Текст книги "Геометрия, динамика, вселенная"
Автор книги: Иосиф Розенталь
Жанры:
Физика
,сообщить о нарушении
Текущая страница: 6 (всего у книги 11 страниц)
6. ОБЪЕДИНЕННАЯ ТЕОРИЯ ВЗАИМОДЕЙСТВИЙ ЭЛЕМЕНТАРНЫХ ЧАСТИЦ
Одна из основных (а быть может, и главная) задач современной физики – построение объединенной теории взаимодействий. В настоящее время достаточно хорошо изучены четыре фундаментальных взаимодействия: гравитационное, слабое, электромагнитное и сильное (см. Дополнение). Конечная цель заключается в том, чтобы написать единое уравнение, описывающее все четыре взаимодействия. Эта задача включает три элемента: 1) описание объединенного взаимодействия с помощью одной или нескольких констант взаимодействия, 2) включение в уравнение общих характеристик взаимодействий, 3) исключение из теории бесконечных величин, которые с неизбежностью возникают при использовании изолированных, необъединенных взаимодействий.
Рассмотрим эти составляющие объединенной теории более детально. На первый взгляд первая задача – описание разных взаимодействий с помощью единой константы – утопия. Константы различных взаимодействий имеют разные величины, отличающиеся друг от друга на много порядков.
Однако такое категорическое утверждение кардинально неверно. Дело в том, что константы всех взаимодействий зависят от передаваемого во время взаимодействия импульса массы m. При такой операции зависимость константы от передаваемой массы (импульса) существенно различна для разных взаимодействий. Константа ALHPA|, характеризующая
e электромагнитное взаимодействие, зависит от передаваемой массы чрезвычайно слабо, и мы будем в дальнейших рассуждениях этой зависимостью пренебрегать, полагая ALPHA| (m) = const.
e
Константа ALHPA| сильного взаимодействия, описываемого
s квантовой хромодинамикой, зависит от передаваемой массы приблизительно логарифмически. При условии m >> m|
p (m| ≈ 10**-24 г – масса протона) теоретическая зависимость p ALPHA| (m) имеет вид
s
ALPHA| ~ (ln mm|)**-1 (40)
s p
Константы ALPHA| ALPHA| слабого и гравитационного
w g взаимодействий квадратично (~m**2) зависят от передаваемого импульса (массы).
Именно разные энергетические зависимости констант ALPHA (m) и определяют потенциальную возможность их совпадений при некоторых значениях m. Здесь следует подчеркнуть именно потенциальность возможности существования значения m, при котором произойдет пересечение трех или четырех констант при едином значении m. Подобная ситуация отличается от предсказаний относительно совпадения двух констант, когда вполне естественно ожидать пересечения двух кривых ALPHA| (m) и ALPHA| (m) в одной точке.
1 2
Таким образом, возможность объединения взаимодействий совпадения констант ALPHA при определенном значении m apriori не очевидна. Лишь расчеты зависимостей ALPHA (m) могут подтвердить или опровергнуть возможность объединения констант. Здесь речь идет именно о расчетах, поскольку (как мы увидим ниже) масштабы масс, при которых происходят объединения трех и четырех взаимодействий, намного превосходят возможности современных или даже будущих ускорителей.
Чтобы оценить масштабы масс, при которых происходит объединение, следует приравнять выражения ALPHA|, ALPHA|,
w s ALHPA| значению ALPHA|~0.01, которое (как мы отмечали ранее)
g e можно полагать постоянной. Тогда получаем следующие значения масс, объединяющих различные взаимодействия (см. таблицу).
Значение массы, при Объединение взаимодействий котором происходят
объединения (m|)
p
Электромагнитное-слабое 10**2 Электромагнитное-слабое-сильное 10**15 Электромагнитное-слабое-сильное-гра– 10**19
витационное
Из этой таблицы следует ряд примечательных следствий. Во-первых, объединение трех и четырех взаимодействий в принципе возможно, поскольку существуют значения масс, при которых происходит слияние трех и четырех констант. Во-вторых, в объединенных теориях возникают огромные масштабы масс – 10**15 m| и 10**19 m|. Например, для
p p представления об этих величинах достаточно напомнить, что гипотетический кольцевой ускоритель с размером, равным диаметру Земли, мог бы ускорять частицы до энергии ~10**7 m|. И наконец, третье: электрослабое взаимодействие p характеризуется «человеческими» масштабами: ~100 m|. Эти
p энергии уже достижимы на самых больших современных ускорителях. И действительно, в 1983 г. на ускорителе ЦЕРНа – Коллайдере были открыты переносчики слабого взаимодействия
± 0 – W||– и Z|-бозоны со значениями масс, точно соответствующими теории Глешоу-Вайнберга-Салама, описывающей это взаимодействие.
Следует, пожалуй, пояснить причину возникновения масштабов масс в теориях, объединяющих электромагнитное, слабое и сильное взаимодействия (большое объединение) и все четыре взаимодействия (супергравитация). В большом объединении этот масштаб возникает из-за вялой, логарифмической зависимости ALPHA|(m) (см. (40)).
s Приравнивая ALPHA| = ALHPA|, получаем массу объединения
s e m|≈10**15 m|. Масштаб характерной массы супергравитации x p (объединении всех взаимодействий) – следствие малости постоянной Ньютона, обуславливающей в свою очередь малость значения ALPHA| в низкоэнергетическом пределе: m~m|.
g p
Перейдем далее к определению общности свойств функций, описывающих состояние систем. Разумеется, речь идет о фундаментальных свойствах, общих для всех систем достаточно широкого класса (например, материальных точек).
На математическом языке это означает, что уравнения, определяющие изменение функций состояния во времени, инвариантны относительно определенных групповых преобразований.` Простейшим примером такой инвариантности является трансляционная инвариантность. Простейшим примером такой инвариантности является трансляционная инвариантность уравнений Ньютона. Ни уравнения, ни физическое состояние системы не меняются при замене x' – > x+a, где a – некое постоянное число. Можно привести и другой пример групповой инвариантности. Рассмотренное ранее в гл.1 вращение системы координат также оставляет уравнения механики инвариантными. Группа, соответствующая вращению N-мерной сферы, называется группой вращения. Можно сказать, что уравнения механики (впрочем, это относится также и к электродинамике, хромодинамике и ко всем взаимодействиям, кроме гравитационного) инвариантны относительно преобразований группы трехмерных вращений, что отвечает изотропии трехмерного пространства Евклида. [9]9
Напоминаем, что группой называется совокупность математических объектов, для которых определена некая операция, иногда называемая умножением. Группа определена, если выполняются следующие условия: 1) если a, b элементы группы, то произведение a*b – также элемент группы; 2) (a*b)*c=a*(b*c); существует единичный элемент I, такой, что для любого элемента выполняется равенство I*a=a*I=a; существует обратный элемент a**-1: a*a**-1=I.
[Закрыть]
Однако основная идея объединения взаимодействий относится не к макроскопическому пространству Евклида, а к «внутреннему» пространству элементарных частиц, отражающему их квантовые числа (см. Дополнение). Это пространство проще всего отождествить с расслоенным пространством, где база пространство Минковского, а пространства, соответствующие квантовым числам элементарных частиц (спину, изотопическому спину и цвету – см. Дополнение), являются слоями. Слои можно представить как сферы, «прикрепленные» к каждой точке базы. Векторы состояний вращаются внутри сфер-слоев в соответствии с правилами квантовой механики.
Вообще говоря, нет априорных правил выбора этих слоев, и в частности их размерности. Видимое отсутствие этих правил отражает известный произвол в выборе квантовых чисел частиц – переносчиков взаимодействия. Поэтому на первый взгляд выбор этих квантовых чисел и масс частиц-переносчиков является лотереей, в которой выигрыш – счастливая случайность. Такой подход можно назвать феноменологических в том смысле, что в нем отсутствует руководящий принцип, ограничивающий выбор частиц-переносчиков. Однако сейчас господствует убеждение, что такой принцип существует. Это принцип калибровочной инвариантности, и его изложению и геометрической интерпретации будет посвящена значительная часть книги.
Пока же мы ограничимся замечанием, что выбор общей группы и является одной из трех проблем объединения взаимодействия. Наконец, последняя из перечисленных проблем, решение которых необходимо для создания объединенной теории взаимодействия, – устранение бесконечностей из результатов вычислений. Желательно, чтобы эти бесконечности отсутствовали бы и в промежуточных выкладках, однако необходимое условие замкнутости теории – отсутствие бесконечностей в окончательных результатах (перенормируемость теории). Сравнительно недавно существовала лишь одна перенормируемая теория – квантовая электродинамика. Объединение слабого и электромагнитного взаимодействия (теория Глешоу-Вайнберга-Салама) привело к тому, что рассматриваемая изолированно неперенормируемая теория слабого взаимодействия оказалась лишь частью целого красивой, перенормируемой теории электрослабого взаимодействия. Удалось построить такую теорию, что бесконечности скомпенсировали друг друга; в результате получились конечные результаты, превосходно согласующиеся с экспериментом.
Квантовая гравитация – существенно неперенормируемая теория. Можно сказать, что это свойство гравитации глубоко внутренне присуще ей. Естественный путь преодоления этого дефекта видится в построении теории, объединяющей все четыре взаимодействия – супергравитации, когда бесконечности, существующие в каждой изолированной теории, скомпенсируются. На этом пути есть определенные достижения, но расстояние до окончательной цели – построения полностью перенормируемой супергравитации – кажется еще весьма большим.
7. КАЛИБРОВОЧНАЯ ИНВАРИАНТНОСТЬ
ОСНОВНОЙ ДИНАМИЧЕСКИЙ ПРИНЦИП
В предыдущем разделе мы сформулировали три основополагающих принципа построения объединенной теории. Однако первый (требование единства константы) и третий (устранение бесконечностей) принципы имеют ясно очерченный алгебраический характер (единое число, конечность теоретических выражений), то второй – единый тип симметрии кажется менее определенным. В самом деле, симметрий, воплощенных в теорию групп, бесконечно много, и совершенно не очевидно, чем следует руководствоваться при их выборе. Правда, ясны общие принципы, связанные с симметрией наблюдаемого 4-пространства Минковского (изотропия и однородность). Эти пространственные симметрии являются, как известно, первопричиной основных законов сохранения: закона сохранения энергии-импульса, закона сохранения момента импульса и инвариантности уравнений движения относительно преобразований Лоренца. Однако пространственно-временной симметрии и обусловленных ею законов сохранения совершенно недостаточно для обнаружения руководящей нити в безбрежном море возможных симметрий.
Такая ситуация (отсутствие основной идеи) продолжалась сравнительно долго, и частично она была причиной неудач в попытках Эйнштейна и других выдающихся физиков построить единую теорию поля. Однако в последние два десятилетия постепенно намечались, а затем четко очертились контуры руководящего принципа поиска «истинной» симметрии динамических уравнений. Эта симметрия, известная под названием калибровочной инвариантности, была обнаружена очень давно – со времен первых исследований электромагнитных явлений, однако вначале она казалась излишеством. Затем, в двадцатых годах XX в., в особенности после работ немецкого математика и физика Г.Вейля (крестного отца этого типа симметрии), к ней привыкли, но не придавали ей сколько-нибудь решающего значения. Лишь после успехов в создании теории объединенного электрослабого взаимодействия и квантовой хромодинамики – теории сильного взаимодействия среди специалистов возникло общее убеждение: калибровочная инвариантность есть основной динамический принцип.
Констатация широкой популярности калибровочного принципа при длительном непонимании его важности не есть просто дань риторике. Вероятно, подобная ситуация отражение узловых парадоксов физики, являющихся двигателем ее прогресса. Уверенность в важности калибровочного принципа возникла на пересечении двух течений физики, которым, казалось, никогда не слиться в единое русло.
В 1954 г. работающие в США физики Ч.Янг и Ф.Миллс исследовали новый тип уравнений, описывающих безмассовые поля на основе калибровочного принципа. Но поскольку единственной в те времена известной безмассовой частицей переносчиком взаимодействия был фотон – основная частица электромагнитного взаимодействия, то уравнения Янга-Миллса посчитали физико-математической экзотикой.
В 1964 г. при полном отсутствии какой-либо видимой связи с уравнениями Янга-Миллса независимо М.Геллман и Г.Цвейг выдвинули весьма экзотическую по тем временам теорию кварков. Исключительная необычность этой теории заключалась в дробном (сравнительно с электроном) значении электрического заряда. Таких частиц никто и никогда не наблюдал, хотя их обнаружение по величине ионизационных потерь было бы весьма простым делом. Поэтому к модели кварков вначале было отношение двойное: с одной стороны привлекало ее исключительное изящество и простота, с другой – видимое противоречие с экспериментом (отсутствие реальных кварков) подрывало привычную для физических теорий основу экспериментальное обнаружение фундаментальных объектов. Однако с годами число косвенных подтверждений гипотеза кварков быстро увеличивалось, что привело к возросшему числу верящих в нее. И примерно в начале 70-х годов возникла необходимость в описании взаимодействия между кварками. Тогда вспомнили о теории Янга-Миллса, которая качественно объясняла невылетание кварков из реальных адронов`. Оказалось также, что эта теория, примененная к модели кварков, и количественно объясняет многие экспериментальные факты. Постепенно создавалось убеждение, что теория Янга-Миллса составляет основу интерпретации взаимодействия кварков. Эта теория применительно к кваркам получила название квантовой хромодинамики по аналогии с квантовой электродинамикой. Замена «электро» на «хромо» объясняется тем, что кварки (как и любые сильно взаимодействующие частицы) характеризуются цветовым (chromo) зарядом, подобно тому как электроны и протоны характеризуются электрическим зарядом (см. Дополнение). Уже упоминалось, что теория Янга-Миллса (квантовая хромодинамика) базируется на калибровочной инвариантности. Эта же симметрия лежит в основе объединенного электрослабого взаимодействия. Поэтому возникло убеждение, что именно калибровочная симметрия базис единого взаимодействия. [10]10
Количественно эта проблема не решена полностью и сейчас, хотя невылетание кварков реализуется в рамках некоторых упрощенных моделей.
[Закрыть]
В этом разделе мы изложим элементарные представления о калибровочной симметрии и ее фундаментальной роли.
Верные нашей схеме, мы рассмотрим простейшую систему, состоящую из двух тел. Первое, тяжелое, определяет систему отсчета, воздействует на второе тело и создает статическое (независящее от времени) поле. Движение второго тела (частицы) определяется этим полем. Движение второго тела (частицы) определяется этим полем. Понятие калибровочной инвариантности основано на постулате существования некоторой неизмеряемой на опыте функции состояния системы, но определяющей это состояние. В частном случае статического электрического поля такой функцией состояния является потенциал FI. Известно, что абсолютное значение FI не определяет никакие физические характеристики системы. Простейшее проявление этого принципа – безопасность прикосновения к одному из двух проводов, по которым протекает ток. Более сложным выводом является утверждение, что энергия системы, или работа, реализуемая при перемещении из точки x| в точку x|, определяется не абсолютными
1 2 значениями потенциалов FI(x|) и FI(x|), а исключительно их
1 2 разностью FI(x|) – FI(x|). Следовательно, значение
1 2 потенциала определено с точностью до аддитивной постоянной. Если во всем пространстве (для статической системы) изменить потенциал на одну и ту же величину b, то физическая ситуация останется неизменной.
Этот пример – простейшее и давно известное проявление калибровочной инвариантности. Однако из данного выше общего определения калибровочной инвариантности следует неоднозначность постулируемой функции состояния. Действительно, если функция определяет состояние в точке x, но не измеряется на опыте, то все физические характеристики должны зависеть от производных этой функции или (как в случае статического поля, рассмотренного выше) от разности FI(x|) – FI(x|). В обоих случаях прибавление к функции FI
1 2 величины b
FI' – > FI+b (41)
не меняет физическую ситуацию.
Различают два вида калибровочной инвариантности: 1) величина b=const(x), т. е. постоянна во всем пространстве (в этом случае говорят о глобальной калибровочной инвариантности); b=b(x) (этот случай соответствует локальной инвариантности
Мы остановимся в основном на более простом первом случае. Далее мы продемонстрируем простейшее приложение калибровочного принципа – вывод закона Кулона и закона сохранения в электростатике.
Простейшие соображения таковы. Поскольку рассматриваемая система состоит из двух тел, то вектор силы, действующий на пробное тело, должен быть направлен по линии, соединяющей оба тела. Единственный вектор, удовлетворяющий этому условию и калибровочной инвариантности, есть grad TI = d FI / dr. В частности, работа, производимая такими силами, равна интегралу
r| 2 — d FI – dr = FI (r|) – FI (r|). dr 1 2
– r| 1
Существенно, что в рамках электростатики осуществляется глобальное (а не локальное) калибровочное преобразование. Отсюда можно вывести важное следствие: если потенциал нашей системы представляется некоторой функцией FI(r), то калибровочное преобразование (изменение потенциала в каждой точке на постоянную величине b) не изменяет основного свойства пространства: изотропию и однородность. Поскольку наша система относительно тела отсчета была сферически-симметричной, то, следовательно, все наблюдаемые физические величины (энергия, сила, действующая на пробное тело) также должны характеризоваться сферической симметрией.
Таким образом, величины grad FI или FI(x|) – FI(x|)
1 2 определяют наблюдаемые физические величины. Отсюда следует, что работа, произведенная калибровочным полем, однозначно определяется разностью FI(x|) – FI(x|) и не зависит от пути,
1 2 по которому двигалась пробная частица. Тогда можно показать, что число силовых линий статического калибровочного поля остается неизменным в пространстве (во времени оно неизменно вследствие условия статичности). Действительно, существуют две возможности изменения числа силовых линий: 1) их «обрыв» на границе некоторой пространственной области и 2) пересечение, «взаимодействие» силовых линий в некоторых точках x|, x|…. ≠ x|, x|. Обе возможности противоречат
3 4 1 2 следствию о независимости работы от пути, проходимого частицей. Действительно, рассмотрим первое допущение. Работа, производимая при переносе тела из точки x| до
1 границы области, зависит от точки границы x|, а работа,
k производимая при переносе тела из точки x| в точку x|, равна
k 2 нулю. Следовательно, суммарная работа зависит от пути, что противоречит основному постулату.
Если же силовые линии пересекаются, то силы, действующие на пробную частицу, зависят от конкретной формы пересечения силовых линий в некоторых точках x|…, x|.
1 k Это должно также привести к зависимости работы от пути. Следовательно, число силовых линий калибровочного поля (FI' – > FI+b) точечного источника в статическом случае взаимодействия в том смысле, который указан в разд.3 этой главы. Для такого случая выполняется закон F~1/r**2.
Вывод о неизменности числа силовых линий можно получить из калибровочной инвариантности и несколько иным путем. Поместим в начало отсчета две заряженные частицы, обладающие зарядами e| и e|, характеризующими их силовые поля.
1 2 Суммарное поле FI на расстоянии r можно представить в общем виде:
FI[(e|+e|), r]=FI |(e|,r)+FI |(e|,r)+FI |(e|,e|,r). (42)
1 2 1 1 2 2 3 1 2
Произведем калибровочное преобразование, соответствующее каждому из зарядов:
FI'[(e|+e|), r] – > FI[(e|+e|), r] + b,
1 2 1 2
FI'(e|,r) – > FI |(e|,r) + b, (43)
1 1 1
FI'(e|,r) – > FI |(e|,r) + b.
2 2 2
Уравнения (42) и (43) совместны, если FI(e|,e|,r) = – b = const(r), что соответствует глобальному
1 2 калибровочному преобразованию. Иначе говоря, из него следует принцип суперпозиции:
FI[(e|+e|), r]=FI |(e|,r)+FI |(e|,r), (44)
1 2 1 1 2 2
который также отражает слабость взаимодействия.
Мы до сих пор рассматривали систему из двух частиц. Однако вследствие принципа суперпозиции все выводы нетрудно обобщить на статическую систему, состоящую из любого числа частиц.
Таким образом, электростатика, базирующаяся на законе Кулона, – следствие калибровочной инвариантности. Очевидно (к этому мы привыкли из школьного курса физики) и обратное утверждение: глобальное калибровочное преобразование следствие закона Кулона. Калибровочная инвариантность взаимосвязана с электростатикой. Далее мы проиллюстрируем общность взаимосвязи динамики и калибровочной инвариантности.
Остановимся на другом важнейшем следствии калибровочной инвариантности. Опираясь на факт существования функции FI(x), которая определяет работу при перемещении пробного тела из точки x| в точку x|, можно сделать вывод о
1 2 сохранении заряда (пока в рамках электростатики). Действительно, по определению, заряд – мера воздействия тела (в нашем примере тела отсчета) на силовое поле или мера реакции пробного тела на величину силового поля. Пусть по пути из точки x| в точку x| заряд пробного тела изменится, а
1 2 заряд тела отсчета останется неизменным. Тогда работа не будет определяться исключительно разностью FI(x|)-FI(x|). Аналогичное рассуждение можно провести, полагая, что заряд тела отсчета изменится.
Однако в силу принципа суперпозиции (см.(44)), если оба тела соприкоснутся, заряд с одного тела может перейти на другое тело. Принцип суперпозиции вполне консистентен переходу заряда от одного тела к другому при условии сохранения суммы зарядов.
Таким образом, мы продемонстрировали закон сохранения заряда для системы, состоящей из двух тел. Далее мы поясним этот закон в общем случае и в случае нестатических систем. До сих пор мы анализировали простейшую физическую ситуацию электростатику. Однако вид калибровочной инвариантности однозначно определяет и самые общие уравнения движения и форму квантовой теории полей. Здесь же мы лишь наметим аргументацию этого утверждения. Дело в том, что его доказательство в полном объеме требует хорошего знакомства с квантовой теорией поля. Но даже и на таком уровне весь комплекс вопросов, основанный на принципе калибровочной инвариантности, на наш взгляд, изложен в литературе (особенно учебной) неполно. И этот факт прискорбен. Хотя, по нашему мнению, аксиоматическое изложение физики невозможно, однако выявление основных принципов и дедуктивное ее изложение кажется весьма целесообразным как с дидактических позиций, так и с точки зрения выявления общих граней разнородных физических объектов и теорий. Сейчас же в учебной литературе (в том числе в курсах теоретической физики) калибровочный принцип излагается походя, как бы между прочим. В специальной же литературе, посвященной калибровочной теории, обычно затрагиваются не все аспекты этого принципа. Мы попытаемся дать лаконичное и поэтому не слишком строгое изложение основных сторон этого принципа.
Калибровочный принцип обуславливается типом частицы переносчика взаимодействия. Достаточным условием калибровочной инвариантности является равенство нулю массы частиц-переносчиков.
Рассмотрим классическое движение, которое, как известно, определяется уравнениями Лагранжа. Уравнения Лагранжа определяются вариацией лагранжиана, который должен быть функцией от скаляров, которые естественно являются релятивистскими инвариантами.
Рассмотрим простейшее калибровочное поле электромагнитное. Допустим, что электромагнитное поле представляется релятивистским 4-вектором A|. Тогда из
i векторов можно образовать только два типа скаляров
i i (скалярных произведений): eA|dx| и aA|A| (здесь индекс i
i i пробегает значения i=1,2,3,4; e,a – постоянны). Пусть все реальные физические величины инвариантны относительно калибровочного преобразования:
A|' – > A| + DLf/DLx|, (45) i i i
где f – некоторая произвольная функция при калибровочных преобразованиях от 4-координат. Тогда можно написать следующее равенство:
i ∂(ef) i eA| dx| + – dx| = eA|dx| + d(ef), (46)
i DLx| i i
i
где d(ef) – полный дифференциал от функции ef. Однако прибавление полного дифференциала к лагранжиану не изменяет уравнения движения. Замена же (45) в квадрате
i вектора A|A| приводит к изменению лагранжиана, и,
i i следовательно, член A|A| нарушает калибровочную
i инвариантность уравнений движения. Следовательно, лагранжиан
i не может содержать скаляры типа A|A|. В теории поля
i демонстрируется, что эти члены могут появиться в том случае, когда частицы – переносчики взаимодействия – характеризуются ненулевой массой. Следовательно, чтобы удовлетворить условию (46), достаточно, чтобы масса частицы-переносчика была бы строго равна нулю. В электродинамике такой частицей является фотон. Экспериментально установлено, что масса фотона m||||| < 4.5*10**-16 эВ/с**2, это в 10**21 раз меньше массы GAMMA самой легкой частицы – электрона. Естественно полагать, что в соответствии с принципом калибровочной инвариантности m|||||=0. GAMMA
С другой стороны, из принципа неопределенности следует, что радиус действия сил, обусловленных частицей-переносчиком ~HP/mc. Для электродинамики это означает, что электромагнитные силы – дальнодействующие. Их радиус r|≈HP/m|||||c при m||||| = 0 равен бесконечности. Этот факт
GAMMA GAMMA для электростатики следовал из простых физических соображений (см. выше).
Ввиду исключительной важности калибровочного принципа мы здесь наметим другой вывод уравнения электродинамики в рамках квантовой теории.
В квантовой механике состояние представляется волновой функцией Ψ. Вообще говоря, функция Ψ – комплексное число; среднее значение какой-либо динамической величины A равно интегралу
–
* = Ψ| (x) A Ψ (x) dx, (47)
-
x – точка в пространстве Минковского. Ясно, что значение величины инвариантно относительно преобразования
i ALPHA PSIG'(x) – > e||||||| Ψ (x). (48)
Инвариантность величины – следствие тождества i ALPHA – i ALPHA e||||||| * e|||||||| = 1 и того, что комплексно-сопряженная.
* * функция Ψ| (x) преобразуется по закону Ψ| (x) – > – i ALPHA * e|||||||| Ψ| (x). Следовательно, состояние системы,
* которое определяется произведениями Ψ| A Ψ, инвариантны относительно преобразований (48), которые характеризуются изменениями фазы ALPHA. Существенно, что в приведенном примере ALPHA = const (x). Поэтому преобразование (48) называется глобальным фазовым (калибровочным) преобразованием.
В известном смысле глобальное фазовое преобразование не согласуется с основным принципом теории относительности конечностью скорости передачи информации. Действительно, в нашем распоряжении нет возможности согласовать этот принцип с синхронизацией какой-либо величины (в том числе и фазы ALPHA) во всем бесконечном пространстве. Здесь не случайно сделана оговорка «в известном смысле», так как на практике обычно рассматриваются конечные области пространства. Однако принципиальный вопрос остается. Поэтому целесообразно обобщить инвариантность (48), требуя, чтобы фаза ALPHA зависела от положения системы ALPHA = ALPHA (x) ≠ const (x), а функция Ψ преобразовывалась по закону
i ALPHA(x) PSIG'(x) – > e|||||||||| Ψ (x). (49)
Инвариантность такого типа называется локальной калибровочной инвариантностью. Оказывается, что требование уравнений динамики относительно локальной калибровочной инвариантности однозначно определяет уравнения поля.
Остановимся сначала на уравнениях электродинамики. Как известно, ее уравнения (уравнения Максвелла или Дирака) определяются значением функций (полей) и их первыми производными. Выше отмечалось, что физические величины не зависят от значения фазы ALPHA. Однако эта независимость сохраняется для производных лишь при условии ALPHA=const(x), т. е. при глобальных преобразованиях. В общем случае (ALPHA=ALPHA(x)) производная
∂ Ψ i ALPHA(x) ∂ Ψ(x) – – > e|||||||||| [– + ∂ x ∂ x
∂ ALPHA (x) + Ψ (x) –] (50)
∂ x
и, следовательно, неинвариантна относительно локальных калибровочных преобразований.
Однако можно показать, что эта инвариантность восстанавливается, если наряду с преобразованием (48) при ALHPA = ALHPA (x) ввести одновременно калибровочное преобразование потенциалов
A|'(x) – > A|(x) + ∂ ALPHA (x) / ∂ x, (51) ю ю
с которыми мы уже сталкивались (см. (45)). Иначе говоря, уравнения электродинамики (или их квантовый эквивалент уравнения Дирака) инвариантны относительно совокупности обоих калибровочных преобразований (49), (51).
С другой стороны, из этих преобразований однозначно следуют уравнения электродинамики: классические и квантовые.
Калибровочные преобразования (49), (51) – необходимые и достаточные условия уравнений электродинамики.
Сделаем в заключение три важных замечания.
1. Вывод о калибровочной инвариантности (соотношение 46)) базируется на допущении о неизменности фактора e при калибровочных преобразованиях. Ясно из определения этого фактора, что он играет роль электрического заряда. Таким образом, неизменность величины e отражает неизменность электрического заряда, т. е. его сохранение. Закон сохранения заряда никак не связан с видимым 4-мерным пространством. Он определяется калибровочной инвариантностью. Далее, в разд.9 этой главы мы продемонстрируем связь геометрии с калибровочной инвариантностью и, следовательно, законом сохранения заряда. Однако эта геометрия весьма отличается от геометрии Евклида или Минковского.
2. В соотношении (45) вектор A и функция f или ALPHA зависят от четырех координат (t,x,y,z). Этим калибровочное условие (45) или (51) существенно отличается от калибровочного соотношения (41), в котором величина b не зависит от координат.
3. Таким образом, можно установить эквивалентность следующих утверждений:
уравнения движения (поля) – калибровочно инвариантны,
заряд в замкнутой системе сохраняется,
силы в статическом случае дальнодействующие,
масса частицы переносчика взаимодействия m|||||=0.
GAMMA
Последнее свойство является важной особенностью калибровочной инвариантности, а также и всех остальных ее следствий. Дело в том, что частицы с нулевой массой обладают особым свойством: у таких частиц существует всего два направления поляризации в отличие от частиц с массой m ≠ 0, у которых имеются три три направления поляризации. Это особое свойство безмассовых частиц и есть первопричина калибровочной инвариантности. [11]11
Наиболее просто взаимосвязь условия m||||| = 0 и GAMMA калибровочной инвариантности показана в ст.: Вайнберг С. Свет как фундаментальная частица//УФН. 1976. Т.120. С.677. Подробнее о калибровочной инвариантности см. в кн.: Коноплева Н.П. Попов В.Н. Калибровочные поля. М.: Атомиздат. 1980; Окунь Л.Б. Физика элементарных частиц. М.: Наука, 1984.
[Закрыть]