Текст книги "Геометрия, динамика, вселенная"
Автор книги: Иосиф Розенталь
Жанры:
Физика
,сообщить о нарушении
Текущая страница: 10 (всего у книги 11 страниц)
Здесь, разумеется, возникает вопрос: что означает слово «небольшое»? С первого взгляда может показаться, что в физике нет количественного критерия «величины» изменения закономерностей. Однако такая точка зрения совершенно неправильна. Оказывается, что в действительности такие критерии существуют и опираются на экспериментально хорошо изученные явления. В этой книге мы ограничимся немногими иллюстрациями`. На наш взгляд, наиболее впечатляющим примером является неустойчивость структуры Метагалактики относительно значения массы m| электрона. Действительно, при
e температурах T < 10**10 K атом водорода в Метагалактике абсолютно стабильный элемент. Эта стабильность обеспечивается самым суровым ограничением – законом сохранения энергии, запрещающим реакцию
p+e| – > n+v (65)
(p, n, e|, v – соответственно протон, нейтрон, электрон и нейтрино). Однако, используя значения превосходно измеренных масс частиц, участвующих в реакции (65), легко убедиться, что при увеличении массы m| более чем в 2.5 раза реакция (65) осуществлялась бы при сколь угодно малых температурах. А это означало бы, что при увеличении массы m| атом водорода коллапсировал бы в нейтрон и нейтрино. [20]20
Полное изложение аргументации неустойчивости физической структуры Метагалактики приводится в кн.: Розенталь И.Л. Элементарные частицы и структура Вселенной. М.: Наука, 1984.
[Закрыть]
Нетрудно очертить сценарий эволюции метагалактик, в которой электрон был бы тяжелей «нашего» в 2.5 раза, а все остальные законы (в том числе и константы) имели бы прежнюю форму.
В процессе эволюции Метагалактика при t| ≈ 10**6 лет
u существует эра нейтрального водорода, когда формируются галактики, поэтому эта эра играет исключительно важную роль. Однако в метагалактике с утяжеленным электроном почти все вещество в соответствии с реакцией (65) превратилось бы в нейтроны и нейтрино. Это означает, что в таком мире существовали бы исключительно нейтронные звезды и бесмассовые нейтральные частицы. Мир кардинально изменил бы свой лик. Этот факт мы и называем неустойчивостью структуры Метагалактики (в данном случае относительно значения массы m|).
Далее следует задаться вопросом: велико или мало изменение значения массы m| в 2.5 раза? В физике подобная абстрактная постановка вопроса бессодержательна. Физический смысл имеют лишь относительные величины: велико или мало относительно некоторого эталона. Для значения массы m| мы обладаем таким эталоном. На ускорителях надежно измерено распределение примерно 300 элементарных частиц по их массам.
≡=РИС. 9
На рис. 9 представлено распределение dN / d log (m / m|)
p элементарных частиц по массам. Поскольку разброс масс превышает четыре порядка, распределение представлено в логарифмическом масштабе. Из рисунка можно сразу же сделать два вывода. Из спектра масс элементарных частиц выпадают две
± 0 частицы: электрон в сторону малых масс и W|| (Z|) – бозон в
± 0 сторону больших. Выброс, связанный с W|| (Z|) – бозоном, мы рассмотрим далее, а здесь сосредоточим внимание на исключительной малости массы электрона m|. Отношение
e m| / m| ~ 1 / 2000 (m| – масса протона, равная примерно e p p средней массе элементарных частиц). Для самой легкой после электрона частицы – мюона это соотношение m| / m| ~ 1 / 10.
ю p Именно с этими цифрами и следует сравнивать гипотетическое увеличение массы m| в 2.5 раза. И в этом случае отношение m| / m| ~ 1 / 800, т. е. останется чрезвычайно малым. В e p спектре масс элементарных частиц при практически небольшом (в 2.5 раза) увеличении массы m| ничего не изменится, а
e физическая картина мира изменится катастрофически.
Таким образом, исключительная малость массы m|
e сравнительно с массами других частиц и катастрофа в структуре мироздания вследствие гипотетического увеличения m| свидетельствуют о неустойчивости структуры Метагалактики e относительно значения m| и о флюктуативности (большом
e отклонении) фундаментальной постоянной m| в распределении
e подобных величин (в данном случае масс элементарных частиц).
Аналогичные примеры неустойчивости структуры Метагалактики относительно численного значения фундаментальных констант можно существенно умножить. Мы здесь ограничимся ссылкой на уже упоминавшуюся книгу автора, где подобная аргументация приводится подробно. В пределах приведенных интервалов структура Метагалактики не изменяется. Вне этих интервалов одно или несколько основных устойчивых связанных состояний должны отсутствовать.
Ниже в таблице помещены данные о всех постоянных, которые, по нашему мнению, можно считать истинно фундаментальными в том смысле, что остальные можно считать истинно фундаментальными в том смысле, что остальные константы, которые обычно приводятся в таблицах так называемых «фундаментальных постоянных», как правило, выражаются через постоянные, представленные в нашей таблице. Например, характеристики атома водорода, звезд, галактик и даже Метагалактики можно представить через величины, помещенные в таблице (m|, m| – соответственно массы нейтрона
N p и протона, ALPHA|, ALPHA|, ALPHA|, ALPHA| – безразмерные
e s w g константы электромагнитного, сильного, слабого и гравитационного взаимодействий, f|, f| – максимальное и
+ минимальное значения факторов, на которые нужно умножить данную константу, чтобы сохранились все основные устойчивые связанные состояния).
f| Константа f| – +
? m| 2.5
e
0.4 m| – m| 1.6
N p
0.8 ALPHA| 1.6
e
0.9 ALPHA| 1.1
s
0.1 ALPHA| 10
w
? ALPHA| 10**4
g
1 N 1
Следует сделать несколько пояснений к таблице.
1. Отсутствует предел уменьшения значений m| и ALPHA|.
e g Однако представляется, что сама необыкновенная малость обеих величин (m| сравнительно с m| и ALPHA| сравнительно с
e p g другими константами ALPHA) ограничивает дальнейшее уменьшение этих величин.
2. Невозможность уменьшения величины размерности N (f| = 1) есть гипотеза, несколько выходящая за пределы принципа целесообразности. Как отмечалось выше, при N = 1, 2 устойчивость связанных состояний возрастает. Однако при N<3 резко уменьшаются возможности реализации сложных геометрических, а следовательно, и физических структур. Почти все реальные основные связанные состояния имеют трехмерную структуру. Уменьшение размерности приводит не только к радикальному изменению строения мира, но и к его значительному упрощению. Едва ли в таком простом пространстве возможно и образование сложных органических структур (антропный принцип, о котором речь пойдет далее). Отметим также, что в рамках идей общей теории относительности при N = 1, 2 отсутствует гравитационное притяжение.
3. В таблице отсутствуют две постоянные, которые безусловно следует отнести к разряду фундаментальных: скорость света c и постоянная планка HP. Однако эти постоянные входят в выражения для безразмерных постоянных ALPHA, поэтому таблица в известном смысле отражает пределы их изменения. Однако, на наш взгляд, ситуация с этими постоянными еще сложнее и интереснее. Константы c и HP определяют две фундаментальные теории: квантовую механику и теорию относительности, в то время как значения m и ALPHA характеризуют общее поведение определенных конкретных систем. В этом смысле постоянные c и HP более «фундаментальные», чем остальные постоянные, приведенные в таблице.
Подведем предварительные итоги.
Структура Метагалактики устойчива при данных значениях фундаментальных постоянных и неустойчива при иных.
Некоторые из этих постоянных (хотя речь шла об ALPHA| и
g m|, но в действительности число примеров можно умножить) e являются огромными флюктуациями в ряду подобных себе величин. Физические законы в Метагалактике обуславливают устойчивость состояний, а некоторые вариации законов разрушают устойчивость.
В 1937 г. американские физики К.Андерсон и С.Нидермайер открыли в космических лучах мюон. На первых порах к этому открытию отнеслись с недоверием. Было просто неясно, зачем природе нужна частица, копирующая электрон во всех свойствах, кроме массы (в первое время после его открытия мюон называли тяжелым электроном). Сомнения в методической достоверности опытов американских физиков были вскоре устранены, однако поставленный вопрос остался. ЗАчем нужен электрон – ясно; но тяжелый электрон – мюон – явное излишество природы. Этот вопрос с течением времени не только не разрешился, несмотря на многочисленные попытки объяснить место мюона в ряду элементарных частиц, но даже усложнился. В 1977 г. был открыт еще более тяжелый аналог электрона τ-лептон. Кроме того, были открыты два типа нейтрино (электронное V | и мюонное V |). Никто не сомневался и в
e ю существовании третьего типа нейтрино V ||| – партнера
τ τ-лептона. В современной трактовке вопрос, зачем нужен мюон, трансформировался в проблему: почему существует три (e, NU, τ) поколения лептонов?
В рамках чисто квантовых подходов не видно никаких путей решения этой проблемы. Однако сочетание теории большого объединения с принципом целесообразности позволяет ответить на поставленный вопрос.
Чтобы понять дальнейший ход рассуждений, начнем несколько издалека. Существование основных устойчивых связанных состояний базируется на барионной асимметрии Метагалактики: существование протонов и электронов при почти полном отсутствии антипротонов и позитронов. Действительно, если бы концентрации частиц и античастиц в Метагалактике были бы равными, то произошла бы их аннигиляция, в результате которой остались бы фотоны и нейтрино, неспособные образовывать связанные состояния.
Барионная асимметрия обуславливает основные характерные черты Метагалактики.
По всеобщему убеждению, для возникновения барионной асимметрии необходимы два условия: распад протона и так называемое СР-нарушение, когда для некоторых каналов распада элементарных частиц нарушается равенство вероятностей распада частиц и античастиц.
В рамках теории большого объединения распад протона практически неизбежен, однако число поколений лептонов, вообще говоря, произвольно. Но существует конкретная, хотя и не единственная, схема большого объединения Кобаяши-Маскава, которая предсказывает СР-нарушение при условии, что число поколений лептонов не меньше трех. Поэтому есть все основания полагать, что в нашей Метагалактике реализуется одна из возможных схем большого объединения – модель Кобаяши-Маскава, в которой данное число поколений лептонов играет фундаментальную роль («целесообразно»).
Другая важнейшая не решенная в границах теории проблема – так называемая иерархия масс. Эта проблема сводится к вопросу: почему отношение M||| / m| ~ 10**2, а m| / m| ~
W,Z p X p
± 0 10**15 (m||| – масса W||-, Z|-бозонов, m| – масса бозона,
W,Z X определяющего большое объединение)? Как указывалось ранее, массы почти всех частиц группируются вокруг значения m|, а ± 0 p W||-, Z|-бозоны значительно отступают от этого правила.
И эта проблема, которая не решается в рамках существующих теорий, легко интерпретируется на основе принципа целесообразности.
Мы ограничимся для краткости объяснением огромного значения отношения m| / m| ~ 10**15. Аналогичные, но более
X p сложные рассуждения можно провести и для отношения m||| / m|. Мы сформулируем два аргумента в пользу того, что W,Z p отношение m| / m| должно быть очень большим.
X p
1. В соответствии с квантовой теорией поля значение постоянных взаимодействий ALPHA должно зависеть от передаваемого во время взаимодействия импульса q или массы m, поэтому величины ALPHA называют бегущими константами. Приводимые обычно значения констант ALPHA, и в частности пределы их изменения, относятся к низкоэнергетической области (q, m ~< m|). При m >> m| константы ALPHA
p p изменяются, и это изменение можно с большой точностью вычислить на основе современных теорий. Основные надежды на построение большого объединения базируются на том, что все три бегущие константы, характеризующие сильное и электрослабое взаимодействия, сходятся в одной точке при m| ~ 10**15 (рис. 10)`. Если бы такое пересечение X отсутствовало, то большое объединение было бы построить трудно, а может быть, и невозможно. Масса m| соответствует
X точке пересечения бегущих констант ALPHA. Уменьшить массы X-бозона m| при сохранении условия пересечения констант
X ALPHA| (m), ALPHA| (m) и ALPHA| (m) можно единственным
e w s способом: изменить эти константы в низкоэнергетическом пределе m ~< m|. А это сделать невозможно в силу принципа целесообразности (см. только что рассмотренную таблицу). [21]21
Вследствие структуры электрослабого взаимодействия (оно + передается четырьмя частицами: фотоном и W||-, Z|-бозонами) его следует характеризовать двумя константами: ALPHA||| и ALPHA|||. На рис. 10 представлены зависимости обеих констант от значения m.
[Закрыть]
≡=РИС. 10
2. Второй аргумент связан с предполагаемым распадом протона. Вычисления, основанные на квантовой механике, показывают, что время жизни t| протона пропорционально
p m|**4. Поэтому при уменьшении массы m| на 4–5 порядков время X t| уменьшится на 15–20 порядков и сравнится с временем t| p u существования Метагалактики. Подобная гипотетическая возможность привела бы практически к полному распаду вещества. Оба аргумента показывают, что масса m| должна быть
X очень большой.
Далее мы затронем вопрос о причинах доминантности калибровочной инвариантности в нашем мире. Можно построить множество калибровочно неинвариантных теорий, которые не реализуются в природе. Почему же существующие теории основываются на калибровочной инвариантности?
Ответ на этот вопрос можно дать из «целесообразности» калибровочных теорий. В калибровочных теориях сохраняется заряд, а закон сохранения заряда – основа стабильности связанных состояний.
В заключение отметим еще один важный факт. Квантовые числа элементарных частиц – спин, изотопический спин и даже странность, необходимы для существования многообразия устойчивых связанных состояний.
Для простоты ограничимся анализом роли спина. Существование у элементарных частиц спина с полуцелым значением (HP/2; 3/2 HP) запрещает фермионам находиться в тождественных состояниях (принцип Паули). А принцип Паули лежит в основе периодической системы элементов. Если бы спин (а следовательно, и принцип Паули) отсутствовали, то все орбитальные электроны перешли бы на основную орбиту и вместо всего многоцветия периодической системы существовали бы только водородоподобные элементы.
На этом, пожалуй, можно окончить рассмотрение приложений принципа целесообразности и перейти к рассмотрению антропного принципа.
В физическом плане Земля – заурядная планета. Как известно, это положение в течение более полутора тысяч лет господства геоцентрической системы Птолемея полагалось научной и теологической ересью.
После победы учения Коперника в полемическом пылу упустили одно обстоятельство. Да, действительно, ЗЕмля как физическое тело ничем не выделена. Однако эта планета единственная обитель цивилизации. А возникновение носителя цивилизации – человека вовсе не тривиально, а требует сочетания определенных конкретных физических условий. Это требование положено в основу антропного принципа.
Мысли о связи между возникновением цивилизации и физическими законами начали высказываться (насколько известно автору) в 50-х годах. Например, А.Л.Зельманов утверждал, что во Вселенной возможно существование больших областей, где физические процессы протекают без свидетелей.
Однако, по нашему мнению, антропный принцип как отражение определенных физических закономерностей получил права гражданства лишь после количественной интерпретации некоторых физических фактов. Этот прогресс связан с именами выдающихся английских и американских физиков и астрономов: Р.Дикке, С.Хокинса, М.Риса, Б.Картера, Д.Барроу.
Наиболее лаконичное определение антропного принципа принадлежит Картеру, изменившему известный декартовский афоризм: «Я мыслю, следовательно, существую» (Cogito, ergo sum) на утверждение: «Я мыслю, следовательно, мир такой, какой он есть» (Cogito, ergo mundus talis est).
На наш взгляд, самые большие достижения антропного принципа связаны с интерпретацией некоторых космологических соотношений и флюктуативности (малости) константы ALPHA|
g сравнительно с 1. Приведем некоторые примеры успешного применения антропного принципа.
Много десятилетий физики и астрономы размышляли над удивительной характеристикой Метагалактики – временем ее существования t| и константами микромира:
u
HP t| ~ – ALPHA|**-1. (66) u m| c**2 g
e
Здесь и в дальнейшем речь идет о соотношениях по порядку величины, однако, учитывая огромный разброс констант, входящих в соотношение (66), к нему следует отнестись достаточно серьезно.
В основе антропной интерпретации лежит утверждение, что физические условия в Метагалактике максимально способствуют возникновению жизни. Мы не знаем достаточных условий для этого процесса, но можем сформулировать некоторые очевидные необходимые условия. Ясно, что для возникновения жизни необходимо длительное существование звезд и Метагалактики, тогда оптимальным условием будет равенство времен жизни звезд t| и Метагалактики t|. Напомним необходимый для понимания дальнейшего вывод фридмановской космологии: если средняя плотность вещества ρ в Метагалактике ρ > ρ|, то Метагалактика закрыта в том смысле, что наблюденное сейчас расширение Метагалактики сменится сжатием, если же ρ < ρ|, то расширение будет продолжаться неограниченно (открытая Метагалактика). Величина ρ| ≈ 10**-29 г*см**-3 называется критической плотностью. Допустим, что Метагалактика закрыта, тогда по порядку величины время ее максимального расширения t||||| ~ G M| / c**3, (67)
где M| – масса Метагалактики, которую можно представить через фундаментальные постоянные следующим образом:
M| ~ ALPHA|**-2 * m|. (68) u g p
Соотношение (68) можно рассматривать как аппроксимацию наблюдаемых данных о Метагалактике. Из теоретических соображений следует, что время жизни звезды по порядку величины представляется соотношением
t| ~ ALPHA|**-1 * HP / (m|*c**2). (69) s g e
Используя «антропное» равенство t| ~ t|||||, приходим к
s u max равенству (66).
Другим успешным применением антропного принципа является интерпретация эмпирического соотношения
ρ ~ ρ|. (70)
Почему среди бесконечного числа возможностей природа выбрала именно соотношение (70)? Оказывается, что оно оптимально для появления жизни. Действительно, если ρ >> ρ|, то, как показывают расчеты, время t||||| существования Метагалактики оказывается весьма малым (t||||| сильно убывает с увеличением ρ) и жизнь не успевает развиться. Если же ρ << ρ|, то опять же, как показывают расчеты, не могут образоваться галактики, а следовательно, и звезды необходимые элементы возникновения жизни. Поэтому в Метагалактике, в которой существует «наблюдатель», должно выполняться соотношение (70).
И наконец, последнее. Давно, в 1937 г., П.Дирак обратил внимание на удивительную малость величины ALPHA| ≈ 10**-38
g сравнительно с 1. До сих пор единственное успешное объяснение связано с антропным принципом. Необходимое условие возникновения «наблюдателя» – существование звезд. Время t| жизни звезды пропорционально ALPHA|**-1 (см.
s g формулу (69)). Поэтому, например, если увеличить ALPHA| на
g порядок, соответственно уменьшается на порядок время существования звезды. Из палеонтологии известно, что жизнь на Земле возникла в эпоху, отстоящую от нашей примерно на 3*10**9 лет. Это время составляет всего 30 % от времени жизни Солнца. Цивилизация же возникла в Междуречье примерно 10**4 лет тому назад, что составляет ничтожную долю (10**-6) от времени существования Солнца. Поэтому если бы Солнце существовало 10**9 лет (на порядок меньше его действительного времени жизни), то мы бы не имели возможности обсуждать вопросы мироздания.
Таковы некоторые примеры успешного применения антропного принципа.
В заключение полезно упомянуть об одной нерешенной проблеме, имеющей непосредственное отношение к антропному принципу. Несомненно, что устойчивость сложных молекул, определяющих генетический код (например, молекул ДНК), зависит от констант m| и ALPHA|. Подобная зависимость предопределяется тем, что в конечном счете химические связи обуславливаются параметрами атомов, входящих в состав молекул. Основными параметрами атомов являются величины m| и ALPHA|. Поэтому и устойчивость биологических молекул также зависит от этих величин. Было бы полезно исследовать эту устойчивость в зависимости от констант m| ALPHA|. Насколько известно автору, подобная задача не решалась.
8. СОВРЕМЕННЫЕ ПРЕДСТАВЛЕНИЯ
ОБ «ИСТИННОМ» ФИЗИЧЕСКОМ
ПРОСТРАНСТВЕ
Подведем некоторые итоги. Работа Эренфеста, демонстрирующая, что в пространствах с размерностью N≥4 отсутствуют аналоги планет и атомов, и трактуемая изолированно от всего прогресса физики, может рассматриваться как некая экзотика. Однако этот курьез превращается в основополагающий факт, если его рассматривать в свете многочисленных приложений принципа целесообразности и антропного принципа, а также геометрической интерпретации калибровочных теорий.
Большая неустойчивость структуры Метагалактики к численным значениям многих фундаментальных постоянных и их флюктуативность в рядах подобных им величин может быть интерпретирована на единственной физической основе. Эта основа (если ее не связывать с вмешательством провидения) базируется на гипотезе существования большого ансамбля метагалактик со своими значениями фундаментальных постоянных, в том числе и размерности физического пространства N. Эти константы формируются в момент возникновения метагалактик`. Наблюдаемое значение размерности – лишь проявление случайных процессов, сопровождающих рождение метагалактик. Размерность N и другие «истинные» характеристики физического пространства проявляются либо вблизи планковской области, либо при расстояниях, превышающих размеры Метагалактики (10**28 см). Физическое (наблюдаемое) пространство формируется одновременно с другими характеристиками Метагалактики при временах 0 < t| ~< 10**-43 с. Здесь нужно подчеркнуть одно
u важное, принципиальное обстоятельство. Оставаясь лишь в рамках математических представлений и закрывая глаза на многочисленные связи между константами, их флюктуативность и проблемы объединения теории поля, мы можем считать оба современных описания физической реальности при N=3 (стандартный формализм Лагранжа) и N>3 (многомерная теория типа Калуцы) равноправными. Сейчас отсутствуют противоречия между экспериментальными данными об элементарных частицах и их описанием, основанным на привычном лагранжевом формализме в пространстве Минковского (Римана) с размерностью пространственных координат N=3. Однако возникло слишком много вопросов, которые такая теория не способна объяснить, чтобы их можно было игнорировать. [22]22
Некоторые модели образования метагалактик рассматриваются в следующем разделе.
[Закрыть]
В настоящее время единственный способ решить эти вопросы – допустить, что на малых (планковских) расстояниях истинное физическое пространство имеет сложную структуру. Кажется наиболее естественным, что эта структура в первом приближении моделируется пространствами типа Калуца-Клейна. Сейчас говорят о компактных сферических пространствах с размерностью d=6 или 7, но представляется почти очевидным, что подобное представление о физическом пространстве отражает лишь уровень нашего понимания законов природы. В действительности эти пространства могут иметь существенно более сложную структуру природу и более высокую размерность. Возможно, что говорить о конкретной размерности в планковской области бессмысленно. В этой области, вероятно, все флюктуирует, изменяется во времени и можно говорить лишь об очень грубо усредненных величинах. Нельзя, например, исключить, что в планковской области размерность имеет дробное значение. Чтобы понять это утверждение, вообразим ситуацию, когда близорукий человек издалека рассматривает сильно изрезанный холмистый берег. Ему этот берег покажется одномерной линией. Однако по мере приближения к берегу (или при использовании оптических приборов) будут становиться все более различимыми его неровные контуры, очертания холмов. Рельеф (а следовательно, и размерность) будет зависеть от ракурса и расстояния до берега. Усредняя «измеренную» размерность по всем ракурсам и расстояниям, можно получить нецелое число.
Приведенный пример – простейшая статическая иллюстрация зависимости размерности от положения «наблюдателя» или технических средств, находящихся в его распоряжении.
В планковской же области, по-видимому, пространство дышит, оно нестатично, что является дополнительной причиной изменения размерности и появления дробных ее значений. Если бы в нашем распоряжении были приборы, позволяющие исследовать геометрию при приближении к планковской области, то, вероятно, нам представилось бы крайне любопытное зрелище: характеристики пространства меняются со временем, а с ними и наблюдаемые свойства объектов.
9. КАК ВОЗНИКАЮТ МЕТАГАЛАКТИКИ
Время от времени вспыхивают дискуссии на тему: можно ли построить «окончательную» физическую теорию, описывающую количественно любое физическое явление. Иначе говоря, обсуждается вопрос: можно ли все физические законы закодировать в единое уравнение или систему уравнений?
Вероятно, поставленный вопрос эквивалентен вопросу: можно ли создать теорию происхождения и эволюции Метагалактики и Вселенной? Если бы удалось построить такую теорию, то она с неизбежностью могла бы описать все явления, несомненно более простые, чем торжественный акт – рождение, и развитие самых больших и сложных объектов, которые может представить себе человеческая фантазия. Именно поэтому нет ни теории происхождения Метагалактики, ни всеобъемлющей физической теории. Существуют лишь отдельные ее фрагменты, число которых, так же как связи между ними, быстро возрастает со временем.
Еще больший оптимизм внушает то обстоятельство, что сейчас можно сравнительно четко сформулировать те вопросы (проблемы), которые нужно решить для создания теории происхождения Метагалактики (Вселенной).
1. Создать последовательную квантовую теорию гравитации, что, вероятно, эквивалентно созданию единой теории поля.
2. Создать теорию физического вакуума, что, по-видимому, является частью единой теории поля.
3. Создать теорию происхождения фундаментальных постоянных. Вероятно, в первую очередь следует понять происхождение значений масс частиц.
4. Ясно понять природу физического пространства, и в первую очередь его размерности.
Несмотря на столь солидный список нерешенных фундаментальных проблем, автор оптимистически оценивает ситуацию, поскольку в физике ясная постановка вопроса является действительно существенной предпосылкой его успешного разрешения. Кроме того, уже существующие фрагменты полной теории позволяют решить на модельном уровне часть из сформулированных проблем.
Хотя отмеченные проблемы внешне кажутся независимыми (кроме первых двух), все они связаны одним важнейшим фактором – в большей или меньшей степени они относятся к планковской области. Вероятно, создание планковской физики означало бы и решение основных физических проблем. Фундаментальные физические законы формируются в планковской области, и в этом основная проблема. К этой области, кроме моделирования начала Метагалактики и изучения нестабильности протона, не видно никаких иных эмпирических подходов.
Нам представляется, что именно ясное понимание взаимосвязи всех четырех проблем и роли планковской физики ключ к прогрессу создания единой теории, описывающей возникновение Метагалактики. Сейчас эти проблемы рассматриваются часто изолированно, и, на наш взгляд, непропорционально мало внимания уделяется последним двум из них.
В одной из немногих работ, в которых обсуждается природа фундаментальных постоянных, в работе известного американского физика С.Вайнберга (совместно с Ф.Канделасом) затрагиваются в той или иной степени первая и две последние проблемы, но вне всякой связи с происхождением Метагалактики.
Вероятно, в настоящее время разрыв между желаемым (объединением всех проблем) и реальностью (их разобщенностью) закономерен и отражает уровень наших знаний. Нужно, однако, ясно понимать, что конечная цель развития физики состоит в объединении усилий по комплексному решению всех проблем.
Далее мы кратко очертим те трудности, которые непосредственно возникают при решении каждой из проблем в отдельности. В решении проблемы создания квантовой теории гравитации можно очертить два направления. В первом используется сравнительно традиционная квантовая теория в форме, предложенной Р.Фейнманом. Этот формализм применяется к гравитации как изолированному взаимодействию, однако в планковской области существенно усложняется пространство сравнительно с пространством Минковского (Римана).
Трудности этого направления связаны со структурой константы ALPHA|. Эта гравитационная безразмерная константа
g пропорциональна m**2 (m – масса, передаваемая во время взаимодействия). В этом отличие константы ALPHA| от ALPHA|,
g e которая практически не зависит от m. Поэтому расходимости, бесконечности сопровождают почти все теории гравитации, трактуемой как изолированное явление. Сторонники первого направления не заботятся чрезмерно об устранении бесконечностей, возлагая надежды на то, что удачный выбор пространства в планковской области и взаимовлияние различных взаимодействий приведут в конечном счете к устранению бесконечностей. Лидер этого направления, замечательный физик С.Хокинг, сформулировал свое кредо в виде аналогии с поиском ключей под фонарем, «потому что там светло» [23]23
Хокинг С. Пространственно-временная пена // Геометрические идеи в физике / Под ред. Ю.И.Манина. М.:Мир, 1983. С.47.
[Закрыть]
Другое направление в квантовой теории гравитации с самого начала основывается на объединении всех взаимодействий (и даже всех частиц) в надежде, что такое суперобъединение приведет к компенсации бесконечностей. Пока удалось выполнить эту программу лишь в первых приближениях.
Таким образом, квантовая гравитация – теория гравитации в планковской области – далека от завершения, хотя в этом направлении и имеется значительный прогресс.
В теории физического вакуума основной проблемой является его чрезвычайно малая плотность энергии: ρ| ~< 10**-29 г*см**-3. Эта цифра – следствие основного v космологического параметра – времени жизни Метагалактики и естественного допущения, что вакуум, как и любая другая форма материи, испытывает гравитационное притяжение. Эта цифра на десятки порядков меньше любой оценки, сделанной на основе теории размерности. Нельзя исключить, что ρ| = 0.
v Такое предположение привлекательно в том смысле, что именно такое тождество появляется в теориях, где бозоны и фермионы являются симметричными частицами (суперсимметрия, тождество всех свойств, кроме спина). Энергии бозонного и фермионного вакуумов имеют разные знаки, и поэтому их сумма обращается в нуль. Однако, как отмечалось ранее, в мире наблюдаемых частиц при массах m < 100 m| симметрия между фермионами и
p бозонами отсутствует. Уже упоминалось, что современная теория практически бессильна предсказать или интерпретировать наблюдаемые фундаментальные константы, и в особенности спектр масс частиц и его иерархическую структуру.








