355 500 произведений, 25 200 авторов.

Электронная библиотека книг » И. Шелестов » Путеводитель в мир электроники. Книга 2 » Текст книги (страница 1)
Путеводитель в мир электроники. Книга 2
  • Текст добавлен: 9 апреля 2017, 04:00

Текст книги "Путеводитель в мир электроники. Книга 2"


Автор книги: И. Шелестов


Соавторы: Борис Семенов
сообщить о нарушении

Текущая страница: 1 (всего у книги 23 страниц)

Семенов Борис Юрьевич, Шелестов Игорь Петрович
«Путеводитель в мир электроники»
Книга 2

Предисловие к книге 2

Наверное, у многих известных ныне ученых, инженеров, радиолюбителей увлечение радиотехникой начиналось с чтения хороших научно-фантастических романов. Ведь прекрасная фантастическая литература увлекает не только оригинальным сюжетом, но и великим разнообразием различных технических идей. Это – мир мечты, в котором хочется побывать. Приблизить мечту к реальной жизни – наша с вами задача. И решить ее поможет электронная техника.

В этой книге вы узнаете, как самостоятельно можно сделать разные виды радиоприемников и передатчиков, зарядные устройства, светомузыку, электронные таймеры и множество других полезных конструкций. Все они собраны в основном на легкодоступной и известной отечественной элементной базе. Но полностью отказываться от применения самых современных компонентов, в том числе и импортных, авторы посчитали нецелесообразным: ведь они позволяют сделать многие устройства проще и надежней. А так как радиолюбитель, как правило, не имеет дома большого перечня измерительных приборов, это заставляет упрощать методику настройки устройств за счет применения соответствующих элементов.

Отдельный раздел книги знакомит c основами цифровой техники. Эти знания помогут вам понять, как работает большинство логических элементов и узлов, что позволит в дальнейшем самостоятельно собирать простые конструкции на их основе. Надеемся, что после прочтения главы о цифровой технике для вас перестанут быть загадкой, например микрокалькулятор, таймер стиральной машины и электронные часы.

Для удобства изготовления практических схем в конце книги приведена вся необходимая справочная информация, в том числе расположение выводов у использованных транзисторов.

Сегодня многие имеют дома собственный персональный компьютер. Поэтому данная тема вне всякого сомнения, читателя заинтересует. Здесь вы познакомитесь с возможностями, которые предоставляет радиолюбителю и радиоинженеру современный персональный компьютер. Один из разделов книги полностью посвящен вспомогательным программам, которые станут незаменимы в практических делах – от справочных и выполняющих радиотехнические расчеты до таких, которые превращают компьютер в настоящий измерительный комплекс с широкими возможностями.

На лазерном диске, прилагаемом к книге в качестве подарка, вы найдете большинство из описанных программ (не придется «мучить» модем) или же будет указан адрес в Интернете, откуда эти программы можно переписать. Все программы распространяются свободно. Кроме того, на диске содержится много справочной информации в «электронном» виде, в том числе и той, которая не поместилась на страницах книги, но без нее читателю будет сложнее разбираться в работе электронных устройств.

Мы старались создать современную и полезную книгу, которая сможет в увлекательной форме научить основам радиоэлектроники настоящего и будущего. Насколько это удалось, судить вам, уважаемые читатели. Свои замечания, предложения и вопросы авторам можно переслать через издательство по адресам:

для обычных писем: 123242, Москва, а/я 20

или по электронной почте [email protected]



Глава 10
РАДИОТЕХНИКА И МИР РАДИОВОЛН

Значение радиотехники в современном мире огромно, но в повседневной жизни мы вряд ли особенно ощущаем ее важность, вряд ли задумываемся над этим. Зачем нужна радиотехника – тоже вопрос из редких. Мы просто пользуемся ее достижениями, они постоянно с нами: мы смотрим телевизор, слушаем радио, разговариваем по мобильным телефонам и радиоканалам карманных радиостанций. Достижения радиотехники широко используются не только в быту.

Радиосвязь во много раз ускорила нашу жизнь. Исполнилась давняя мечта людей об оперативной и быстрой передаче информации, невзирая на расстояния, преграды, снег, дождь, ветер. А осуществилось это всего за каких-нибудь 100 лет! Давайте же «отмотаем» эти сто лет назад, как пленку магнитофонной кассеты, и, прежде чем практически начать освоение мира радиотехники, быстренько пройдем путь ее развития, упомянем имена великих изобретателей, исследователей, первооткрывателей. Конечно, в практической части мы сможем охватить далеко не все достижения радиотехники, но даже то немногое покажется удивительным и захватывающим.

Ну что ж, совершим экскурсию в историю.

Как был сделан первый радиопередатчик и радиоприемник

Творчество – это движущая сила, которая поддерживает в нас жизнь.

Марк Вэнс

Слово «радио» (латинское radius – луч) появилось в словарном обиходе людей не так давно. Более того, можно назвать и точную дату и человека, который ввел термин «радио» в обиход.Вильям Крукс (1832–1919), английский физик и химик, член Лондонского королевского общества, создал прибор для изучения «сил отталкивания, возникающих в нагретых телах», и назвал этот прибор радиометром. Радиометр представлял собой грушевидный сосуд, в котором размещалась вертушка с четырьмя лопастями из слюды. Вертушка была насажена на острие иглы, а значит крутилась свободно. Когда на лопасти падал свет или катодные лучи, вертушка начинала вращаться. Крукс, однако, тогда ошибочно считал, что вращение происходит не под действием электромагнитных волн, а от неких «тепловых» сил. Но Крукс все же разобрался в природе электромагнитных волн и позже одним из первых предложил использовать их для передачи информации. В 1892 г. он отметил: «Лучи света не могут проникать ни через стену, ни, как мы слишком хорошо знаем, через лондонский туман. Но электрические лучи легко проникают через такие среды, являющиеся для них прозрачными. В таком случае здесь раскрывается ошеломляющая возможность телеграфирования без проводов».

Хотя радиометр Крукса в современном понимании мало походил на радиоприемные средства, он в буквальном смысле фиксировал наличие электромагнитных волн или их отсутствие. Через 16 лет профессор физики Парижского католического университета Эдуард Юджин Десаир Бранли (1844–1940) показал, что термин «радио» логичнее применять не к любым невидимым глазу воздействиям, а только к электромагнитным волнам. Имя Бранли прочно вошло в историю радиотехники благодаря изобретению так называемого датчика Бранли. Собственно, ничего особенного в этом датчике нет, его может изготовить из подручных средств любой – нужна только стеклянная трубка, заполненная металлическими опилками, и выведенные наружу электроды с торцов. При подключении к электродам батареи датчик Бранли работает как изолятор, но если на некотором расстоянии от датчика возникает электрическая искра достаточной мощности, датчик начинает проводить электрический ток! Чтобы перевести датчик опять в непроводящее состояние, его нужно просто немного встряхнуть.

Реакцию датчика на искру Э. Бранли наблюдал в пределах своей лаборатории – где-то в радиусе 20 метров. Он мог бы продолжать эксперименты с датчиком, придумать первый радиопередатчик и радиоприемник, увековечить себя в истории как изобретатель радиосвязи, но… Но Бранли никогда не интересовался передачей сигналов на расстояния! Ученого интересовало электричество Только применительно к медицине, для лечебных целей. А датчик появился случайно, при попытке смоделировать проводимость нерва.

Открытое явление было описано Бранли в 1890 г. в статье «О проводимости несплошных проводящих веществ». Название статьи покажется скучным, но в публикации автор отметил принципиальные для нашего рассказа моменты, дословно звучащие так: «На сопротивление металлических порошков влияют электрические разряды, производимые на некотором расстоянии от них. Под действием разрядов опилки резко изменяют свое сопротивление и проводят ток». Бранли назвал свой датчик радиокондуктором.

Усовершенствовал радиокондуктор другой физик – англичанин сэрОливер Джозеф Лодж (1851–1940). В 1894 г. Лодж добавил к радиокондуктору специальный прерыватель (trembler), который встряхивал опилки после прохождения искрового разряда. Лодж назвал свой вариант датчика словом когерер (рис. 10.1).


Рис. 10.1. Когерер, изобретенный Э. Бранли и усовершенствованный О. Лоджем.

Результаты проведенных опытов Лодж опубликовал в английском журнале «The electrican». Кстати, прочитав статью Лоджа, Э. Бранли написал ответную статью, в которой достаточно тактично поправил Лоджа: «Мою трубочку с опилками О. Лодж назвал «кохерер» и некоторые воспринимают это как общепринятое. Это название, однако, неточно отражает исследованное явление. Я предложил название «радиокондуктор» – «радио» и «проводник», – которое отражает главное свойство несплошного проводника при воздействии электромагнитного излучения». Но как бы то ни было, а «когерер» прочно утвердился в радиотехнических изделиях вплоть до начала 20-х гг. XX в., когда ему на смену пришли кристаллические детекторы электромагнитных волн и детекторы на электронных лампах.

Лодж, в отличие от Бранли, интересовался вопросами радиосвязи, и в данной области сделал немало изобретений. Однако он также не может считаться изобретателем радио. Позже, когда О. Лоджа спрашивали, почему ему не пришла в голову такая простая и светлая мысль, сэр Оливер отвечал: «Я был слишком занят работой, чтобы браться за развитие телеграфа или любого другого направления техники. У меня не было достаточного понимания того, чтобы почувствовать, насколько это окажется важно для флота, торговли, гражданской и военной связи».

Оставим ненадолго направление, связанное с конструированием детекторов электромагнитных колебаний. Разберемся, как были открыты электромагнитные волны – главный беспроводной переносчик информации. Как осуществлялся их поиск и экспериментальное подтверждение. Удивительно, но впервые электромагнитные волны были описаны Максвеллом теоретически. Люди даже не знали тогда, существуют ли они реально. Электромагнитные волны не были найдены до самой смерти Максвелла. Экспериментально подтвердить существование волн предстояло другому ученому – Генриху Герцу (1857–1894). Но пока поговорим не об опытах Герца, а об… Т. Эдисоне, Э. Томсоне, Н. Тесла.

В 1875 г., проводя эксперименты с большим электромагнитом, Эдисон заметил крохотные искорки, которые проскакивают между некоторыми металлическими предметами, расположенными в лаборатории неподалеку от электромагнита. Эдисон также установил, что искорки не влияют на прибор регистрации электрического заряда – электроскоп. Изобретатель тут же опубликовал статью об открытой им «эфирной силе», отнеся источник возникновения искорок к некой неэлектрической силе.

Статья Эдисона попала в руки американскому изобретателю Элиху Томсону, который решил продолжить эксперименты. Коммутируя катушку индуктивности (тогда один из ее видов назывался катушкой Румкорфа) и создавая с ее помощью магнитное поле, Томсон также заметил, что в помещении между близкорасположенными металлическими предметами вспыхивают искры. Так было доказано, что «электричество» передается через пространство, а также было опровергнуто предположение о существовании «эфирной силы». Трудно сказать, почему Томсон не двинулся дальше и не совершил открытие электромагнитных волн.

Еще один человек, близко подошедший к открытию электромагнитных волн, – Никола Тесла (1856–1943), американский изобретатель, долгое время работавший на заводах Эдисона, а затем основавший собственную лабораторию в штате Колорадо. С 1892 г. Тесла интересовался способами передачи информации без проводов. Еще в 1893 г., выступая перед слушателями Франклиновского института в Филадельфии (США), Тесла сказал: «С каждым днем я все больше убеждаюсь в практической осуществимости идеи передачи осмысленных сигналов на любое расстояние вовсе даже без помощи проводов. И хотя я знаю, что большинство ученых не верят, что такие результаты могут быть действительно реализованы, я рассматриваю этот проект передачи энергии и сигналов без проводов уже не просто как теоретическую возможность, а как весьма серьезную проблему электротехники, которая должна быть решена со дня на день». Действительно, слова Тесла оказались пророческими – эта проблема была решена через два года, но уже не головой и руками Тесла. Хотя вклад Тесла в радиотехнику тоже значителен. Изобретенный им воздушный повышающий трансформатор использовался в первых серийных радиопередатчиках в качестве источника излучения. Тесла вошел в историю электротехники изобретением асинхронного двигателя, электромеханического генератора тока высокой частоты, идей радиолокации и радиоуправления.

И вот теперь мы поговорим о Г. Герце. Что же сделал этот ученый, благодаря чему он остался в истории радиотехники первооткрывателем электромагнитных волн? Генрих Герц впервые назвал основные устройства для организации радиоканала – вибратор и резонатор. Вибратор должен генерировать электромагнитное поле, а резонатор – его принимать. А предыстория открытия Герца такова.

В 1879 г. Берлинская академия наук объявила конкурс на разработку темы «Экспериментальное подтверждение связи между электродинамическими силами и диэлектрической поляризацией». За ее разработку и взялся Герц, тогда молодой ученый, имевший в своем активе самостоятельную научную работу. Поначалу он колебался, стоит ли тратить время на столь непонятные исследования, но под влиянием своего руководителя, считавшегося первым физиком Европы, – Германа Гельмгольца – начал эксперименты и с успехом справился с поставленной задачей. Путь к главному открытию жизни был открыт!

В 1885 г. Генрих Герц стал профессором экспериментальной физики Высшей технической школы, через год, в 1886-м, появляются его изобретения: вибратор Герца (передатчик электромагнитных волн) и резонатор Герца (приемник электромагнитных волн). Как выглядят эти замечательные устройства? Вибратор Герца представляет собой два медных проводника длиной 2,6 м и толщиной 5 мм, расположенные на одной линии. На внешних концах проводников закреплены два больших жестяных шара, на внутренних – два небольших шарика, между которыми оставлен воздушный зазор. Щель между шариками называется искровым промежутком. К обоим проводникам подключается источник высокого напряжения – катушка индуктивности (катушка Румкорфа). Когда разность потенциалов между шариками в результате действия самоиндукции в катушке достигает напряжения пробоя, возникает электромагнитная искра. Проводники возбуждают электромагнитную волну, которая распространяется в пространстве. Основные параметры электромагнитной волны, такие, как ее длина или частота, могут быть отрегулированы величиной продольных проводников – их удлинением или укорочением. Этот принципиально важный факт также был открыт Герцем.

Мало получить электромагнитную волну – нужно ее еще и принять, преобразовать в вид, удобный для восприятия органами чувств человека. И такой приемник Герц создал! Резонатор Герца отличается предельной простотой: это металлическое круглое кольцо с разрезом и закрепленными на концах шариками, как показано на рис. 10.2.


Рис. 10.2. Внешний вид резонатора Герца

Настроив резонатор на вибратор с помощью подбора диаметра кольца, можно разглядеть появление между шариками резонатора небольшой искорки в момент срабатывания вибратора. Искорка появляется на расстоянии между шариками не более З мм, да и разглядеть ее возможно только в увеличительное стекло. Опыт Герца представлен на рис. 10.3.


Рис. 10.3. Опыт Г. Герца

По нашим меркам, исследования Герца не кажутся впечатляющими, но, когда он в декабре 1888 г. сделал доклад о результатах на заседании Берлинской академии наук, это произвело настоящую сенсацию. Еще бы – получено экспериментальное подтверждение теории электромагнитных волн Максвелла!

Сразу после этого Генриха Герца избрали почетным членом семи ведущих академий Европы. Выступая на съезде немецких естествоиспытателей, Герц сказал: «Все эти опыты просты в принципе, тем не менее они влекут за собой важнейшие следствия. Они рушат всякую теорию, которая считает, что электрические силы перепрыгивают пространство мгновенно».

Кратко итоги исследований ученого выглядят так:

• электромагнитные волны не являются теоретической ошибкой, а действительно существуют;

• скорость распространения электромагнитных волн в пространстве равна скорости света;

• для излучения и приема электромагнитных волн необходимо новое электротехническое устройство – антенна;

• для максимально эффективного приема электромагнитных волн необходимо настраивать антенну передатчика и антенну приемника — согласовывать их;

• длина излучаемой волны, а также эффективность излучения зависят от конструкции передающей антенны.

Генрих Герц умер в самом расцвете творческих сил – в начале 1894 г., за. год до изобретения радио. Он, как никто другой, мог сделать себе имя и изобретением радиосвязи, так как продвинулся в своих опытах намного дальше Эдисона, Томсона, Тесла, Бранли, Крукса, Лоджа и других, чьи имена мы здесь не назвали. Но поразительная проницательность в одном вопросе обернулась столь же великой недальновидностью в другом! В 1889 г., на запрос мюнхенского инженера Г. Губера о возможности использования открытия для практических целей, передачи информации на расстояние – Герц ответил: «Электрические колебания в трансформаторах и телефонах слишком медленные. Если бы Вы могли построить излучатели размахом с материк, то Вы могли бы поставить намеченные опыты, но практически сделать ничего нельзя: с обычными излучателями Вы не обнаружите ни малейшего действия».

Ответ ученого требует пояснения. Дело в том, что приборы Герца излучают волны частотой в десятки мегагерц (забавно, но этот параметр переменных электрических сигналов назван именем ученого). Звуковые же колебания находятся в области сотен тысяч герц – на порядки меньше. Излучать электромагнитные волны звукового диапазона могут только очень большие вибраторы. Модуляция как способ передачи низкочастотных сигналов при помощи высокочастотных еще не была изобретена, не было также автогенераторных схем создания электромагнитных колебаний. Отсюда и проистекает пессимизм великого ученого.

Теперь, уважаемые читатели, мы подошли к знаменательной дате, отмечаемой в нашей стране как памятный праздник, – к 7 мая 1895 г. Эта дата – день рождения радио! В тот день воедино сошлись изобретения ученых, о которых мы только что рассказали. Соединить вроде бы несоединимые вещи, в результате чего появилось совершенно новое техническое направление передачи осмысленной информации без помощи проводов, удалось нашему соотечественнику профессоруАлександру Степановичу Попову (1859–1906). Сын православного священника, настоятеля небольшой церкви в поселке Турьинские Рудники Пермской губернии, он в 1877 г. приехал в столицу и поступил на математическое отделение Петербургского университета – лучшего учебного заведения России. Еще в студенческие годы Попов подрабатывал в товариществе «Электротехник». Он также принимал активное участие в первой российской электротехнической выставке, прошедшей в Петербурге в 1880 г. Практический опыт, приобретенный в студенческие годы, оказался бесценным – к моменту получения диплома Попов считался инженером-электротехником с солидным стажем.


Итак, в 1882 г., после окончания университета, Попову предлагают остаться «для приготовления к профессорскому званию». Но крайне малое жалование заставляет его отказаться от предложения и поступить на службу в Морское ведомство, в Минный офицерский класс в Кронштадте. Александр Степанович согласился работать преподавателем физики.

Минный офицерский класс – одно из лучших электротехнических учебных заведений того времени. В нем не только готовили высококлассных специалистов для военно-морского флота, но и занимались научной работой. По воспоминаниям современников, Александр Степанович умел простыми словами рассказывать о сложном, но и демонстрировал множество опытов. Приборы, с помощью которых производились демонстрации, зачастую были изготовлены им собственноручно.

В 1900 г. Александр Степанович был назначен профессором кафедры физики Петербургского электротехнического института. Незадолго до смерти ученого, когда в России стало возможным не назначать, а выбирать ректоров учебных заведений, его в 1905 г. единодушно избрали ректором электротехнического университета Санкт-Петербурга. К слову, мемориальный рабочий кабинет Александра Степановича сохраняется в этом учебном заведении до сей поры.

Таков был Попов-человек. Каким же предстает Попов-ученый, Попов-изобретатель? В то время военно-морской флот остро нуждался в беспроводном средстве связи. Поскольку Александр Степанович связал свою жизнь с военно-морской техникой, он занимался проблемой связи применительно к флоту, интересовался мировым опытом, что-то сам мастерил в маленьком домике, расположенном во дворе Минного класса.

И вот 7 мая 1895 г. на очередном заседании Физико-химического общества Попов делает доклад «Об отношении металлических колебаний к электрическим колебаниям», а затем демонстрирует работу первого в мире радиоприемника! В Качестве источника электромагнитных волн А. С. Попов использует передатчик собственной конструкции – усовершенствованный вариант вибратора Герца. Когда ассистент ученого, Петр Николаевич Рыбкин (1864–1948), включал передатчик, в лаборатории раздавалась трель электрического звонка, находящегося в приемнике.

Что принципиально новое, доселе неизвестное можно встретить в конструкции радиоприемника Попова? Удивительно, но… ничего! Гениальность изобретения заключается в другом: Александр Степанович создал на основе существовавшей в то время, как бы мы сказали сейчас, «элементной базы», принципиально новое техническое устройство.

Сохранилось описание первого радиоприемника, составленное самим Поповым и опубликованное им в «Журнале русского физико-химического общества». Это описание интересно не столько тем, что сделано собственноручно Поповым, но главным образом позволяет прочувствовать стиль технического описания принципиальных электрических схем того времени (рис. 10.4).


Рис. 10.4. Рисунок радиоприемника А. С. Попова

«Трубка с опилками (когерер) подвешена горизонтально между зажимами М и N на легкой часовой пружине, которая для большей эластичности согнута со стороны одного из зажимов зигзагом. Над трубкой расположен звонок так, чтобы при своем действии он мог давать удары молоточком посредине трубки, защищенной от разбивания резиновым. кольцом. Удобнее всего трубку и звонок укрепить на общей вертикальной дощечке. Реле может быть помещено как угодно.

Действует прибор следующим образом. Ток батареи напряжением 4–5 В постоянно циркулирует от зажима Р к платиновой пластинке А, далее через порошок, содержащийся в трубке, к другой пластинке В и по обмотке электромагнитного реле обратно к батарее. Сила этого тока недостаточна для притягивания якоря к реле, но если трубка АВ подвергнется действию электрического колебания, то сопротивление мгновенно уменьшится и ток увеличится настолько, что якорь реле притянется. В этот момент цепь, идущая от батареи к звонку, прерванная в точке С, замкнется и звонок начнет действовать, но тотчас же сотрясение трубки опять уменьшит ее проводимость и реле разомкнет цепь звонка.

В моем приборе сопротивление опилок после сильного встряхивания бывает 100000 Ом, а реле, имея сопротивление около 250 Ом, притягивает якорь при токах от 5 до 10 мА (пределы регулировки), т. е. когда сопротивление всей цепи падает ниже 1000 Ом. На одиночное колебание прибор отвечает коротким звонком; непрерывно действующие разряды отзываются довольно частыми, через приблизительно равные промежутки следующими звонками».

Как читатели успели понять из описания и рисунка, в составе радиоприемника использованы знакомые изобретения: когерер, электромагнит, гальваническая батарея. Для автоматического встряхивания когерера применяется обычный электрический звонок, а в качестве антенны выступает вертикальный отрезок провода длиной 2,5 м – так называемая штыревая антенна. С помощью более длинной антенны прибор регистрирует на расстоянии до 4 км приближающуюся грозу, становясь «грозоотметчиком». По поводу грозоотметчика Попова один французский историк техники писал: «Уже в 1895 г., когда еще никто не мог выступить с предложением беспроволочного телеграфа, был кто-то, кто телеграфировал при помощи электричества. Этим «кто-то» была молния, которая телеграфировала А. С. Попову в его лабораторию «я здесь» и давала ему точные указания своего пути».

Чем занимался Александр Степанович после демонстрации своего знаменитого изобретения? В марте 1896 г. он демонстрировал усовершенствованный вариант приемника, в котором принятые сигналы записывались на телеграфную ленту. Летом 1897 г. он провел первые практические опыты по радиосвязи вблизи Выборга при дальности 5 км. Он исследовал методы увеличения дальности приема радиосообщений, разрабатывал конструкцию аппаратуры связи для военных кораблей. В том же году он высказал мысль о возможности использования радио для судовождения: «Применение источника электромагнитных волн на маяках в добавление к световому и звуковому сигналам может сделать видимыми маяки в тумане и в бурную погоду». Александр Степанович первым заметил эффект отражения радиоволн от корпусов кораблей и пришел к мысли о возможности радиопеленгования и радиолокации, то есть способов обнаружения объектов при помощи электромагнитной волны: «Все металлические предметы – мачты, трубы, снасти – должны мешать действию приборов как на станции отправления, так и на станции получения, потому что, попадая на пути электромагнитной волны, они нарушают ее правильность отчасти подобно тому, как действуют на обыкновенную волну, распространяющуюся по поверхности воды».

В 1898 г. Попов вместе с французским инженером Е. Дюкрете начал производство радиостанций для нужд флота. Изготовление аппаратуры налаживалось в Кронштадте, в мастерских Е. В. Колбасьева. Эта первая связная аппаратура закупалась и для кораблей французского флота. Наступила эра промышленного производства аппаратуры беспроводной связи!

В 1899 г. Александр Степанович запатентовал детекторный приемник, позволявший принимать «морзянку», прослушивая ее в телефонных наушниках. В следующем году радиостанции А. С. Попова были использованы для проведения спасательных работ. В Финском заливе, у острова Гогланд, сел на мель только что построенный броненосец «Генерал-адмирал Апраксин». Чтобы осуществлять оперативное руководство работами, А. С. Попов установил одну радиостанцию на аварийном корабле, а вторую – на расстоянии 40 км, в городе Котка. Несколько месяцев спасатели пользовались этой линией связи. В том же году, после получения по радио сигнала бедствия с оторвавшейся льдины с рыбаками, ледокол «Ермак» вышел в море и спас людей. Адмирал и ученый-кораблестроитель Степан Осипович Макаров, оказывавший А. С. Попову большую поддержку и помощь, так описал это событие: «Первая официальная депеша содержала приказание «Ермаку» идти на спасение рыбаков, унесенных в море на льдине, и несколько жизней было спасено благодаря «Ермаку» и беспроволочному телеграфу. Такой случай был большой наградой за труды, и впечатления этих дней, вероятно, никогда не забудутся». В 1901 г. Александр Степанович достиг уверенной связи на расстоянии 150 км.

В декабре 1912 г. иллюстрированный журнал «Огонек», отмечая открытие в России радиозавода морского ведомства, писал: «Радиотелеграфия зародилась у нас в России. Пионером этого дела явился известный русский профессор Попов, начавший строить радиотелеграфные аппараты в Кронштадте. Вслед за проф. Поповым делом радиотелеграфии занялся знаменитый итальянец Маркони, добившийся возможности передавать радиотелеграммы на довольно значительные расстояния. Благодаря содействию крупных английских капиталистов он и пожал те лавры, которые по справедливости должны бы быть отданы проф. Попову».

Вот еще одна интересная выдержка из работы историка техники И. В. Бренева, относящейся к 70-м гг. XX в.: «А. С. Попов умер в 1906 г., Маркони пережил его на 31 год. Попов ушел из жизни тогда, когда радиотехника только начинала свой путь. Маркони жил в эпоху совершенствования радиотехники, когда в ней на смену когереру пришла электронная лампа, появилось радиовещание, телевидение. Когда А. С. Попов уже не мог напомнить о себе, Маркони совершал многочисленные путешествия по разным странам мира, он более 80 раз пересек Атлантический океан, он был членом различных международных организаций. А. С. Попов не стал коммерсантом, он не создал своей фирмы, его родина, Россия, при царской власти была экономически слабой страной. За спиной же Маркони стояла богатейшая фирма с огромным штатом и мировой клиентурой».

Наконец, приведем и слова самого Александра Степановича: «Маркони первый имел смелость стать на практическую почву и достиг в своих опытах больших расстояний».

Кто такой этот загадочный Маркони и почему его имя на протяжении почти ста лет упоминается рядом с именем Александра Степановича Попова?

Гульельмо Маркони (1874–1937), итальянский инженер-электрик, изобретатель, удачливый коммерсант, державший руку на пульсе времени. Однажды он так сказал о принципах своих исследований: «Я нуждаюсь в любой помощи, которую могу получить. Я читаю все, абсолютно все, что могу найти по телеграфной связи. Я никого не пропускаю и ничего не игнорирую, никакую идею, какой бы абсурдной она ни была. Я пробую все, – по крайней мере один раз».


Прочитав в 1894 г. об опытах Герца, юный 20-летний Маркони задумался об использовании электромагнитных волн для передачи сообщений. Он превратил в лабораторию старое зернохранилище на семейной вилле в Болонье и с утра до вечера просиживал за экспериментами. Первые радиосигналы – три точки символа «S», посылаемые кодом Морзе, принимались на расстоянии сотни метров. Но только по прошествии 13 месяцев после публикации Попова Г. Маркони подал заявку на изобретение «аппаратуры для системы связи без проводов с помощью электромагнитных волн». И только 2 июля 1897 г., то есть через два года после демонстрации опытов Попова, итальянский изобретатель получил патент на «усовершенствование в передаче электрических импульсов и сигналов в аппаратуре для этого». К сожалению, Александр Степанович не подал заявку на патент своего изобретения, и поэтому на Западе изобретателем радио считается Маркони. Некоторые историки техники считают, что Маркони усовершенствовал приемник Попова и запатентовал его, некоторые склоняются к мысли, что он пришел к аналогичной конструкции самостоятельно.


    Ваша оценка произведения:

Популярные книги за неделю