точка, а струна. Реально сейчас говорят о так называемых суперструнах, однако, чтобы чрезмерно не усложнять изложение введением новых и весьма непривычных понятий, мы будем использовать образ обычной струны. Одной из главных причин, вызвавших появление этого образа, является известный экспериментальный факт – ненаблюдаемость кварков. В соответствии с кварковой гипотезой адроны состоят из кварков (см. Дополнение), которые обречены на пленение в пределах адронов. Рассмотрим для простоты бозон-систему, состоящую из двух кварков. Тогда, полагая, что силы, связывающие оба кварка, подобны натяжению струны, нетрудно объяснить невылетание кварков, допуская, что натяжение пропорционально расстоянию между кварками. В этом случае, чтобы раздвинуть кварки на расстояние l, затрачивается энергия, пропорциональная l. Следовательно, чтобы вынудить кварк покинуть адрон (что соответствует расстоянию l, равному бесконечности), нужно затратить бесконечную энергию, что и определяет невылетание кварков.
Весьма популярный в настоящее время образ суперструн аналогичен струнам, возникшим при описании сильного взаимодействия, с одним существенным различием. Суперструны – объекты с протяженностью порядка планковской длины, и они соответствуют объединению всех взаимодействий, включая гравитацию.
В рамках теории суперструн наметился известный прогресс в устранении бесконечностей в теории поля, были получены характеристики некоторых фундаментальных частиц и т. д.
Эти достижения вселяют надежду на то, что элементарным блоком в физической геометрии является точка, а одномерное образование – струна.
В струнной геометродинамике существует один замечательный факт. На начальном этапе развития струнной теории умели квантовать лишь в том случае, если струна вложена в пространство с размерностью N=26.
Сейчас, после разработки более совершенных методов и перехода к планковским масштабам, эту операцию научились производить при критической размерности N=10. Такое значение почти совпадает с размерностью N=11 пространства Калуца-Клейна (см. разд.7 гл.3), соответствующего геометрической интерпретации объединения всех четырех взаимодействий.
Естественен вопрос: не являются ли струнная геометродинамика и геометрическая интерпретация объединенного взаимодействия a la Калуца-Клейна разными проявлениями одной и той же субстанции?
Струна, свернутая в замкнутую окружность, образует сферу S|. Из множества таких окружностей можно получить
1 сферу любой размерности или другие геометрические фигуры.
Возможность объединения обоих направлений (струнной геометрии и геометрии Калуца-Клейна) является весьма соблазнительной. И хотя оба направления развиваются почти параллельно, кажется, что их слияние будет весьма серьезным шагом на пути решения проблемы планковской физики. Сейчас предпринимаются первые попытки в этом направлении.
ГЛАВА 3. В С Е Л Е Н Н А Я
1. КРАТКАЯ ИСТОРИЯ СОВРЕМЕННОЙ КОСМОЛОГИИ
История современной космологии уникальна. Вероятно, в истории точных наук не было ни одной темы, которая на протяжении сравнительно короткого срока (70 лет) подверглась бы столь многочисленным кардинальным переоценкам. Едва ли подобная ситуация – следствие случайных заблуждений и прозрений. На наш взгляд, существовали глубокие причины зигзагов в науке о мироздании. Кратко можно назвать три такие причины. 1. Вера в неизменность Вселенной, господствовавшая в течение многих столетий. 2. Вдохновляющая грандиозность предмета космологии. 3. Скудость наблюдательных данных о мире как целом, обуславливающая отсутствие значительных барьеров для беспочвенных фантазий.
Можно точно назвать год рождения современной космологии. В 1917 г. А.Эйнштейн пытался применить созданную им общую теорию относительности (ОТО) к физической интерпретации структуры мира.
Однако в отличие от всех остальных своих работ в данном случае Эйнштейн не прислушался к голосу своей поразительной, не признающей никаких авторитетов интуиции, а исходил из многовековой догмы о неизменности Вселенной. Поэтому он модифицировал уравнения ОТО, введя λ-член. Из этих модифицированных уравнений следовала статичность Вселенной, что вполне соответствовало существовавшим в то время установившимся догмам. Заметим, что введение λ-члена эквивалентно постулированию новых, постоянных в пространстве сил, компенсирующих влияние гравитации. Взаимовлияние сил гравитации и космологических сил, обусловленных λ-членом, компенсировало друг друга, что и обеспечивало статичность Вселенной. Но вскоре после публикации работ Эйнштейна, посвященных ОТО и космологии, произошел крутой поворот космологии.
В начале 20-х годов в труднейших условиях послереволюционного Петрограда горстка энтузиастов, по существу дилетантов в современной им физике, начала изучать ОТО. В эту группу входил и А.А.Фридман – математик и метеоролог.
А.А.Фридман (столетие со дня рождения будет отмечаться в 1988 г.) решал уравнения ОТО без λ-члена и получил удивительный по тем временам результат: Вселенная должна быть нестационарной. Она должна изменять свои размеры со временем.
Необходимо подчеркнуть два аспекта в работе Фридмана. Первый – математический: решение уравнений ОТО, вошедшее теперь во многие учебники по космологии. Второй принципиальный: Фридман в полном противоречии с установившейся традицией положил начало идее нестационарности Вселенной. Нам представляется, что, несмотря на исключительное изящество решения, полученного Фридманом, именно второй аспект (констатация возможности нестационарной Вселенной) имеет непреходящее значение. Математическое решение могли получить другие математики, в частности, выдающиеся математики Д.Гильберт и Г.Вейль, сделавшие очень много для создания ОТО несомненно могли бы получить эти решения. Однако не им, а Фридману выпала честь сказать первое слово о нестационарности Вселенной.
Признание к работам Фридмана пришло не сразу. Вскоре после их публикации Эйнштейн высказал сомнение в правильности решения Фридмана. Однако через очень короткое время великий физик, человек исключительной принципиальности, написал статью, опровергавшую эти сомнения и признающую правильность выводов Фридмана.
Однако на данном этапе дискуссия велась пока на чисто теоретическом уровне и имела, так сказать, академический интерес. Никаких наблюдательных данных, подтверждающих нестационарность Вселенной, не было.
Кардинальный сдвиг в этом пункте наметился в 1929 г., когда американский астроном Э.Хаббл обнаружил красное смещение в спектрах всех наблюденных им галактик. Именно то обстоятельство, что все спектры были смещены в одну и ту же сторону (покраснение) свидетельствовало, что все галактики уходят, разбегаются от нашей Солнечной системы. А это и было доказательством нестационарности Вселенной. Наступила, правда кратковременная, эра торжества модели Фридмана, которому, однако, не пришлось быть ее свидетелем. А.А.Фридман скончался в 1926 г.
Очередной зигзаг космология совершила в 30-х годах, когда выяснилось, что наблюдательные данные количественно не согласуются с предсказаниями модели Фридмана при использовании данных Хаббла. В соответствии с ними время существования Вселенной было (2–3)*10**9 лет, в то время как наблюдения старых звезд свидетельствовали, что их время жизни ~10*10**9 лет. Простое сопоставление приведенных цифр приводило к явной нелепости: звезды существовали дольше, чем Вселенная.
К этому физическому нонсенсу добавились случайные обстоятельства: пара неудачных фраз в основополагающих работах Фридмана, принадлежность одного из основоположников теории нестационарной Вселенной – аббата Ж.Леметра к Ватиканской академии, президентом которой он стал впоследствии, и т. д. В результате теория Фридмана частью ученых была объявлена ересью, занятие которой было не только бесперспективно, но и могло иметь некоторые последствия, поскольку на ней лежала печать фидеизма.
Модель Фридмана недолго подвергалась остракизму. Вскоре после войны данные Хаббла уточнились и основное противоречие было устранено. Оказалось, что по новым данным в рамках модели Фридмана Вселенная существует ~10*10**9 лет. Блестяще подтвердились и другие выводы, которые следовали из модели Фридмана. [15]15
В соответствии с современными данным время существования Вселенной (15–10)*10**9 лет. Подробнее о модели Фридмана см. в кн.: Вайнберг С. Первые три минуты. М.: Энергоиздат, 1981; Новиков И.Д. Эволюция Вселенной. М.: Наука, 1983.
[Закрыть]
К таковым следует отнести существование реликтового излучения, предсказанного в рамках фридмановской модели Г.Гамовым в 1948 г. В соответствии с этим предсказанием во Вселенной должно было существовать микроволновое изотропное излучение с температурой 1-10 K. В 1965 г. американские инженеры-радиоастрономы А.Пензиас и Р.Вильсон обнаружили изотропное излучение с температурой 2.7 K, которое и было названо реликтовым.
Большим успехом Фридмановской космологии явилась количественная интерпретация доли гелия во Вселенной (~25 % по массе).
В середине 60-х годов в Советском союзе на базе фридмановской космологии были выдвинуты идеи объяснения барионной асимметрии Вселенной: существования протонов при отсутствии антипротонов. Эти идеи разрабатывались впоследствии в рамках объединенной теории поля и количественно подтвердились наблюдаемыми данными барионной асимметрии.
Успехи фридмановской космологии привели к очередному крену в научном общественном мнении, когда эта модель была «канонизирована» и многими объявлена истиной в конечной инстанции. Но как раз в этот период (конец 70-х годов) начали подробно выяснять самосогласованность фридмановской теории, и оказалось, что наиболее интересная часть эволюции Вселенной, и в частности первые мгновения, прошедшие после начала ее расширения, очень плохо согласуются с духом и буквой фридмановской модели. Возникла, и вполне закономерно, необходимость в ревизии фридмановской концепции описания «возникновения» Вселенной. К этому же выводу с неизбежностью подводит также и прогресс в теории элементарных частиц и особенно в той ее части, которая касается объединения взаимодействий. Описанию синтеза физики элементарных частиц и космологии будут посвящены разд.6–9 этой главы.
Итак, подводя итоги, можно сказать, что фридмановская модель хорошо описывает эволюцию Вселенной на всем ее протяжении, кроме, пожалуй, первых самых интересных мгновений.
В заключение следует сделать еще одно поучительное замечание. Фридман свои основополагающие работы сделал на основе ОТО. Однако в 1934 г. английские астрофизики Е.Милн и В.Маккри продемонстрировали, что основные методы фридмановской космологии можно получить и в рамках ньютоновской теории тяготения.
Нам вообще кажется, что фактором, определяющим закон эволюции Вселенной, является не динамический закон, а ее геометрия. Динамика расширения следует из геометрических особенностей Вселенной. Изложению этой точки зрения будет посвящен разд.3.
2. НЕКОТОРЫЕ ЗАМЕЧАНИЯ О ТЕРМИНОЛОГИИ
Едва ли в какой-либо еще науке существует бо'льшая путаница в терминологии, чем в космологии. Вероятно, это не случайно. Определение понятия – операция подведения его под более широкое понятие. А что может быть шире понятия «Вселенная»? Именно поэтому авторы серьезных монографий и популярных статей вкладывают в это понятие свое содержание, как правило, не давая себе труда пояснить его. Для дальнейшего попытка определения (или по крайней мере пояснения) основных понятий необходима.
Обычно под понятием «Вселенная» подразумевается все сущее, но часто вкладывают и другое содержание: Вселенная это область, наблюдаемая нашими приборами. Размеры этой области приблизительно равны 10**28 см. Но здесь неизбежен вопрос. Почем то, что мы наблюдаем, и есть все сущее? Не является ли подобное отождествление отражением атавистического инстинкта, который был свойственен человеку, впервые задавшему себе вопрос о природе его «мира»? Для первобытного человека этот мир отождествляется с областью его проживания. Затем, уже после возникновения зачатков цивилизации, под Вселенной понималась Солнечная система, окруженная хрустальной сферой с находящимися на ней звездами.
Лишь после создания Галилеем телескопа удалось показать, что сфера – лишь красивая фантазия и расстояния до звезд вовсе не одинаковы.
Только в начале этого столетия астрономы пришли к заключению о существовании гигантских островов звезд галактик.
И наконец, сравнительно недавно поняли, что галактики не самые большие объекты. Существуют скопления галактик (радиус 10**24 – 10**26 см), которые располагаются в области с размерами ~10**28 см. Соответствующий объем иногда (а астрономы обычно) называют Метагалактикой.
Из этого краткого исторического экскурса следует, что «все сущее» для человека обычно отражает уровень его знаний (или заблуждений), и поэтому тождество: Вселенная ≡ всему сущему ≡ наблюдаемому миру абсолютно необосновано. Поэтому необходимо далее условиться о терминологии. Мы будем называть наблюдаемую приборами область Метагалактикой. Под Вселенной мы будем понимать «все сущее» или, более конкретно, все, что можно представить себе на основе современных теоретических воззрений. Очевидно, что такая «теоретическая Вселенная» отнюдь не должна совпадать с наблюдаемым объемом. «Все сущее» отражает уровень знаний о природе; мы будем включать в это понятие не только наблюдаемую область пространства, но и все, что можно окинуть мысленным взором.
В дальнейшем мы приведем аргументы в пользу того, что такая Вселенная существенно превышает размеры Метагалактики, но, вероятно, и она – лишь отражение уровня наших знаний.
Отметим также, что модель Фридмана описывает не Вселенную в целом, а эволюцию Метагалактики. Мы будем использовать ее только для этой цели.
3. ЭВОЛЮЦИЯ МЕТАГАЛАКТИКИ КАК ОТРАЖЕНИЕ ЕЕ ГЕОМЕТРИИ
Как известно, любая математическая формулировка физической задачи содержит, кроме уравнений, описывающих эволюцию состояния во времени, также постулирование начальных и граничных условий. Физическая космология – наука об эволюции Метагалактики – не является исключением. Кроме использования уравнений ОТО, следует сформулировать начальные и граничные условия.
В наиболее четкой форме впервые подобная операция была сделана Фридманом, который предположил, что Метагалактика всегда была изотропной и однородной. иначе говоря, в любой момент своей эволюции в Метагалактике все направления равноправны (изотропия), а плотность материи одинакова. Прообразом такой Метагалактики является двумерная сфера, плотность вещества которой постоянна для любого момента времени. Здесь полезно отметить, что условия Фридмана неравноправны для пространства и времени.
В приведенном выше примере плотность вещества постоянна в пространстве (вдоль поверхности сферы) но не во времени. С течением времени вследствие расширения или сжатия плотность вещества изменяется.
Граничные и граничные условия в форме, предложенной фридманом, получили в дальнейшем название космологических постулатов.
Космологические постулаты, выдвинутые вначале из соображений простоты и критериев эстетики (симметрия), впоследствии неоднократно подвергались опытной проверке. Изложим кратко результаты этих проверок.
Изотропия Метагалактики прекрасно подтверждается в процессе исследования углового распределения реликтового излучения. Оно заполняет всю Метагалактику и поэтому может служить критерием ее симметрии. С высокой степенью точности никаких отклонений от изотропии Метагалактики до сих пор (на конец 1986 г.) обнаружено не было.
Хуже обстоит дело с постулатом однородности. Известно, что Метагалактика неоднородна. Существуют острова высокой концентрации вещества: звезды, галактики, скопления галактик. Однако наибольшие масштабы таких островов в 10**2 – 10**3 раз меньше размеров Метагалактики. Поэтому с такой точностью (10**-3 – 10**-2) можно полагать Метагалактику однородной. Мы вместе с другими космологами примем этот постулат однородности.
Основные космологические постулаты, на которых базировался Фридман, в высшей степени нетривиальны. Прежде всего их нужно согласовать с основным принципом теории относительности – принципом причинности, о чем речь пойдет дальше. Здесь нас будет интересовать другой аспект, связанный с космологическими постулатами. Оказывается, космологические постулаты – настолько сильные предположения, что из них следуют многие основные черты эволюции Метагалактики. Разумеется, такие силы существуют. Но если допустить справедливость космологических постулатов, то эти силы должны соответствовать закону всемирного тяготения или его обобщению – ОТО. [16]16
Подчеркнем, что это утверждение также включает допущение: силы, действующие между частицами, являются силами притяжения.
[Закрыть]
Здесь мы не будем рассматривать полную аргументацию этого заключения, а лишь наметим его вывод.
Отметим прежде всего, что космологические постулаты чрезвычайно сильно сужают выбор геометрии Метагалактики. Наблюдаемая Метагалактика трехмерна, а трехмерное пространство может соответствовать космологическим постулатам лишь в трех случаях: если пространство характеризуется постоянной отрицательной кривизной (пространство Лобачевского), если пространство имеет нулевую кривизну (пространство Евклида), если пространство характеризуется постоянной положительной кривизной (трехмерная сфера).
Представить на бумаге все эти трехмерные фигуры невозможно. Однако хорошим наглядным аналогом трехмерной сферы является двумерная сфера. В дальнейшем мы и будем пользоваться для наглядности этим образом.
Выберем далее в нашем изотропном и однородном пространстве три точки A, B, и C, расположенные на малых расстояниях друг от друга.
Рассмотрим сначала две точки A и B. Вектор r|| является
AB единственным выделенным направлением в нашем изотропном пространстве. Поэтому скорость v|| движения этих двух точек
AB имеет только относительный характер, причем оба вектора коллинеарны. Иначе говоря, в пространствах постоянной кривизны осуществляется равенство
v|| = H(r,t) r|| (56) AB AB
где функция H(r,t), казалось бы, зависит от обоих аргументов r и t. Но далее, несколько модифицируя рассуждения Е.Милна, мы покажем, что в действительности вследствие симметрических свойств пространства функция H=H(t), т. е. она не зависит от вектора r. Для этого рассмотрим точки A, B, C. Поскольку мы предполагаем, что размеры области w малы, то ее можно локально описывать геометрией Евклида. Тогда справедливы правила векторного сложения:
r|| = r|| + r||, (57) AB AC CB
v|| = v|| + v||. (58) AB AC CB
Но очевидно, что равенства (57), (58) можно совместить с соотношением (56) лишь в случае, если H=H(t), т. е. зависит исключительно от времени.
≡=РИС. 6
В наших рассуждениях неявно предполагалось, что эволюция области w автономна; оставшаяся область V-w (V объем всей сферы) не влияет на динамику малой области w. Однако это предположение также является следствием основных космологических постулатов или симметрии пространств постоянной кривизны. Действительно, если выбрать малый объем в форме сферы, то, допуская, что силы, действующие между частицами, – силы притяжения, нетрудно понять (рис. 6), что любому элементу F большой сферы, действующему на микросферу, будет соответствовать элемент G, уравновешивающий это притяжение. Поскольку это рассуждение верно для любых пар элементов F и G, то это означает, что объем V-w не действует на объем w и, следовательно, эволюция последнего происходит самостоятельно и независимо от объема V. Поэтому, рассматривая эволюцию малого объема, мы моделируем эволюцию всего объема. Итак, в пределах объема w
v|| = H(t) r|| (59) AB AB
для любых пар точек A и B. Уравнение (59) можно переписать в форме
dr|| / dt = H(t) r|| (60) AB AB
Рассмотрим далее два случая.
1. Функция 1/H(t) разлагается в ряд Тейлора в окрестности t=0.
2. Функция 1/H(t)=const, т. е. не разлагается в ряд Тейлора.
Первый случай. Пусть 1/H(t)=a|+b|t+…(a|,b|
1 1 1 1 постоянные) Допуская, что b ≠ 0 и используя трансляционную инвариантность времени Вселенной, т. е. совершая замену a|+b|t – > b|t, получаем уравнение dr|| / dt = (br|| / t) 1 1 1 AB AB (b=1 / b=const), решением которого является функция
b r|| ~ t|. (61) AB
Поскольку точки A и B произвольны, то зависимость (61) отражает известную степенную зависимость масштабного фактора от времени в модели Фридмана. Далее можно, постулируя статистические свойства материи в Метагалактике, определить численное значение параметра b, а основываясь не свойствах симметрии пространства, вывести полное решение, полученное Фридманом на основании ОТО (напомним, что зависимость (61) получена для малых значений времени t|, отсчитываемого от
k начала расширения).
Теперь рассмотрим второй случай, когда H(t)=const. Он также соответствует двум различным физическим картинам.
1. H ≠ 0. Тогда решение уравнения (60) имеет вид
Ht r|| ~ e||. (62) AB
Расстояние между двумя точками очень быстро (экспоненциально) увеличивается с ростом времени. Можно показать, что в этом случае плотность материи остается неизменной: ρ = const (t).
Зависимость (62) была получена на заре космологии де Ситтером`, но была отвергнута научной общественностью именно из-за странной зависимости ρ(t). Было неясно, каким образом быстрое изменение объема системы не приводит к изменению плотности. Для всех известных тогда форм материи (вещество, излучение) оба основных вывода, следующих из модели де Ситтера, противоречили друг другу. Лишь сравнительно недавно выяснилось, что существует третья форма материи – физический вакуум, который удовлетворяет обоим выводам, следующим из стационарной (ρ=const) модели де Ситтера. [17]17
Модель Вселенной была разработана нидерландским астрономом В. де ситтером в 1917 г. на основе общей теории относительности. Подробное изложение модели де Ситтера в ее первоначальной интерпретации содержится в кн.: Толмен Р. Относительность, термодинамика и космология. М.: Наука, 1974.
[Закрыть]
2. Наконец, остается последний случай H=0. Этот случай соответствует равенству r|| = const(t). Все взаимные расстояния (также как и другие физические характеристики) не изменяются со временем. Метагалактика полностью статична, что соответствует космологической модели Эйнштейна.
ТАким образом, мы привели аргументы (которые при более детальном анализе можно сделать более строгими) в пользу того, что космологические постулаты о геометрии Метагалактики (Вселенной) в значительной степени определяют динамику ее эволюции.