355 500 произведений, 25 200 авторов.

Электронная библиотека книг » И. Шелестов » Путеводитель в мир электроники. Книга 2 » Текст книги (страница 8)
Путеводитель в мир электроники. Книга 2
  • Текст добавлен: 9 апреля 2017, 04:00

Текст книги "Путеводитель в мир электроники. Книга 2"


Автор книги: И. Шелестов


Соавторы: Борис Семенов
сообщить о нарушении

Текущая страница: 8 (всего у книги 23 страниц)

Печатная плата приведена на рис. 11.62, монтажный чертеж – на рис. 11.63.


Рис. 11.62. Печатная плата


Рис. 11.63. Сборочный чертеж и внешний вид монтажа

Катушки L5 и L6 наматываются на унифицированных трех– или четырехсекционных каркасах с внутренним диаметром 3,5 мм. Эти катушки имеют цилиндрические подстроечные сердечники из феррита 100НН. Количество витков: L5.1 – 13, L5.2–2, L6 – 12. Провод диаметром 0,1…0,12 мм, намотка внавал. Выводы необходимо аккуратно зачистить и припаять к выводам каркаса так, чтобы его не расплавить.

Прежде чем начать настройку приемника, не поленитесь и изготовьте из кусочка диэлектрика (например, стеклотекстолита) отвертку для подстройки катушек L1…L4. Включив питание, переведя переключатель S1 в правое (по схеме) положение и установив движок резистора R1 примерно в среднее положение, попробуйте «поймать» какую-нибудь УКВ станцию FM диапазона 88… 108 МГц вращением сердечника катушки L4. После этого вращением резистора R1 добейтесь максимальной громкости приема.

Переходим к первой операции – настройке тракта ПЧ. Вращением подстроечника катушки L5 нужно добиться максимального качества звука и максимальной его громкости. Вторая операция – настройка частотного детектора – производится по тем же критериям, но вращением сердечника катушки L6. Третья операция – настройка границ диапазона – производится при установке резистора R1 в нижнее (по схеме) положение. В этом положении вращением сердечника катушки L4 устанавливаем самую «нижнюю» по частоте станцию диапазона, контролируя ее по промышленному радиоприемнику.

Установка «нижней» станции в диапазоне 64…73 МГц производится при переводе переключателя S1 в левое положение. Последняя операция – добиться приема станций без характерного шипения вращением подстроечников катушек L1 и L2.

Как показывает практика, настройка даже такого до предела облегченного варианта супергетеродинного приемника занимает не один час времени. Однако это вознаградит вас за труды потрясающим качеством звучания и стабильностью установленных настроек.

Обращаем ваше внимание, что усилитель низкой частоты, установленный на плату приемника, предназначен для демонстрации работоспособности схемы. Если вы захотите использовать этот приемник повседневно, подключите хороший усилитель низкой частоты на транзисторах или на микросхеме, которые приведены в первой книге.

Следующая конструкция УКВ радиоприемника основана на той же микросхеме, но настройка его осуществляется двухсекционным конденсатором переменной емкости КПЕ-2, который можно найти в старой отечественной аппаратуре (в блоках УКВ), выпущенной в 70—80-х гг. XX в. Двухсекционная конструкция, как мы успели заметить, является принципиальным моментом, так как одновременно нужно перестраивать и преселектор, и гетеродин. Конденсатор снабжен редуктором и большим шкивом, который можно связать капроновым тросиком с ручкой и плавно настраивать приемник.

Схема приемника приведена на рис. 11.64, печатная плата – на рис. 11.65, а сборочный рисунок – на рис. 11.66.


Рис. 11.64. Схема приемника


Рис. 11.65. Печатная плата


Рис. 11.66. Сборочный чертеж и внешний вид монтажа

Радиоприемная часть практически ничем не отличается от описанной в предыдущей конструкции. Нет особенностей и в усилителе низкой частоты.

Его схема отдельно была приведена в главе «Усиливаем сигналы» (книга 1). Единственная особенность кроется в наличии стабилизатора напряжения D2. Зачем он нужен? Как видно из схемы, напряжение питания составляет 9 В – им нельзя питать микросхему. Поэтому стабилизатор и понижает напряжение до безопасного для микросхемы TA8164 уровня 5 В.

Намоточные данные катушек: L1 – 5 витков, L2 – 6 витков провода типа ПЭВ диаметром 0,4…0,5 мм. Каркасы диаметром 5 мм с резьбовыми подстроечниками М4. Намоточные данные остальных катушек можно взять из предыдущей схемы. Так как приемник может работать только в одном из УКВ-диапазонов (отечественном или зарубежном), надо заранее выбрать диапазон. Конденсаторы С6 и С7 можно использовать для установки границ принимаемого диапазона, если не хватит хода катушек L1 и L2. Но скорее всего, что в зарубежном диапазоне установка конденсаторов С6 и С7 не потребуется. Для перестройки приемника на прием передач отечественного УКВ-диапазона нужно вывернуть латунные подстроечники и ввернуть вместо них подстроечные сердечники из феррита 13ВЧ или 9ВЧ (материал этих сердечников имеет характерный темно-бордовый цвет, они достаточно хрупки, так что обращаться с ними при настройке надо осторожно, без усилий). Конденсаторы С6 и С7 в этом случае должны быть по 10 пФ. Возможно, что при настройке для минимизации искажений звука потребуется увеличить номинал R1 до 5,6 кОм.

Асинхронно-гетеродинный приемник

Последний вариант УКВ приемника, предлагаемый читателю для изготовления, развивает идею супергетеродинного приемника и… возвращается к гетеродинному варианту! В этом приемнике есть «супергетеродинная» промежуточная частота, равная 76 кГц, но ее выделение осуществляется «гетеродинным» фильтром низкой частоты, построенном на основе обычных конденсаторов. Есть усилитель промежуточной частоты и частотный детектор, работающий по особому фазовому принципу, есть даже бесшумная настройка, устраняющая шумы эфира между станциями и индикатор точной настройки на станцию.

Как устроена эта микросхема, как она работает, подробно описано в книге [7]. Чтобы не утомлять читателя математическими формулами и структурными схемами, назовем достоинства и недостатки такого приемника. К достоинствам относятся чрезвычайная простота, легкость в повторении, минимум операций по настройке после сборки, достаточно высокая входная чувствительность. Недостатков тоже много, и самый главный из них – наличие зеркального канала, отстоящего от основного на 152 кГц. Фильтровать этот канал приходится специальными методами.

Впервые микросхема, реализующая вариант этого асинхронно-гетеродинного радиоприемника, была выпущена фирмой «Philips» под маркой TDA7000. Позже появились модификации TDA7010 и TDA7021. Микросхема TDA7021 имеет отечественный аналог КР174ХА34АМ, поэтому именно на ней мы будем строить приемник.

Последняя разработка фирмы – микросхема TDA7088 – серьезно отличается от своих предшественниц. Настройка осуществляется не ставшим уже классическим способом изменения управляющего напряжения на варикапах вращением переменного резистора, а кнопочным. Приемник, построенный на этой микросхеме, имеет всего две кнопки: «reset» – сброс, устанавливающий схему настройки в начало диапазона, и «scan» – автосканирование вверх по диапазону и остановка на ближайшей станции. К сожалению, эта микросхема выпускается в планарном корпусе с шагом выводов 1,27 мм, поэтому ее трудно использовать начинающим радиолюбителям. Но заинтересовавшиеся смогут подробно, познакомиться с ней в книге [7].

Принципиальная схема приемника приведена на рис. 11.67, печатная плата – на рис. 11.68, а сборка – на рис. 11.69.


Рис. 11.67. Схема приемника


Рис. 11.68. Печатная плата


Рис. 11.69. Сборочный чертеж и внешний вид монтажа

Выводы 12 и 13 – входной усилитель радиочастоты. Между ними включен контур, образованный элементами С13, С14, L1. Контур выполнен неперестраиваемым и настроен на среднюю частоту принимаемого диапазона. Интересно отметить, что приемник будет вполне прилично работать, если, этот контур исключить вместе с резистором R10, оставив только конденсатор С15 и подключив антенну к выводу 12 через конденсатор емкостью 47… 100 пФ.

Гетеродин приемника имеет вывод 5. К нему подключен частотозадающий контур L2, С4, VD1. Через резистор R1 на варикап VD1 подается напряжение смещения. Конденсаторы C1, С2, СЗ и С12 формируют селективную характеристику усилителя промежуточной частоты. Конденсатор С10 – нагрузка частотного детектора, а конденсаторы С16 и С17 установлены в усилителе низкой частоты. Вывод 9 микросхемы – сигнал точной настройки. Схема, построенная на транзисторах VT1 и VT2, во-первых, усиливает сигнал точной настройки, а во-вторых, инвертирует его, поскольку о точной настройке свидетельствует низкий уровень на выводе 9.

Усилитель низкой частоты построен на микросхеме TDA7050 и особенностей не имеет. Резистор R8 регулирует громкость. Его конструкция – белое колесико, совмещенное с выключателем.

О деталях. Переменный резистор R2 должен быть многооборотным, например типа СПЗ-3б. Его номинал может лежать в пределах 22…100 кОм. Резисторы типа МЛТ, С2-33, конденсаторы – К10-17 и К50-35 (К50-68). Вместо варикапа КВ 109В можно применить КВ109Г, КВ122А, КВ106А. Светодиод – любого типа с красным свечением. Антенна – отрезок провода длиной 1,5 м. Катушки L1 и L2 – бескаркасные, намотанные на оправке диаметром 5 мм проводами ПЭВ, ПЭТВ (диаметр 0,5…0,7 мм). Количество витков: L1 – 12, L2 – 7 (для приема зарубежного диапазона) или 11 (для приема отечественного диапазона). Количество витков можно подобрать в пределах 1–2 для установки границ диапазона. Можно также осуществлять настройку сжатием-растяжением витков.

Налаживание начинают с соединения дополнительным резистором сопротивлением,10 кОм выводов конденсатора С9, отключая систему бесшумной настройки. Затем сжатием и растяжением витков катушки L2 добиваются перестройки по всему диапазону резистором R2. Можно также поэкспериментировать с варикапами, установив их параллельно две штуки (напаяв сверху второй элемент). Тогда можно уменьшить число витков катушки. Собственно, вот и вся настройка. Схему подавления шумов (БШН) можно опять включить.

Приемник питается от двух гальванических элементов напряжением 3 В.

Сравните его звучание со звучанием классического супергетеродинного приемника и выберите лучший вариант. Добавим, что немного видоизмененный вариант приемника, содержащий дополнительный усилитель высокой частоты (антенный), опубликован в книге [8].

Приемник с двойным преобразованием и другие

В профессиональной многоканальной радиоаппаратуре связи надо получить довольно большую селективность не только относительно соседних станций, но и побочных каналов (зеркального и гармониковых, то есть кратных частоте гетеродина). С повышением частоты расширяется полоса пропускания контуров, а это приводит либо к необходимости увеличивать их количество в преселекторе (входном фильтре) и перестраивать все одновременно (например, варикапами), что довольно сложно, либо же применять двойное преобразование частоты. Второй вариант оказался проще в реализации и обеспечивает более высокие параметры приемника.

При двойном преобразовании первую ПЧ выбирают более высокой (6,5 МГц или более), чем вторую (455–465 кГц). Это позволяет при усилении сигнала на второй ПЧ легко отсечь зеркальные каналы.

Превратить супергетеродинный приемник в приемник с двойным преобразованием несложно – достаточно на выходе ФПЧ поставить еще один гетеродин, смеситель, ФПЧ, как показано на рис. 11.70.


Рис. 11.70. Приемник с двойным преобразованием частоты

Особенностью второго гетеродина является постоянство его частоты. К примеру, если первая промежуточная частота будет 10,7 МГц, то вторую ПЧ можно установить на уровне 465 кГц.

Двойное преобразование частоты позволяет обеспечить еще большую избирательность, помехозащищенность и чувствительность к слабым сигналам. Иногда в специальной технике используется даже тройное преобразование частоты!

Заняться конструированием приемника с двойным преобразованием можно не ранее, чем появится практический опыт по изготовлению более простых схем. К тому же настройка приемника с двойным преобразованием частоты требует наличия комплекта профессиональных измерительных приборов, которых пока у вас нет. Поэтому мы не приводим практических схем таких приемников.

Описанными ранее конструкциями не ограничивается разнообразие радиоприемников. Как вы уже знаете, при амплитудной модуляции несущая не содержит информации, но на нее тратится большая часть мощности передатчика. Для повышения КПД передатчика была придумана схема, позволяющая передавать сигнал, содержащий только две боковые полосы (с подавленной несущей частотой). Такой вид модуляции сигнала называют Double Side Band, или сокращенно – DSB. Приемник в этом случае нужен тоже специальный, способный восстановить несущую, которая нужна при детектировании исходного сигнала без искажений.

Еще один метод улучшения технических характеристик канала связи связан с использованием однополосной модуляции (такой вид модуляции сокращенно называют SSB). Энергетически он еще более выгоден, чем способ с подавленной несущей, к тому же в 2 раза уменьшается полоса, занимаемая в эфире (информацию передают на одной боковой полосе – верхней или нижней, – обрезав вторую). Приемник в этом случае также должен иметь специальную схему, способную выполнить детектирование такого сигнала, для чего необходимо, чтобы частота гетеродина и фаза ее колебаний в приемнике в любой момент времени соответствовали определенному значению по отношению к фазе и частоте колебаний несущей передатчика (с высокой точностью).

Обзор современных способов получения информации

Мы завершаем разговор о радиоприемных устройствах небольшим обзором современных способов получения информации по радиоканалу. Сегодня стремительно возрастает популярность передачи по радио данных, кодированных в цифровом виде, то есть в виде нулей и единиц. Не подумайте, что наступает ренессанс «морзянки» – в обиход входит цифровой радиоканал. Самый простой из них имеют автомобильные сигнализации. Брелок-передатчик при нажатии кнопки излучает в эфир кодовую посылку, в которой зашифрованы код опознавания «свой-чужой», команда, по которой, например, нужно открыть дверь автомобиля. Приемник, установленный в машине, постоянно прослушивает эфир и, получив нужный код, выдает команду на то или иное действие. Несмотря на кажущуюся простоту, и передатчик, и приемник автомобильной сигнализации оснащены микропроцессорами (микроконтроллерами), которые обрабатывают цифровую информацию.

Автомобильная индивидуальная сигнализация – малая часть того, что может обеспечить современная радиотехника для предотвращения кражи транспортных средств. Сейчас идет практическая реализация глобальной системы охраны, которая немедленно передаст сигнал тревоги на компьютер соответствующих служб, сообщив местонахождение угнанного автомобиля. Понятно, что необходимой аппаратурой должны быть оборудованы все автомобили. Это – дело недалекого будущего.

Совершая поездку на автомобиле, водители часто слушают радиоприемники. Кроме развлечения, это позволяет оперативно узнавать о погодных условиях и пробках на дорогах. Но сводки передаются не так часто. Чтобы постоянно иметь «под рукой» важную информацию, сегодня в УКВ-диапазоне работают станции RDS,которые передают цифровой сигнал одновременно со звуковой радиопередачей. Эта информация может быть выведена на дисплей автомобильного приемника «бегущей строкой». Россия пока отстает от всего мира по масштабам развития RDS вещания – оно имеется только в нескольких крупных Городах. Но, хочется верить, развиваться будет быстро.

Очень напоминает систему RDS телевизионная служба «телетекст». Телевизор, оснащенный декодером телетекста, может выводить на экран в буквенно-цифровом виде передаваемую телецентром в перерывах между кадрами изображения информацию. Функция телетекста есть практически во всех современных телевизорах. Информация здесь также передается в цифровом виде.

Сколько существует человечество, всегда актуальной была проблема определения своего местонахождения на земной поверхности. Сегодня сделать это очень просто – достаточно иметь в кармане приемник GPS сигнала. Система GPS – это 24 спутника на околоземной орбите, по сигналу с которых можно определить свои географические координаты: широту и долготу. Приемники GPS сигнала могут быть как очень простыми и дешевыми, дающими только информацию о координатах, а могут выводить на цветной монитор электронную карту с возможностью масштабирования, отмечать маршрут передвижения, обсчитывать скорость продвижения на каждом участке.

Прочно вошла в нашу жизнь пейджинговая связь, первые опыты внедрения которой относятся аж к 1956 г.! Пейджинговая система также использует радиоканал, по которому непрерывно передаются сообщения для абонентов в цифровом виде. Каждое сообщение имеет свой уникальный код, и оно попадает на приемное устройство абонента (пейджер), которому и адресуется. Недостаток пейджинговой связи кроется в невозможности обратной передачи сообщения, но тем не менее она используется так же широко, как и сотовая связь, – благодаря своей дешевизне. В 1992 г. создана общеевропейская система пейджинговой связи «European Radio Message System», работающая в полосе частот 169,4—169,8 МГц. В настоящее время около 90 % стран используют разработку фирмы «Motorola», датируемую 1993 Эта разработка, называемая FLEX, обладает повышенной помехоустойчивостью и скоростью передачи данных. Пейджинговые системы имеют междугородный и общеевропейский роуминг, то есть сообщение дойдет до абонента, где бы он ни находился.

Теперь поговорим о такой широко распространенной ныне области, как радиолокация. Радиолокационные станции используются сегодня не только и даже не столько в военных целях, сколько помогают безопасному передвижению транспорта – самолетов и кораблей. Миниатюрное локационное оборудование есть даже на небольших прогулочных яхтах и одноместных самолетах. Оно входит в обязательный набор технических средств аэропортов – без радиолокации современные самолеты не могут ни взлететь, ни сесть на посадочную полосу. Радиолокация используется и в научных целях – для исследования ионосферы и даже для изучения планет Солнечной системы.

Первые опыты по радиолокационному обнаружению объектов относятся к 30-м гг. XX в., причем ведущие мировые страны (СССР, Англия, Германия, США) стали заниматься этой проблемой практически одновременно, но в обстановке строжайшей секретности. Поначалу к технике радиолокации военные руководители относились прохладно, не доверяли новым технологиям. Но произошла большая трагедия, и это в значительной степени способствовало изменению мнения на предмет использования локаторов.

В 1941 г., 7 декабря, японский флот состоявший из шести авианосцев с 360 самолетами, двух линкоров, трех крейсеров, девяти эсминцев и шести подводных лодок, скрытно подошел к американской базе Перл-Харбор, недалеко от Гавайских островов. На базе имелась одна новая РЛС, но она включалась всего на несколько часов в сутки, да и к ее данным относились достаточно прохладно. В то утро РЛС все-таки работала и обнаружила на расстоянии 140 миль большое скопление самолетов. Но американцы сочли самолеты своими, так как они ждали прибытия отряда бомбардировщиков. Японские самолеты достигли Перл-Харбора только через час, и за это время можно было как-то подготовиться, поднять в воздух истребительную авиацию, задействовать корабельные и береговые зенитные орудия. Увы, беспечность и самоуверенность американцев привели к потере четырех линкоров, крейсера, трех эсминцев, 260 самолетов, свыше 5000 раненых и убитых – японцы просто разбомбили неподвижные и несопротивляющиеся цели. Интересно отметить, что японская сторона потеряла всего 29 самолетов и 55 летчиков.

Техника радиолокации сегодня находится на очень высоком уровне и продолжает развиваться. С ее помощью можно определить направление на объект, его высоту над поверхностью и скорость перемещения. Поражает и разрешающая способность технических средств: некоторые станции могут распознать цель с максимальным размером около 20 см на расстоянии 1500 км!

Как устроена простейшая радиолокационная станция? Она состоит из передатчика и приемника, расположенных рядом. Передатчик формирует короткие импульсы, которые с помощью направленных антенн излучаются в сторону объекта. Достигнув цели, радиоволна отражается от нее и спустя некоторое время возвращается к приемнику. Для прохождения пути от РЛС до цели и обратно волне потребуется некоторое время, которое, учитывая постоянство скорости распространения волны, легко пересчитать в расстояние. В самом простом случае измерить расстояние можно с помощью… осциллографа (рис. 11.71).


Рис. 11.71. Измерение расстояния до объекта средствами РЛС

В момент излучения импульса (1) запускается развертка осциллографа и антенна переключается на прием. Отраженный импульс (2) приходит спустя некоторое время t, поэтому, помножив полученное. время на калибровочный множитель, можно определить расстояние. А можно нанести на экран осциллографа сетку и проградуировать ее непосредственно в единицах расстояния, например в километрах.

Более сложные РЛС кругового обзора изготавливаются с поворотной антенной, перемещение которой синхронизируется с лучом на специальной осциллографической трубке, в центре которой условно находится РЛС, а сканирующий луч постоянно перемещается по радиусу, отмечая точками объекты.

Радиолокационные станции широко используются для зондирования ионосферы, когда антенна РЛС направляется вертикально вверх. Зондирование осуществляют на частотах от 0,5 до 20 МГц. Результатом этой работы является получение высотно-частотной характеристики ионосферы. Это нужно для прогнозирования эффективности работы коротковолновых линий связи. Поскольку в моменты ионосферных возмущений (это наиболее четко проявляется в полярных районах) наступает резкое ухудшение параметров связи, важно своевременно обнаружить такие явления и предупредить соответствующие службы. Интересно отметить, что результаты наблюдений за ионосферой вместе с наблюдениями за другими геофизическими явлениями позволяют составлять прогнозы поведения ионосферы вперед на несколько лет!

Радиоастрономия – эта область науки проделала за несколько десятилетий путь от зарождения до расцвета. Совершено множество открытий источников излучения, находящихся во Вселенной и в не видимых обычным глазом – квазаров, пульсаров. Специальные радиотелескопы, принимающие космическое излучение, занимают на земле километровые площади, являясь уникальными техническими сооружениями. Колоссальный рывок совершила радиоастрономия и на пути к объяснению картины зарождения Вселенной. В частности, было открыто реликтовое излучение. Как известно, теория зарождения Вселенной в результате Большого взрыва, была построена советским математиком А. А. Фридманом в 1922–1924 гг. В частности, из этой теории следовало, что Вселенная в далеком прошлом не имела ни отдельных небесных тел, ни галактик, а все вещество было однородным, очень плотным и быстро расширялось. В начале 1940-х гг. американским физиком Г. Гамовым на основе теории Фридмана сделано предположение о том, что температура этого однородного вещества была огромной. Физик высказал предположение: в сегодняшней вселенной должно существовать слабое излучение, оставшееся от эпохи большой плотности. И действительно, в 1965 г. американские физики А. Пензиас и Р. Вилсон открыли реликтовое излучение, доказав справедливость теории «горячей вселенной».

Максимум интенсивности реликтового излучения приходится на участок длин волн порядка 0,1 см. Наличие реликтового электромагнитного излучения позволяет исследовать процессы, происходившие во Вселенной 10–20 млрд. лет назад. Интересно отметить, что в диапазоне сантиметровых и миллиметровых волн реликтовое излучение по интенсивности во много тысяч раз превосходит излучение звезд и обнаруживается при помощи радиотелескопов.

Наличие реликтового излучения позволило продвинуться вперед и по такому важному для астрономов вопросу, как распределение плотности вещества во вселенной. Поскольку излучение несет информацию о точках пространства, разнесенных очень далеко друг от друга, по его интенсивности судят о плотности вещества в этих точках. Интенсивность этого излучения, приходящего к нам с диаметрально противоположных точек неба, оказалась на удивление одинаковой. Объяснения данному научному факту пока не найдено. Техника радиоастрономии – это передний край современной науки.

Физиология. Электромагнитные волны – отличный инструмент для изучения функционирования человеческого организма, диагностики заболеваний. Наличие электрических сигналов при работе мышц и мозга человека объясняет наличие радиоизлучения живого организма на частотах около 150 кГц. Об исследованиях в этой области впервые было сообщено еще в 1960 г. на конференции Общества американских радиоинженеров. Известные всем электрокардиограммы и электроэнцифалограммы дают отличное представление о работе сердца и головного мозга. Практически любое нарушение четко отслеживается специально подготовленными врачами, предупреждается развитие патологий, даются лечебные рекомендации. В последнее время появились приборы, которые после снятия электрограммы автоматически анализируют графики, выдают необходимые данные, избавляя врача от рутинной работы и позволяя ему сосредоточиться на главном.

Человеческий мозг при своей работе излучает множество периодических сигналов, называемых ритмами. Учеными установлено, что все ритмы живых организмов так или иначе связаны с основным земным ритмом – суточным. Интересно, что в настоящее время у человека обнаружено более 100 различных ритмов. Все эти ритмы также связаны друг с другом, образуя логичную цепь.

Рассогласование ритмической деятельности организма может вызвать даже заболевания. Например, десинхроноз возникает, когда человек перебирается на противоположную сторону земного шара. Ему приходится какое-то время адаптироваться к новым условиям.

Надеемся, что вы, уважаемые читатели, успели понять: радиотехника – это наука, которой в современной жизни всегда есть место.


Литература

1. Захаров А. УКВ ЧМ приемник с ФАПЧ. – М.: Радио, №,12, 1985.

2. Захаров А. Кольцевой стереодекодер в УКВ ЧМ приемниках. – М.: Радио, № 10, 1987.

3. Захаров А. Стереодекодер с коррекцией частотных предыскажений. – М.: Радио, № 1, 1990.

4. Сапожников М. Как повысить селективность приемника. – М.: Радио, № 12, 1991.

5. Поляков В. Т. Радиолюбителям о технике прямого преобразования. – М.: Патриот, 1990.

6. Поляков В. Т. Техника радиоприема. Простые приемники AM сигналов. – М.: ДМК, 2001.

7. Семенов Б. Ю. Современный тюнер своими руками: УКВ стерео + микроконтроллер. – М.: COЛOH-P, 2001.

8. Шелестов И. Я. Радиолюбителям: полезные схемы. Книга 4. – М.: СОЛОН-Р, 2001.



    Ваша оценка произведения:

Популярные книги за неделю