355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Иосиф Розенталь » Геометрия, динамика, вселенная » Текст книги (страница 2)
Геометрия, динамика, вселенная
  • Текст добавлен: 8 октября 2016, 10:35

Текст книги "Геометрия, динамика, вселенная"


Автор книги: Иосиф Розенталь


Жанры:

   

Физика

,

сообщить о нарушении

Текущая страница: 2 (всего у книги 11 страниц)

3. ИДЕАЛИЗАЦИЯ И ПРИБЛИЖЕНИЕ

Ранее мы упоминали о некоторой неопределенности в основных понятиях геометрии: точка, линия и т. д. Превосходной иллюстрацией такой неопределенности является геометрический принцип двойственности. Суть этого принципа заключается в том, что если поменять местами наглядные образы точки и прямой, то в аксиомах и теоремах геометрии почти ничего не изменится.

Покажем некоторые простейшие примеры проявления принципа двойственности, для чего вначале приведем стандартные положения геометрии, а затем попросим читателя сделать усилие и в соответствующих фигурах совершить взаимную замену точек и прямых.

1. Через одну точку можно провести бесконечное число прямых. Любая прямая содержит бесконечное число точек.

Второе положение эквивалентно первому в следующем смысле: нужно слово «провести» заменить на «содержит». Такая замена имеет лишь семантический характер.

2. Через точку пересечения двух прямых a и b можно провести бесконечное число прямых, расположенных между прямыми a и b.

Ясно, что и это положение сохраняет свою силу при взаимной замене точек и прямых.

3. Треугольник – это фигура, образованная тремя прямыми, проходящими через три точки, не лежащие на одной прямой.

Легко проверить, что при взаимной замене точек и прямых получается привычный треугольник.

Число иллюстраций принципа двойственности можно существенно увеличить, он пронизывает всю геометрию. Отсюда можно сделать вывод: интуитивные понятия «точки» и «прямой» в значительной степени условны. [1]1
  Важно отметить, что в последнее время в физике микромира развиваются представления о том, что основным элементом геометрии – точкой – являются линейные элементы. Подробнее об этом см. разд. 10, гл. 2.


[Закрыть]

Из этого вывода следует естественный вопрос: как самая точная наука – математика (точнее, одна из ее областей геометрия) может базироваться на системе не вполне определенных понятий? Более того, при взаимной замене ее основных определений большинство выводов сохраняют свою силу.

Ответ на поставленный вопрос несложен, пока он относится к чистой математике (а речь идет именно об этом направлении).

Высшим критерием математической истины является логическая замкнутость, непротиворечивость системы аксиом и следующих из нее теорем. Чеканная логика – основной критерий истины в математике.

Соответствие данной математической конструкции эмпирическим наблюдениям или простым интуитивным представлениям является критерием менее важным, чем логическая завершенность.

Крупнейший математик Д.Гильберт посвятил значительную. часть своей жизни совершенствованию аксиоматики геометрии. Ему принадлежит известное основополагающее определение:

«Мы мыслим три различные системы вещей: вещи первой системы мы называем точками о обозначаем A, B, C…; вещи второй системы мы называем прямыми и обозначаем a, b, c…»`. Для нас исключительно важно, что в этом фундаментальном определении (так же как и во всей цитируемой книге Гильберта) автор и не пытается представить наглядный образ точки или линии. Он постулирует и уточняет лишь отношение между этими объектами. Из этих отношений и следует определенная геометрическая конструкция.

Гильберт Д. Основания геометрии. М.; Л.: Гостехиздат, 1948. С.57.

Приведенная цитата лаконично подытоживает (в определенном смысле) исследования центральных понятий геометрии. Основные ее понятия – идеализированные объекты, не обязательно связанные с конкретной реальностью или интуитивными представлениями. «Точкой» может быть идеализированный объект, лишенный протяженности во всех измерениях или в части измерений (линия или плоскость). Нулевые размеры точки не мешают ей обладать внутренней структурой и т. д.

Важны лишь отношения между геометрическими объектами, которые должны быть определены очень точно и непротиворечиво. Этот критерий и ограничивает произвол в выборе основных объектов. Подобную ситуацию можно назвать сверхабстракцией или сверхидеализацией. Количественная мера подобной идеализации не обязательна.

Здесь нужно особо подчеркнуть различие в отношении к термину «идеализация» со стороны математиков и физиков.

Идеализация – прием, типичный для математики. Иногда он даже не оговаривается. Однако идеализация – редкий гость в физических концепциях. И хотя этот термин иногда встречается в физических работах, он должен обязательно сопровождаться количественным критерием этой идеализации. Должен! Однако зачастую этот критерий не приводится. И тогда читатель подвергается искушению отнести подобную работу всего лишь к интересным математическим упражнениям. Иногда подобные работы сопровождаются солидными математическими узорами, однако подобное рукоделие не всегда поддается физической расшифровке.

Кардинальное расхождение в оценке термина «идеализация» со стороны физиков и математиков вполне закономерно. Оно обусловлено разницей в высших критериях «истины» этих дисциплин. Для математики важнейший критерий – логическая завершенность, для физики же – опыт. Обычно лишь экспериментальные исследования могут подтвердить или опровергнуть правильность физических построений. Разумеется, такая категоричность вывода не исключает более простую возможность: данная теория неверна вследствие противоречия с общепризнанными физическими принципами, логических неувязок, математических ошибок и т. д. Однако для новой, пусть самой красивой и формально безупречной теории высший критерий опыт. Поэтому физики предпочитают употреблять термин «приближение».

Полезно привести пример экспериментального выбора между двумя одинаково красивыми и логически безупречными теориями, объединяющими электромагнитное и слабое взаимодействия

[2]2
  О некоторых свойствах элементарных частиц и их взаимодействиях см. Дополнение.


[Закрыть]

На рубеже 60 – 70-х годов были предложены две альтернативные теории электрослабого взаимодействия. В рамках одного варианта теории оно осуществлялось посредством двух

+заряженных тяжелых частиц (W|| – бозонов). В соответствии с другой теорией, помимо заряженных частиц – переносчиков взаимодействия, должен был существовать также и тяжелый

0 +нейтральный Z| – бозон примерно с той же массой, что W|| – бозоны. Опыт: существование нейтральных токов (конкретно обнаружение рассеяния нейтрино на электронах) и, наконец, открытие на ускорителе нового поколения всех трех типов

± 0 частиц (W||– и Z| – бозонов) подтвердили правильность второго варианта теории электрослабого взаимодействия, который называется теорией Глешоу – Вайнберга – Салама. До названных экспериментов логический анализ не мог произвести выбор между двумя вариантами теории электрослабого взаимодействия.

Различие же высших критериев в обеих точных науках влечет за собой и расхождение в требованиях точности определения основных объектов, с которыми они оперируют.

Для краткости аргументами в пользу этого тезиса целесообразно опереться на авторитеты.

Л.Д.Ландау и Е.М.Лифшиц начинают свой курс теоретической физики с определения материальной точки. Под этим названием понимают тело, размерами которого можно пренебречь при описании его движения.

[3]3
  Ландау Л.Д., Лифшиц Е.М. Курс теоретической физики. М.: Наука, 1973. Т.1. Механика, с.9.


[Закрыть]

В этом определении центральное место занимает физический критерий реализации «точечности» объекта.

Вероятно, в физике следовало бы все-таки во избежание путаницы устранить термин «идеализация», заменив его на «приближение».

Р.Фейнман (на наш взгляд, абсолютно правильно) утверждал:

«Чтобы понять физические законы, вы должны усвоить себе раз и навсегда, что все они – в какой-то степени приближения».

Фейнман Р. и др. Фейнмановские лекции по физике. М.: Мир, 1965. Т.1. Современная наука о природе. Законы механики. с.211.

В физических книгах и работах обычно определяют некий малый параметр, которым при четко определенных условиях можно пренебречь. Как правило, приближение выражается в форме неравенства, когда безразмерная величина, определяющая приближение, становится малой сравнительно с единицей.

Приведем прекрасный пример приближенности теории. Классическая механика Ньютона верна, если выполняются два условия: v/c << 1 и HP/S << 1 (c – скорость света, v скорость тела, HP – постоянная Планка, S – действие).

Если же v/c ~ 1, то следует учитывать релятивистские поправки, обусловленные теорией относительности. Если HP/S ~ 1, то вступают в силу законы квантовой механики. Напомним, например, что в соответствии с теорией относительности масса M изолированной системы зависит от ее скорости: M = M| [1-(v/c)**2]**(1/2), где M| – так называемая масса покоя. При v/c << 1, M ≈ M| ~– const(v) в соответствии с ньютоновской механикой.

Итак, основа математики – идеализация, в физике царствует приближение. Несомненно, что сейчас такое деление несколько условно. Дело заключалось в том, что само понятие геометрии, предмета геометрии, несколько размылось. Вероятно, этому расширенному толкованию геометрии следовало бы посвятить специальную книгу и, быть может, не одну. Здесь мы ограничимся кратким изложением авторской точки зрения на предмет. Известный субъективизм в обсуждении основ геометрии, по-видимому, знамение времени, обусловленное быстро возрастающей ролью геометрии в физике. Происходит взаимообогащение и взаимопроникновение обеих наук, что и вызывает определенное смещение основных физико-математических понятий. Это смещение не успевает отслеживаться терминологией. В старые термины вкладывается новое содержание. Отражением подобной неустойчивости или неадекватности основных терминов и их содержания является различие их определения даже в современных школьных учебниках, написанных разными авторами.

По нашему мнению, сейчас сосуществуют три несколько отличающиеся друг от друга геометрии.

Первая – математическая геометрия, предмет которой исследование свойств пространств безотносительно к физической реальности.

Вторую можно условно назвать физико-математической геометрией. В ее рамках геометрические методы используются для устранения незамкнутости, непоследовательности уравнений, описывающих квантовую теорию поля. Физико-математическая геометрия непосредственно не соприкасается с физической реальностью, однако имеет существенное значение для построения единой последовательной картины мира.

И наконец, последняя – физическая геометрия, которая является фоном для эволюции материи и ее непосредственного описания.

Автор отлично понимает схематичность подобной классификации, однако едва ли уместно давать в данной книге более развернутую картину многих граней современной геометрии.

В заключение следует подчеркнуть, что автор – физик и, по возможности, придерживается круга понятий и терминов физической геометрии.

4. СУЩЕСТВУЕТ ЛИ ЕДИНСТВЕННАЯ ФИЗИЧЕСКАЯ ГЕОМЕТРИЯ?

На заре нашего столетия А.Пуанкаре высказал мысль, которая сделалась впоследствии почти нарицательной: опыт не определяет порознь физику и геометрию. Он подтверждает суммарно физику и геометрию в их взаимосвязи. Но если наблюдения измеряют лишь сумму, то это означает, что каждое из слагаемых имеет определенный произвол.

Наиболее ревностные последователи Пуанкаре пошли еще дальше, полагая, что для описания физической реальности можно выбрать любую геометрию, а к ней уже «подогнать» соответствующую физику так, чтобы эмпирическая «сумма» геометрия+физика оставалась неизменной. Другими словами: выбор физической геометрии произволен и определяется вкусом и удобством вычислений. Абсолютная физическая геометрия отсутствует.

Правилен ли этот тезис? По нашему мнению, полный ответ имеет сложную диалектическую форму. Однако нельзя согласиться с полной релятивизацией физической геометрии. Существует, по-видимому, единственная геометрия (или, точнее, ограниченный класс геометрий), отвечающая полному набору наблюдений. Эта геометрия имеет сложный характер, и ее анализу посвящены две следующие главы книги. Здесь же следует подчеркнуть, что речь идет о полном наборе экспериментальных фактов и основополагающих физических принципах, а не о единичных опытных данных, интерпретировать которые без труда можно на основе произвольной геометрии.

Выступая против релятивизации геометрии для описания физики, автор отдает себе отчет об ответственности оппонента такому титану, как А.Пуанкаре. Но во-первых, подобная оппозиция направлена прежде всего против чересчур ревностных апологетов идеи релятивизации, а во-вторых, автор имеет мощного союзника – время. С тех пор, как Пуанкаре высказывал свои идеи, прошло около 80 лет, и физика изменила свой лик.

Прежде всего, на наш взгляд, существенно углубилось понимание основного объекта – точки, адекватного общим физическим принципам. И главное: колоссально возрос эмпирический материал, сузивший произвол в выборе геометрии. Иначе говоря, нам представляется, что существует естественный (хотя и сложный) класс геометрий, в рамках которого реализуется эмпирическая основа физики – динамики. Чтобы иллюстрировать (весьма предварительно, поскольку этому предмету посвящена вся книга) предопределенность геометрии эмпирическим наблюдениями, мы рассмотрим простейший пример.

Допустим вначале, что распространение света или радиоволн в межпланетной и межзвездной средах соответствует прямой в смысле евклидовой геометрии. Параметры межпланетной и межзвездной сред известны, и можно показать, что они практически не влияют на направление распространения света или радиоволн достаточно высокой частоты. Тогда различными методами можно весьма точно измерять расстояния до солнца, планет или многих звезд в Галактике. Определяя затем угол между направлениями от Земли до двух космических объектов (например, Солнца и одной из планет), можно вычислить сумму углов треугольника, образованного Землей и этими двумя объектами. И всегда, независимо от природы объектов, сумма углов оказывается в пределах небольших экспериментальных ошибок равной π.` Таким образом, можно было бы сделать вывод, что по крайней мере в пределах Галактики ее геометрия – евклидова. Этот вывод правилен, но с одной оговоркой, которую может использовать верный последователь Пуанкаре. В этих рассуждениях допускалось, что направление распространения фотонов в пустоте совпадает с прямой линией. На чем основано это утверждение? Может быть, фотоны движутся по кривой, а само пространство также кривое и обе кривизны взаимно компенсируют друг друга, так что в результате получается мнимое доказательство торжества евклидовой геометрии? [4]4
  Это утверждение верно с точностью до весьма малых релятивистских поправок, которые можно учесть при вычислении суммы углов.


[Закрыть]

Ответ на это возражение базируется на анализе совокупности физических фактов. Так, было проделано множество опытов по определению параллаксов различных космических объектов, расположенных на различных расстояниях от Земли. Всегда сумма углов оказывалась равной π.

Причем непосредственное изучение геометрии по свойствам космических треугольников далеко не единственный метод определения характеристик пространства.

В физике подробно изучены различные взаимодействия: электромагнитное (в макро– и микроскопических проявлениях) и микроскопические (слабое и сильное). Электромагнитное взаимодействие исследовалось в огромных интервалах расстояний: 10**-16 – 10**13 см. Самые малые расстояния изучались с привлечением весьма тонких методов физики элементарных частиц. В частности, измерялись рассеяния электронов на электронах и электронов на позитронах. Ценность этих опытов в том, что в них проявляется практически только одно взаимодействие – электромагнитное. В этих и аналогичных опытах с очень большой точностью (иногда вплоть до десятого знака) было продемонстрировано, что законы электродинамики справедливы. Электродинамика на самых больших расстояниях проверялась с меньшей точностью (радиолокация Солнца и планет, электродинамика Солнца). Разумеется, с существенно большей точностью электродинамика проверена в масштабах Земли (~10**9 см).

Законы микроскопических взаимодействий (слабого и сильного) на малых расстояниях (10**-16 – 10**-13 см) также хорошо (хотя и с меньшей точностью – до второго – пятого знака) подтверждены опытом.

Когда здесь упоминались законы взаимодействий, то они, разумеется, понимались как совокупность динамических уравнений и геометрии пространства, в котором существуют материальные точки. Во всех упомянутых опытах делалось одно априорное предположение: пространство евклидово. Вероятно, можно для интерпретации отдельных опытов придумать объяснение на основе геометрий, отличных от евклидовой, но допущение, что вся огромная совокупность экспериментов объясняется на базе неевклидовой геометрии, представляется невероятной.

В заключение отметим, что современные представления о структуре Метагалактики (Вселенной) также свидетельствуют, что в ее пределах (размер ~10**28 см) пространство евклидово или близко к нему (см. разд. 6 и 8 гл. 3).

Таким образом, весь исключительно богатый набор экспериментальных фактов согласуется с допущением: в интервале расстояний 10**-16 – 10**28 см физическая геометрия близка или тождественна евклидовой геометрии трехмерного пространства. Нам представляется этот факт доказательством единственности геометрии в этом интервале расстояний. Однако с точки зрения чистой логики нельзя отвергнуть и другой тезис: нет доказательств, что нельзя построить всю физику на основе геометрии, существенно отличной от трехмерной евклидовой. Да, действительно строгого логического доказательства такого утверждения нет. Однако пока не сделаны хотя бы попытки построить физики в существенно измененном пространстве, все утверждения о произволе геометрии имеют абстрактный, а не физический характер.

Оговоримся в заключение, что под существенным изменением геометрии мы понимаем кардинальную вариацию ее параметров, например размерности. В дальнейшем мы не раз будем останавливаться на связи геометрии (в частности, размерности) и динамики. Далее будет продемонстрировано, что один из основных параметров пространства – его размерность предопределяет в значительной степени динамику.

И еще одно замечание. Раздельный анализ геометрии и динамики возможен лишь для трех взаимодействий: электромагнитного, слабого и сильного. В рамках эйнштейновской теории гравитации динамика и геометрия сливаются в единое целое, и тогда простота сделанных выше заключений утрачивается. К этому усложненному пониманию взаимосвязи геометрии и физики мы вернемся позже.

5. АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ

Аналитическая геометрия сводит понятие точки к набору чисел – координат. Координаты – расстояния до некоторой системы линий, называемых осями координат. Простейший способ системы координат – набор взаимно ортогональных осей – система декартовых координат (названная в честь основателя аналитической геометрии Р.Декарта). Полезно перечислить крупнейшие достижения аналитической геометрии. Существенно уточнено понятие точки (набор чисел). Появилась возможность оперировать с пространствами любой целочисленной размерности. В пространстве N измерений точку определяют N чисел. Значение этого достижения аналитической геометрии в полной мере начали осознаваться сравнительно недавно. Лишь основываясь на ее методах (или модификациях этих методов), можно анализировать многомерные пространства, которые казались математической экзотикой, а сейчас приобрели большую актуальность.

Преимущества аналитических методов при отображении многомерных пространств проявляются в отсутствии необходимости наглядно себе их представлять или моделировать реально в нашем пространстве – особенностях, обусловленных в первую очередь нашей психологической ограниченностью. Человек привычно представляет фигуры с размерностью N≤3, но не способен вообразить объект большей размерности.

Для аналитической же геометрии размерность N=3 лишь одна из бесконечного набора возможностей (1≤N=

При операциях в пространстве N измерений следует определить N координатных осей.

И наконец, еще одно преимущество аналитической геометрии. Она сильно упрощает представления о геометрических образах, заменяя их (зачастую весьма простыми) уравнениями. Например, в декартовых координатах уравнение прямой: y=ax+b (a, b=const); уравнение окружности: (x-a)**2+(y-b)**2=c**2 и т. д. Нетрудно описать, реализовать евклидово пространство в рамках аналитической геометрии.

Евклидово пространство можно определить как бесконечное, изотропное и однородное пространство. Любые две его точки полностью эквивалентны. Поместим в любой точке пространства три источника световых лучей, распространяющихся во взаимно перпендикулярных направлениях. Эти лучи образуют координатные оси Ox, Oy, Oz. Перенесем источники света вдоль одной из осей, например оси z. Новые оси O'x', O'y' будут параллельны Ox и Oy. Длины осей бесконечны, поэтому перенесение источников из точки O в точку O' не изменит геометрическую ситуацию. Аналогичное рассуждение можно провести и вращая одновременно все источники в точке на один и тот же угол. Неизменность свойств пространства при перемещениях и вращении отражает основные свойства евклидова пространства – однородность и изотропию. При указанных выше операциях сохранят свою форму и основные уравнения кривых.

Какова цена, которую следует уплатить за все преимущества аналитической геометрии? Используя ее методы, мы утрачиваем наглядность, привычную нам с детства. Аналитическая геометрия невольно порождает ностальгию по безвозвратно ушедшим школьным годам.


    Ваша оценка произведения:

Популярные книги за неделю