355 500 произведений, 25 200 авторов.

Электронная библиотека книг » И. Шелестов » Путеводитель в мир электроники. Книга 2 » Текст книги (страница 6)
Путеводитель в мир электроники. Книга 2
  • Текст добавлен: 9 апреля 2017, 04:00

Текст книги "Путеводитель в мир электроники. Книга 2"


Автор книги: И. Шелестов


Соавторы: Борис Семенов
сообщить о нарушении

Текущая страница: 6 (всего у книги 23 страниц)

Приемник прямого усиления

Превратить детекторный приемник в приемник прямого усиления очень просто – достаточно отключить от него телефон и подать продетектированный сигнал на простейший усилитель низкой частоты (УНЧ), например, изготовленный на одном транзисторе. Громкость сигнала повысится, правда, для этого придется ввести еще источник питания. Селективность такого приемника не станет лучше, но ее можно повысить, во-первых, введя отвод в колебательном контуре, и, во-вторых, включить между детектором и контуром буферный каскад на транзисторе, называемый усилителем радиочастоты (УРЧ). Идеальным вариантом может считаться полевой транзистор, у которого имеется высокое входное сопротивление, и он не будет шунтировать контур, вносить в него дополнительные потери. Однако часто обходились и биполярным транзистором с гораздо более низким входным сопротивлением, частично включая УРЧ в контур или используя катушку связи (что, в принципе, является вариантом неполного включения). По крайней мере, практически все простые транзисторные приемники прямого усиления, серийно выпускавшиеся 50—60-х гг. прошлого века, были построены только на биполярных транзисторах.

Изготовим вначале простейший приемник прямого усиления на основе детекторного приемника. Вообще, если вы не намереваетесь сохранить «для истории» свой детекторный приемник, его можно полностью разобрать и использовать детали вновь. Можно вообще детекторный приемник не разбирать, дополнив его несколькими элементами, расположенными на свободном месте. Но лучше собрать новый приемник из отдельного комплекта деталей, на специальной печатной плате – так интереснее.

Чтобы характеризовать каскады радиоприемников прямого усиления, как-то отличать схемы друг от друга, еще на заре радиотехники было придумано следующее трехбуквенное обозначение. Например, если в описании какого-либо приемника встретится «1-V-1», это означает, что один каскад на транзисторе (электронной лампе) используется в качестве УРЧ, а второй – в качестве УНЧ. Буква «V» – условное обозначение детектора. Приводимые далее две схемы приемников построены по принципу 0-V-1, то есть не имеют каскада УРЧ, а каскад УНЧ – единственный.

Итак, схема приемника прямого усиления на основе детекторного приемника приведена на рис. 11.7, печатная плата – на рис. 11.8, а сборочный чертеж – на рис. 11.9.


Рис. 11.7. Приемник прямого усиления на основе детекторного приемника


Рис. 11.8. Печатная плата


Рис. 11.9. Сборочный чертеж

От описанной ранее она отличается конструкцией катушки L1. Если предполагается использовать приемник для диапазона СВ, необходимо намотать 75 витков провода с отводом от 20 витка (нижний по схеме). Намотка для диапазона СВ должна вестись виток к витку. Если же читатель намерен прослушивать станции, вещающие в диапазоне ДВ, нужно намотать 220 витков провода, разбив примерно на пять намотанных внавал секций. Отвод делается от 50 витка.

Диаметр каркаса, длина и марка, ферритового стержня такие же, как и в детекторном приемнике, провод – ПЭЛ, ПЭВ, ПЭТВ, ПЭЛШО диаметром 0,15…0,3 мм. Переменный конденсатор С2 – воздушный или керамический с максимальной емкостью не менее 240 пФ. Остальные конденсаторы – керамические любого типа, конденсатор СЗ – электролитический типа К50-16, К50-35, К50-68 или другой. В качестве источника питания можно использовать пальчиковую батарейку напряжением 1,5 В.

Транзистор VT1 – КТ315, КТ312 с любым буквенным индексом, диод VD1 – типа Д9 с любым буквенным индексом, переменный конденсатор – типа КПП-2 2х4-270 с включение й одной секцией.

При настройке необходимо подобрать резистор R2 до получения максимальной громкости звука в телефоне В1. Сделать это можно так: вместо резистора R2 впаять подстроечный резистор сопротивлением 330 кОм, включив его реостатом, то есть замкнув средний вывод на один из крайних. Затем, настроив максимальную громкость, выпаять резистор из схемы, измерить сопротивление и впаять на его место постоянный резистор с близким номиналом.

Очень похожий вариант приемника представлен на рис. 11.10, только в нем отсутствует полупроводниковый диод.


Рис. 11.10. Приемник прямого усиления на основе транзисторного детектора

Как же тогда осуществляется детектирование модулированных колебаний?

Очень просто! Взгляните на рис. 11.11.


Рис. 11.11. Принцип работы транзисторного детектора

Транзистор VT1 работает без смещения, а значит, одна полуволна сигнала будет срезана, а другая – усилена. Детектирует колебания эмиттерный переход транзистора. Такой детектор называется коллекторным детектором. Он довольно часто применялся в массовых моделях радиоприемников. Поскольку на выходе колебательного контура L1C2 амплитуда напряжения мала, транзистор VT1 должен быть германиевым, например ГТ308, П416, П422. Сегодня германиевые транзисторы практически не выпускаются, так что, скорее всего, придется разыскивать их в отслужившей старой аппаратуре.

Печатная плата приемника приведена на рис. 11.12, сборочный чертеж – на рис. 11.13.


Рис. 11.12. Печатная плата


Рис. 11.13. Сборочный чертеж

Теперь попробуем отказаться от внешней антенны и заземления. Если вы помните, неплохим вариантом является магнитная антенна, в качестве которой используется сердечник колебательного контура. Сигнал, получаемый с магнитной антенны, невелик, поэтому, во-первых, нужно отказаться от полного включения контура в каскад УРЧ, чтобы не снижать добротность контура, и, во-вторых, ввести хороший многокаскадный УРЧ. Интересный вариант ДВ приемника прямого усиления типа 3-V-1, предлагаемый читателю далее, представляет собой упрощенный вариант схемы И. Александрова.

В схеме рис. 11.14 транзисторы VT1—VT3 – трехкаскадный УРЧ, охваченный отрицательной обратной связью по постоянному току, обеспечивающей стабилизацию режима работы транзисторов.


Рис. 11.14. Приемник 3-V-1

В резонанс с принимаемой волной настраивается контур L1.1, С1, но сигнал снимается не непосредственно с него, а с катушки связи L1.2. Конденсатор С2 – разделительный. Он не позволяет нарушить режим работы УРЧ, связанный с замыканием на общий провод схемы тока через катушку L1.2.

Намоточные данные катушки L1.1 – 220 витков, L1.2 – 40 витков – для диапазона длинных волн. Остальные данные можно взять из предыдущей конструкции. Печатная плата показана на рис. 11.15, сборочный чертеж – на рис. 11.16.


Рис. 11.15. Печатная плата


Рис. 11.16. Сборочный чертеж и внешний вид монтажа

Кстати, подумайте, как этот приемник можно настроить на диапазон СВ или вообще сделать двухдиапазонным.

Последний вариант приемника прямого усиления представлен на рис. 11.17.


Рис. 11.17. Приемник 3-V-1 с полевым транзистором на входе УВЧ

Особенностью этой схемы является отсутствие катушки связи и полное включение контура без снижения его добротности. Достигнуто это введением истокового повторителя на полевом транзисторе VT1. Вторая интересная схемотехническая находка – детектор «с удвоением сигнала», построенный на диодах VD1 и VD2. Схема позволяет получить вдвое увеличенный размах напряжения звуковой частоты по сравнению с одиночным диодом. Других особенностей схема не имеет.

Намоточные данные катушки L1 – те же. Питается приемник от батареи «Крона» напряжением 9 В. В качестве VT1 допустимо использовать КЦ302А, КП303В…КП303Е, КП307А, КП307Б.

Печатная плата и сборочный чертеж показаны на рис. 11.18, внешний вид монтажа – на рис. 11.19.


Рис. 11.18. Топология печатной платы и расположение элементов


Рис. 11.19. Внешний вид монтажа

Собственно, вот и все, что мы хотели рассказать о приемниках прямого усиления. Но следует также знать, что существует разновидность схемы, которая называется рефлексным приемником. С ней мы тоже познакомимся.

Рефлексный приемник

Это – тоже приемник прямого усиления, только в нем один и тот же каскад используется как для усиления радиочастотных сигналов, так и для усиления сигналов звуковых частот. Рефлексная схема несовершенна, поскольку она не отличается ни высокой избирательностью, ни повышенной чувствительностью к слабым сигналам. Однако рефлексный приемник был популярен, когда радиодетали стоили дорого и приходилось экономить на каждой мелочи.

Схема приемника 1-V-1 на одном транзисторе приведена на рис. 11.20, печатная плата – на рис. 11.21, сборочный чертеж – на рис. 11.22.


Рис. 11.20. Рефлексный приемник


Рис. 11.21. Печатная плата


Рис. 11.22. Сборочный чертеж и внешний вид монтажа

Намоточные данные катушки L1.1 нам уже хорошо известны по предыдущей конструкции, а катушка L1.2 должна содержать 25 витков для диапазона ДВ и 8…10 витков – для СВ. Катушку связи лучше намотать на отдельном бумажном колечке, чтобы потом, передвигая его по сердечнику, добиться максимума громкости, минимума искажений звука и максимума селективности.

В схеме режим работы транзистора VT1 выбран таким, чтобы он усиливал высокочастотный сигнал, приходящий с катушки L1.2, который с коллектора поступает на детектор из диодов VD1, VD2. Детектор выполнен по схеме с умножением напряжения. Продетектированный низкочастотный сигнал через цепочку С5, R2, L1.2 возвращается на базу транзистора VT1 и опять усиливается им. Если в схеме возникнет самовозбуждение (характерный писк в телефоне), необходимо в небольших пределах подобрать величину емкости конденсатора С4.

Регенеративный приемник

Теперь настало время познакомиться с детищем Эдвина Армстронга образца 1914 г., называемым регенеративным приемником, или регенератором. На слух название этого приемника ассоциируется с генератором гармонических (синусоидальных) колебаний, но на самом деле регенератор не создает колебаний, а работает подобно приемнику прямого усиления, то есть непосредственно усиливает сигнал. Впрочем, есть у регенератора сходство и с усилителем, и с генератором. Это – уже не усилитель, но еще не генератор. Абсурдно? Ничуть!

Давайте разбираться, как такое может быть.

Вспомним характер свободных колебаний в резонансном контуре. Они всегда носят затухающий характер благодаря потерям в контуре. Чем больше потери, тем быстрее колебания затухают. Колебательный контур имеет еще одно интересное свойство: вид его частотной характеристики однозначно связан с временной характеристикой (то есть с характером затухания свободных колебаний), что показано на рис. 11.23.


Рис. 11.23. Зависимость частотных и временных характеристик колебательного контура

Чем медленнее затухают колебания в контуре, тем «Острее» резонансная частотная характеристика. Что можно сделать, чтобы уменьшить потери в контуре? На сегодняшний день существуют пассивные и активные методы повышения добротности. Пассивные методы связаны с уменьшением активного сопротивления катушек индуктивности, применением специальных конденсаторов с воздушным диэлектриком, неполным включением контуров. Пассивные методы, конечно, применяются довольно часто, но они «работают» до определенного предела. Например, одиночный контур с добротностью 200 сделать не так просто, в то время как для надежной отстройки от соседних радиостанций в диапазоне СВ и особенно КВ нужно иметь добротность по крайней мере 1000…1500. Конечно, можно значительно улучшить входной контур радиоприемника, применив несколько колебательных контуров, поставленных один за другим и настроенных по специальной методике.

Сложность изготовления такого приемника многократно возрастет и окажется недоступной для начинающего радиолюбителя.

Но не будем впадать в отчаяние – на помощь придут активные методы повышения добротности контуров. Вслед за изобретателями этих методов мы поразмыслим, как можно повысить добротность с помощью… вынужденных колебаний! Если к колебательному контуру подвести источник внешних колебаний, то в контуре будет постоянно наблюдаться резонанс – внешний источник восполнит потери. Но контур сам служит источником колебаний, поэтому можно с помощью специальной электронной схемы отобрать часть колебательной энергии, усилить ее и вернуть назад в контур, тем самым частично сократив потери.

Если мы будем возвращать в контур больше энергии, чем расходуется на потери, в контуре возникнут незатухающие колебания. Теоретически они продолжатся бесконечно долго, а практически – пока не иссякнет энергия, питающая схему отбора, усиления и возврата колебательной энергии. Так рассуждал изобретатель А. Мейсснер, создавший первый в мире работоспособный генератор незатухающих колебаний на электронной лампе (генератор Мейсснера).

Генератор нам пригодится в дальнейшем, а сейчас он просто мешает – генерация недопустима в приемнике прямого усиления. Однако мы забыли, что сможем вернуть в контур чуть меньше энергии, чем необходимо на полное покрытие потерь. Колебания в таком контуре будут продолжаться дольше, чем в контуре без восполнения потерь, но они все равно рано или поздно закончатся. А теперь еще раз взгляните на рис. 11.23. Мы абсолютно точно можем сказать, что добротность контура повысилась, резонанс в частотной области стал «острее».

Интересно отметить, что таким методом мы сможем и увеличить потери в контуре, сделав резонансную кривую более пологой. Соответственно очень важно правильно подать сигнал обратной связи в контур, чтобы регенерация была возможна. Обратная связь в регенераторе носит положительный характер, то есть собственные колебания и колебания из цепи обратной связи должны складываться, а не вычитаться друг из друга.

Регенеративный прием сегодня скорее достояние истории, это в первую очередь предмет увлекательного радиолюбительского творчества. Серьезная радиоприемная аппаратура и аппаратура связи строятся по другим принципам, и вот почему. Мы уже установили, что при определенных условиях регенератор может превратиться в источник колебаний – положительная обратная связь всегда неустойчива. Поэтому в любой регенератор приходится вводить, ко всем прочим настройкам, еще и регулятор степени регенерации. Настроившись на принимаемую станцию, необходимо отрегулировать этим органом управления сигнал по максимуму громкости, минимуму искажений и отстройке от соседних станций. В дальнейшем приходится иногда подстраивать регенерацию, так как контур с повышенной добротностью чувствительнее ко всякого рода нестабильностям типа изменения температуры окружающей среды, напряжения питания. Практическое применение в профессиональной аппаратуре находит лишь собрат регенератора – сверхрегенератор. О нем мы поговорим позже.

А регенератор, несмотря на массу недостатков, до сих пор популярен у радиолюбителей, подкупая своей чрезвычайной простотой и потрясающей избирательностью, дающейся почти даром. Радиоприемную часть регенератора можно собрать всего на одном (!) транзисторе.

Итак, что собой представляет схема простейшего регенератора? Взглянем на рис. 11.24.


Рис. 11.24. Простейший регенератор (схема Мейсснера)

Сигнал принимает антенна WA, и через катушку La он поступает в основной контур LC, который подключен к сетке и катоду лампы V. Контурные колебания модулируют анодный ток и через катушку связи Lсв, поступают обратно в контур LC. Степень регенерации регулируется связью между Lcв и L, например сближением катушек. При определенной связи между катушками возникают незатухающие колебания и регенератор превращается в чистый генератор колебаний (генератор Мейсснера).

Современный регенератор нелепо собирать на электронной лампе – выручают транзисторы. Да и степень положительной обратной связи при современном уровне развития элементной базы регулировать намного удобнее. Мы будем использовать в качестве регулировки регенерации обыкновенный переменный резистор.

Вы еще не разобрали приемник прямого усиления, в котором используется на входе полевой транзистор (рис. 11.17)? В этом случае вам придется сделать минимум доработок, чтобы превратить приемник в регенератор. Необходимо лишь заменить резистор R2 на переменный (непроволочного типа, например, СПЗ-19) и сделать отвод от катушки L1, как показано на рис. 11.25.


Рис. 11.25. Доработка приемника прямого усиления (рис. 11.17), превращающая его в регенератор

Для диапазона ДВ отвод нужно сделать от 3 витка (началом считать правый по схеме вывод катушки), для диапазона СВ – от 1 витка. Транзистор VT1, как мы знаем, является истоковым повторителем, то есть не переворачивает фазы, а значит, сигнал с резистора R2 складывается с собственными колебаниями в контуре L1, С1, повышая его добротность.

Более сложный вариант регенеративного приемника, рассчитанного на работу в коротковолновых диапазонах, охватывающий частотный участок от 3,5 до 22 МГц, построен на базе американского радиолюбительского набора MFJ-8100, представляющего собой комплект деталей, печатную плату и корпус для самостоятельной сборки регенератора.

Схема этого набора со всеми необходимыми данными неоднократно публиковалась в печати, в том числе и в отечественной, что позволяет собрать и отладить приемник собственными силами.

Схема приемника, приведенная на рис. 11.26, несколько модернизирована по сравнению с оригинальной: добавлен УНЧ на интегральной микросхеме D1 типа К174УН14 (импортный аналог TDA2003). Переключатель SA1 осуществляет коммутацию диапазонов в следующих положениях:

1 – 3,5…4,3 МГц;

2 – 5,9…7,4 МГц;

3 – 9,5…12,0 МГц;

4 – 13,2…16,4 МГц;

5 – 17,5…22,0 МГц.


Рис. 11.26. Регенеративный приемник на базе MFJ-8100

В приемнике нет встроенной магнитной антенны, а значит, необходимо использовать внешнюю (WA1). Подключать заземление необязательно. Предварительное усиление сигнала осуществляется УРЧ на транзисторе VT1, Включенном по схеме с общим затвором. Резистор R1 регулирует степень связи с антенной, поэтому, изготовив и настроив приемник, нужно установить движок этого резистора в такое положение, в котором качество звука наилучшее, и далее уже его не трогать. В оригинальном наборе резистор R1 располагается на задней стенке корпуса.

Колебательный резонансный контур образован катушками L1…L5 и конденсаторами С3, С4. На первый взгляд контур оказывается незамкнутым, но это только на первый взгляд. Замыкается он конденсатором С2. Такая схемная реализация удобна тем, что один из выводов КПЕ СЗ связан с «землей», а значит, будет меньше сказываться влияние собственной емкости тела человека.

Регенеративный узел собран на транзисторах VT2 и VT3. Регулятором «регенерация» в данном случае выступает резистор R8, а резистор R10 задействуется только в процессе настройки. Вращая его, нужно добиться, чтобы по всему «ходу» резистора R8 не возникало возбуждения регенератора или возникало на самом краю «хода». Продетектированный сигнал снимается с резистора R9 и поступает на фильтр и регулятор громкости, собранный на элементах C11, С12, С13, R11, R12. Затем низкочастотный сигнал усиливается микросхемой D1 и преобразуется в звуковой сигнал динамической головкой ВА1 с сопротивлением обмотки 4…8 Ом.

Питание приемника осуществляется от стабилизированного сетевого источника напряжением 9 В. Намоточные данные катушек приведены в табл. 11.1.


Все катушки намотаны виток к витку на каркасах, склеенных из бумаги, диаметром 12 мм. Для намотки используется провод диаметром около 0,5…0,7 мм. Катушка L1 наматывается в два слоя, по 17 витков в слое; катушка L2 – также в 2 слоя (в первом слое 9 витков, во втором – 8), катушки L3, L4, L5 – однослойные. После намотки катушки следует пропитать парафином.

Печатная плата приемника приведена на рис. 11.27, а монтажная схема представлена на рис. 11.28. Проводники, идущие от катушек L1…L5 к переключателю SA1, должны быть минимальной длины. В качестве SA1 удобно использовать галетный переключатель серии ПГК. Неполярные конденсаторы должны быть керамическими, подстроечные резисторы R1, R8, R10 – непроволочными. Вместо транзисторов КП303Е допустимо использовать КП303Г, КП303Д, КП302А, КП364Е или импортный аналог J330.

На этой ноте закончим разговор о регенерации и перейдем к такому интересному техническому открытию, как сверхрегенерация.


Рис. 11.27. Печатная плата


Рис. 11.28. Сборочный чертеж и внешний вид монтажа

Сверхрегенератор

В 1922 году Армстронг модифицировал регенеративный радиоприемник и открыл новый способ детектирования сигналов, в котором возможно даже при помощи одиночного каскада достигнуть усиления в миллион раз! Чтобы построить сверхрегенератор, нужно очень мало – ввести регенератор в режим возбуждения, то есть создать в нем собственные колебания. «Но позвольте! – воскликнет читатель. – Чуть выше было сказано, что режим генерации собственных колебаний противопоказан для радиоприема». Все правильно – для режима прямого усиления непрерывная генерация действительно противопоказана. А вот если ввести приемник в режим срыва генерации, когда начавшиеся колебания периодически с не слишком высокой частотой будут срываться и возникать снова, можно наблюдать интереснейшие эффекты. Срыв генерации может осуществлять как дополнительный внешний генератор, так и пассивная цепочка, включенная в регенеративный каскад.

Но не будем торопить события, а вновь рассмотрим схему Мейсснера, несколько ее модифицировав (рис. 11.29).


Рис. 11.29. Схема сверхрегенеративного приемника, основанного на генераторе Мейсснера

Мы ввели в схему источник периодического сигнала с частотой, много меньшей частоты принимаемого сигнала и, соответственно, собственной частоты колебательного контура LC. Пусть сначала сигнал, получаемый антенной, отсутствует. Тогда при положительном полупериоде напряжения G1 схема самовозбуждается и колебания начнут нарастать, а при отрицательном полупериоде – спадать, как показано на рис. 11.30.


Рис. 11.30. Процессы, происходящие в сверхрегенераторе при отсутствии сигнала в антенне

Мы получили пачки импульсов, заполненных колебаниями с частотой, равной собственной частоте контура.

Теперь подадим на антенный вход сигнал. Если входной сигнал будет промодулирован, то начнется изменение анодного тока по закону модуляции, как показано на рис. 11.31.


Рис. 11.31. Изменение анодного тока в сверхрегенераторе под действием внешнего модулированного колебания

Чем больше амплитуда модулированного колебания в данный момент, тем дольше нарастание собственных колебаний. Осталось только сгладить острые пики и получить исходный сигнал.

Интересно отметить, что с помощью сверхрегенеративного каскада можно детектировать не только АМ-колебания, но и колебания ЧМ, немного расстроив входной контур относительно несущей. Тогда ЧМ-колебание на одном из скатов резонансной кривой контура будет преобразовываться в АМ – разные частоты передаются с разной амплитудой. При совпадении частоты настройки контура со средней частотой ЧМ-колебания (при отсутствии модулирующего сигнала) звука на выходе не будет – в окрестности центральной частоты характеристика контура слишком полога.

Сверхрегенераторы сегодня встречаются намного чаще регенеративных схем. Например, любят использовать эту схему авиамоделисты – приемники радиоуправляемых моделей строятся в основном с применением сверхрегенераторов. Также можно увидеть сверхрегенераторы в канале автомобильной сигнализации. Почему они прижились лучше регенераторов? Во-первых, сверхрегенератор не имеет органов управления степенью регенерации – его настраивают один раз: при первоначальной регулировке. Во-вторых, сверхрегенератор чрезвычайно прост. В-третьих, он может отлично принимать цифровые данные, очень напоминающие телеграфный код.

А есть ли недостатки? Их тоже вполне достаточно для того, чтобы в технике радиовещательного приема сверхрегенерация стала лишь теоретически интересной возможностью преобразования радиочастот в звук. Во-первых, сверхрегенератор обладает широкой полосой пропускания, определяющейся добротностью контура, не охваченного обратной связью, – в сверхрегенераторе не работает закон умножения добротности. Из-за этого сверхрегенератор невозможно использовать в диапазоне КВ, так как плотность радиовещательных станций в нем высока. Во-вторых, в отсутствие внешнего сигнала в сверхрегенераторе слышен характерный шипящий «примусный» звук, вызванный тепловым движением электронов. В-третьих, сверхрегенератор сам излучает в окружающее пространство электромагнитные волны и становится источником помех – ведь он генерирует колебания! В-четвертых, качество звука на выходе сверхрегенератора очень низкое, имеет «хрипяще-шипящий» характер, что не позволяет использовать его для высококачественного радиоприема. Но сверхрегенератор с успехом находит применение в технике портативной связи, где не нужно заботиться о качестве звука, важно лишь, чтобы слова были разборчивы. В-пятых, сверхрегенератор очень чувствителен к стабильности напряжения питания.

Если вы не слишком разочаровались в сверхрегенераторе после этих слов, мы предлагаем попробовать сверхрегенеративную схему на практике. Надо сказать, что многие радиолюбители оценивают качество звука сверхрегенеративного приемника как вполне удовлетворительное и достаточное для прослушивания не только речевых, но и музыкальных передач.

Схема первого – простейшего – сверхрегенеративного приемника, рассчитанного на прием станций УКВ-диапазона, приведена на рис. 11.32.


Рис. 11.32. Схема простого сверхрегенератора УКВ диапазона

Антенна WA1 в данном случае может представлять собой отрезок медного провода длиной 0,5…1 м. Чувствительности схемы вполне хватит для приема УКВ-станций на расстоянии до 50…70 км. Антенна с помощью катушки L1.1 индуктивно связана с селективным контуром L1.2—С1. Конденсатор С1 желательно выбрать с воздушным диэлектриком, например 1КПВМ-1, так как керамический вариант прослужит меньше. В крайнем случае допустимо использовать подстроечный керамический конденсатор типа КПК-1, КПК-М, КТ4-23, припаяв к винту настройки медную трубочку подходящего диаметра, как показано на рис. 11.33.


Рис. 11.33. Вариант доработки подстроенного керамического конденсатора

На конец трубочки необходимо насадить диэлектрическую ручку или обернуть ее несколькими слоями изоленты для исключения влияния емкости тела на схему. Конденсатор С2, устанавливающий режим возбуждения сверхрегенератора, можно использовать любого типа и без доработки.

Намоточные данные катушек: L1.1 содержит 9 витков, L1.2–6 витков провода типа ПЭВ-2, ПЭТВ диаметром 0,5 мм, L2 – 25 витков того же провода диаметром 0,2…0,25 мм. Внешний диаметр каркаса катушек составляет 6,5 мм. Телефонный капсюль В1 должен иметь сопротивление порядка 1…2 кОм.

Приемник смонтирован на плате из фольгированного стеклотекстолита (гетинакса). Печатная плата приемника показана на рис. 11.34, сборочный чертеж – на рис. 11.35.


Рис. 11.34. Печатная плата


Рис. 11.35. Сборочный чертеж и внешний вид монтажа

Настройка его сводится к установке границ диапазона (64…110 МГц) растяжением и сжатием витков катушки L1.2, а также к установке режима самовозбуждения с помощью конденсатора С2. При правильной настройке в телефоне В1 должен быть слышен равномерный шум в промежутках между станциями. Границы диапазона удобно устанавливать по промышленному радиоприемнику, одновременно прослушивая радиопередачу в том и в другом приемниках. Качество звука можно улучшить, подобрав в небольших пределах сопротивление резистора R1.

Схема второго сверхрегенеративного приемника, приведенная на рис. 11.36, разработана радиолюбителем Ч. Китчиным (позывной в любительском эфире N1TEV) и имеет высокие показатели чувствительности, качества звука.


Рис. 11.36. Сверхрегенератор для приема УКВ ЧМ радиопередач (схема Ч. Китчина)

Приемник используется для приема радиовещательных станций в УКВ диапазоне, но на него можно принимать и узкополосные станции радиолюбителей, работающих в диапазоне 144 МГц. Детектирование осуществляется на одном из скатов резонансной характеристики входного контура. Настроить этот приемник также несложно.

Входной каскад, построенный на основе полевого транзистора с управляющим р-n-переходом VT1, выполнен по схеме с общим затвором. Как мы знаем, такое включение обеспечивает усиление сигнала только по напряжению, имеет низкое входное сопротивление, согласующее каскад с антенной. Высокое выходное сопротивление минимально нагружает контур, в котором осуществляется сверхрегенерация, и способствует повышению его добротности. Катушка индуктивности L1 служит нагрузкой входного усилителя. В данной схеме ее индуктивность составляет 15 мкГн, но номинал может отличаться от указанного в 2–3 раза, так как резонансный эффект здесь не используется.

Сверхрегенеративный детектор собран на транзисторе VT2. Сигнал на него поступает через конденсатор малой емкости – С2. Если не удастся найти такой конденсатор, можно изготовить его самостоятельно, скрутив между собой два проводника диаметром 0,15…0,33 мм из провода ПЭВ-2, ПЭТВ. Длина проводников должна быть порядка 25 мм. Конденсаторы С4, С5 и катушка L2 образуют колебательный контур, настраиваемый конденсатором С4 в резонанс с принимаемым сигналом. Высокочастотная составляющая сигнала резонансного контура замыкается через конденсатор С7. Конденсатор С6 – элемент положительной обратной связи (ПОС). Элементы С8, С9, R2, R4, R5 – цепь автоматического гашения колебаний сверхрегенеративного каскада. Частота гашения устанавливается элементами С8, R4, R5 и может быть подрегулирована резистором R5 при настройке для получения наилучшего качества звука. Элементы R2, С9 обеспечивают форму гасящих импульсов, близкую к синусоидальной (рис. 11.37).


Рис. 11.37. Форма гасящих импульсов в сверхгенераторе Ч. Китчина

Как показывают результаты экспериментов, проведенных разработчиком этой схемы, такая форма импульсов повышает селективные свойства и вносит минимальные искажения в звуковой сигнал. Форму гасящих импульсов нужно устанавливать резистором R2 «на слух». Дроссель L3 не позволяет проникать высокочастотной составляющей генерации на выход детектора. Его величина индуктивности также некритична и в описываемой схеме составляет 15 мкГн.

Цепочка R6, С13 – простейший фильтр низких частот (ФНЧ), выделяющий звуковой сигнал. Резистор R8 – регулятор громкости. На микросхеме DA1 построен УНЧ. Эту схему вы уже встречали по ходу чтения книги. Каких-либо особенностей она не имеет. При желании настроить подходящий уровень громкости в верхнем (по схеме) положении движка резистора R8 нужно подобрать величину R10. Увеличение этого резистора увеличивает общий коэффициент усиления микросхемы.

Очень важный каскад выполнен на, элементах VT3, R3, R7, С10, С11, С12. Как вы помните, степень регенерации в значительной степени зависит от напряжения питания регенеративного каскада. В качественном сверхрегенеративном приемнике необходимо подстраивать степень регенерации, поскольку детектирование осуществляется на одном из скатов резонансной кривой. Чем «круче» будет скат, тем большую громкость звука удастся получить. Однако слишком большая крутизна ската внесет искажения – проявится ее нелинейный характер. Учитывая это, в приемник была введена регулировка регенерации, построенная на основе управляемого источника напряжения на транзисторе VT3. Резистор R7 желательно использовать многооборотный для плавности настройки. Транзистор VT3 включен эмиттерным повторителем.


    Ваша оценка произведения:

Популярные книги за неделю