355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Хавьер Арбонес » Том 12. Числа-основа гармонии. Музыка и математика » Текст книги (страница 7)
Том 12. Числа-основа гармонии. Музыка и математика
  • Текст добавлен: 19 сентября 2016, 14:42

Текст книги "Том 12. Числа-основа гармонии. Музыка и математика"


Автор книги: Хавьер Арбонес


Соавторы: Пабло Милруд

Жанр:

   

Математика


сообщить о нарушении

Текущая страница: 7 (всего у книги 7 страниц)

Сэр Эдуард Элгар (1857–1934) посвятил свои знаменитые «Энигма-вариации», ор. 36 «друзьям, изображенным в этом произведении». Каждая вариация содержит инициалы или иное указание на близкого Элгару человека, которого он запечатлел в музыке. Однако название произведению дала не эта «загадка», а другая, ответ на которую до сих пор не найден: сам Элгар утверждал, что спрятал в этом произведении еще одну мелодию. Эта загадочная неслышимая мелодия подобна главному герою спектакля, который никогда не появляется на сцене, но вокруг которого развивается действие. После публикации партитуры было предложено множество решений этой загадки, но ни одно из них не выглядит убедительным.

Алгоритмическая композиция

Алгоритм – это множество инструкций по решению определенной задачи или выполнению определенного действия. Простейшие алгоритмы используются в школе для выполнения основных арифметических операций. Все процессы, выполняемые внутри компьютера, подчиняются тому или иному алгоритму. Хотя четкое определение алгоритма (одно из множества существующих) содержит указание на свойства, которыми должен обладать алгоритм (он должен быть конечным, состоять из четко определенных инструкций и так далее), мы будем использовать более простую формулировку. Будем считать алгоритм множеством шагов и (или) правил, которым нужно следовать для достижения определенного результата.

Алгоритмическая композиция представляет собой математическое моделирование процесса вдохновения. Композитор создает алгоритм, получающий некоторую информацию на входе и выдающий другую информацию на выходе. Какой смысл в создании музыки по алгоритму? В конечном счете разумно считать музыку способом коммуникации, выражающим человеческие эмоции, индивидуальное видение реальности определенного человека. Зачем нужны машины, способные создавать музыку? Будет ли результат их работы музыкой в полном смысле этого слова? Что такое музыка вообще?

Во-первых, хотя музыка остается средством выражения возвышенного, ее роль давно вышла за эти рамки. Музыка стала частью огромного рынка, который постоянно требует появления все новых и новых песен и исполнителей. В этом смысле композитор не более чем винтик механизма, без которого в недалеком будущем можно будет обойтись. Тот факт, что человека можно заменить, не ставит под сомнение качество работы композитора и корректность алгоритма, а показывает, что и люди, и алгоритмы являются частью одной стандартизованной системы.

Во-вторых, создание алгоритма, способного «написать» качественную музыку, – это задача, перед которой сложно устоять программистам, интересующимся музыкой. Правила, по которым создается музыка, можно проанализировать математически, но этот анализ имеет предел, после которого в объяснениях неизбежно начинают фигурировать такие понятия, как «вдохновение», «духовность», «чувственность», «искусство». Можно ли преодолеть этот предел? Доступны ли человеческому интеллекту глубинные правила, по которым создается музыка? Наступит ли день, когда какой-то программист, используя современные математические методы, подобно Прометею сможет «украсть» божественный огонь вдохновения и сделать его доступным для всех?

Приложение I
Основные понятия музыкальной нотации и теории музыки

В этом приложении мы расскажем об основных понятиях теории музыки, чтобы вы смогли лучше понять, о чем идет речь в книге. Музыкальная запись – пример того, как математика применяется в искусстве. Возможно, ее применение в музыке не столь очевидно, как, например, использование геометрии в живописи, но современная музыкальная нотация содержит ряд правил и символов, которые имеют математическое происхождение или интерпретируются по математическим законам.

Музыкальная нотация не была создана в одночасье, она является результатом длительного эволюционного процесса. Не так давно стали предлагаться альтернативные, более эффективные формы нотации, но из-за широкого распространения традиционной нотации внести в нее какие-либо изменения сложно, и на перестройку понадобится длительное время.

Высота

Высотой называется воспринимаемое значение «тона». Тон – это свойство звука, напрямую связанное с частотой звуковой волны. Частота звука измеряется в герцах (Гц). Высота – это свойство, позволяющее различать высокие и низкие звуки (чем больше частота, тем выше звук), а также распознавать ноты. Человеческое ухо способно улавливать звуковые колебания частотой примерно от 20 до 20 000 Гц. Звуки более низкой частоты называются инфразвуком, более высокой – ультразвуком. Чтобы упорядочить относительные высоты звуков, в 1939 году был определен стандартный тон для ноты ля, значение которого равно 440 Гц.

Интервалы

Интервалом называется разница высот двух звуков, воспринимаемая слушателем. Интервалы называются по порядку, который соответствует числу ступеней, разделяющих звуки, включая границы интервала. Это витиеватое определение проще понять на примере. Если сыграть одновременно ноту фа и более высокую, ля, то вы услышите интервал в одну терцию (фа-соль-ля – три ноты). Ноту ля и следующую по высоте фа разделяет секста (ля-си-до-ре-ми-фа – шесть нот).

При определении интервала первым называют более низкий звук. Например, секунда образуется двумя звуками звукоряда, идущими подряд: до – ре, ре – ми, ми – фа и так далее. Терции выглядят так: до – ми, ре – фа, ми – соль, фа – ля, соль – си.

Таким образом, интервал до – ре – это секунда, интервал ре – до – септима. Полный интервал между двумя равными нотами, например до – до, называется октавой. Октава делится на 12 полутонов.


Интервалы, меньшие и равные октаве, в музыкальной нотации.

Классификация интервалов

Интервалы делятся на большие, малые и чистые в зависимости от числа полутонов. Например, два звука секунды до-ре разделены двумя полутонами, поэтому этот интервал называется большая секунда. Две ноты другой секунды, си-до, разделены одним полутоном, поэтому этот интервал называется малая секунда. Большими и малыми могут быть все интервалы, за исключением интервалов из пяти, шести и семи полутонов. Интервал в пять полутонов называется чистой квартой, в семь полутонов – чистой квинтой. Частный случай – нота, находящаяся ровно посередине октавы: в октаве до-до фа-диез удалено на шесть полутонов от более низкого до (увеличенная кварта) и на шесть полутонов от более высокого до (уменьшенная квинта).

Если звуки берутся последовательно, то такой интервал называется мелодическим. Он может быть восходящим или нисходящим. Вид интервала также указывается в его названии. Например, восходящий интервал до-ре называется восходящей большой секундой, нисходящий интервал до-ре – нисходящей малой септимой. Нисходящий интервал ре-до – нисходящая большая секунда, восходящий интервал ре-до – восходящая малая септима. В зависимости от контекста вид интервала может не указываться.


Все возможные мелодические интервалы между двумя соседними нотами.

В следующей таблице приведено количество полутонов в различных интервалах:


Обращения интервалов

Обращенным называется интервал, который в сумме с основным интервалом охватывает все 12 полутонов октавы. Основной и обращенный интервалы напоминают дополнительные углы в геометрии, что показано на рисунке:


Обращенным интервалом чистой кварты (из пяти полутонов) является чистая квинта (из семи полутонов): соль-до (чистая кварта) и до-соль (чистая квинта). Дополнительным к углу α называется такой угол β, который в сумме с ним дает 90°.


Два интервала, в сумме образующие октаву.

В следующей таблице приведены обращенные интервалы для всех основных интервалов:



Обертоны

Когда музыкальный инструмент издает звук, он имеет конкретную частоту F, но человеческое ухо воспринимает этот звук не как чистый тон, а как сумму бесконечного числа составляющих. Струна колеблется из стороны в сторону не упорядоченно, а хаотически. Звук, издаваемый струной, или любая другая нота, которую слышит наше ухо, складывается из основного тона и других призвуков – звуков меньшей интенсивности, которые называются обертонами. Нота, которую мы слышим, – это составной звук, но основной тон и все обертоны являются чистыми звуками. Из множества обертонов, составляющих звук, человеческое ухо улавливает всего 16.


На схеме изображена струна, частоты колебаний которой соответствуют первым обертонам.

Если на музыкальном инструменте исполняется нота до, то ряд из шестнадцати обертонов, воспринимаемых человеческим ухом, для этого звука будет выглядеть следующим образом:


В таблице приведены частоты различных обертонов. Например, 5-й обертон соответствует звуку, частота которого в пять раз больше частоты основного тона в 33 Гц: 33·5 = 165 Гц.

В музыкальной нотации 16 обертонам соответствуют следующие ноты:



Консонанс и диссонанс

Звуки, воспроизводимые одновременно, могут восприниматься как благозвучные (в этом случае имеет место консонанс) или неблагозвучные, напряженные (мы называем их диссонирующими). В главе 1 мы рассказали о том, что пифагорейцы считали причиной благозвучия или неблагозвучия особое соотношение длин струн, издававших эти звуки. Иными словами, для пифагорейцев согласованность звуков определялась соотношением их частот. Пифагорейцы считали октаву (она разделяет два звука, исполняемые на струнах, соотношение длин которых 1:2), квинту (соотношение длин струн для нее 2:3) и кварту (3:4) благозвучными. Другие интервалы, производные от трех основных, оказывались диссонирующими, так как соотношения частот для соответствующих звуков выражались сложными числами. На следующих иллюстрациях указаны основные интервалы и соотношения частот звуков, соответствующих границам этих интервалов:


Среди многочисленных гипотез, возникших в то время, особенный интерес представляет теория, согласно которой степень созвучности двух звуков тем больше, чем больше общих обертонов они имеют.


Запись времени на партитуре

Рассуждения о сути ритма (см. главу 2) позволили нам выделить различные свойства, описывающие чередование нот и пауз. Это дало возможность точнее записывать музыкальные произведения.

В физике время часто отображается на горизонтальной оси координат. Например, при построении графика положения тела при свободном падении высота обычно отображается на вертикальной оси (Y), время – на горизонтальной (X). Полученный график положения тела будет выглядеть так:


График движения тела при свободном падении.

Аналогичным образом время представляется и в музыке:


Нотная запись читается слева направо подобно тому, как читаются тексты, написанные на западных языках. Музыкальные ритмы изображаются в виде последовательности нот на горизонтальной оси.


Музыка и символы музыкальной нотации

Чтобы понять систему нотной записи, необходимо определить характеристики звуков, которые мы будем изображать.

Во-первых, следует рассмотреть наличие и отсутствие звука. В нотной записи должен отражаться как сам звук, так и паузы между звуками.

Во-вторых, звуки образуются в результате некоего движения, они имеют начало и конец.

Ноты и паузы – это символы, обозначающие наличие и отсутствие звука соответственно. Они же обозначают длительность звуков относительно других звуков и пауз.

Ноты

Длительность звуков обозначается с помощью нот. Ноты состоят из следующих элементов:

– головка: небольшой овал черного или белого цвета;

– штиль: вертикальная часть ноты, соединяющая головку и флажок (если он есть);

– флажок: небольшая изогнутая линия, расположенная на противоположном от головки конце штиля.


Относительная длительность нот

Относительная длительность звуков и пауз сохраняется вне зависимости от того, с какой скоростью исполняется произведение. Скорость исполнения и, как следствие, реальная длительность нот во времени определяется темпом метронома – механического прибора, с помощью которого можно задать любую постоянную скорость исполнения.

Как мы уже говорили ранее, относительная длительность нот определяется цветом головки (черная или белая), а также присутствием или отсутствием штиля и флажков.

Так, головка целой и половинной ноты имеет белый цвет, всех остальных нот – черный цвет. У всех этих нот, за исключением целой, имеется штиль. Восьмая нота имеет один флажок, шестнадцатая – два, тридцать вторая – три и шестьдесят четвертая – четыре. Каждой ноте соответствует относительная длительность, обозначаемая числом 2n где n расположено на интервале от 0 до 6.

Последовательность нот в порядке убывания длительности выглядит так: целая, половинная, четвертная, восьмая, шестнадцатая, тридцать вторая и шестьдесят четвертая. Базовой нотой является целая, ей соответствует число 1. Следующая нота – половинная, длительность которой в два раза меньше, чем целой. Это означает, что за время исполнения целой ноты могут прозвучать две половинных. За время исполнения половинной ноты могут прозвучать две четвертные. Длительность любой ноты в два раза меньше, чем предыдущей. На следующей иллюстрации представлена относительная длительность нот, начиная с целой ноты в вершине воображаемой пирамиды и заканчивая тридцать вторыми в ее основании:


В следующей таблице указана относительная длительность всех нот:


Число, соответствующее каждой ноте, показывает, сколько раз подряд ее можно исполнить за время звучания одной целой ноты. Отношение между длительностями нот является прямым и транзитивным: одна половинная нота равна двум четвертным, одна четвертная – четырем шестнадцатым; следовательно, одна половинная нота равна восьми шестнадцатым.

Ноты с флажком объединяются чертой, соединяющей штили, в группы, которые, как правило, подчиняются ритму, задаваемому нотами большей длительности:


Паузы

Пауза – противоположность звука и вторая основная составляющая музыки. Можно считать, что паузы – это основа музыки, которая прерывается звуками, но в музыкальной нотации пауза – это промежуток времени, в который не исполняется ни одного звука. Следовательно, длительность пауз должна быть четко задана. Для представления пауз различной длительности используется ряд специальных знаков, соответствующих разным нотам:


Точки

Очень часто возникает необходимость увеличить относительную длительность ноты или паузы. Для этого используются маленькие точки справа от головки ноты. Точка обозначает, что относительная длительность ноты, помеченной точкой, увеличивается на 50 %. Так, четвертная нота с точкой эквивалентна четвертной ноте (1/4) и ее половине, восьмой ноте (1/8). 1/4 + 1/8 = 3/8. Следовательно, четвертная нота с точкой эквивалентна трем восьмым.

Также применяется так называемая двойная точка, которая означает, что длительность исходной ноты необходимо увеличить на 75 %. Например, для половинной ноты первая точка увеличивает ее длительность на четвертную ноту, вторая – еще на восьмую ноту. Для четвертной ноты первая точка увеличивает длительность ноты на восьмую, вторая – еще на одну шестнадцатую ноту:



Приложение II
Второй взгляд на роль времени в музыке

Музыка как феномен дана нам исключительно для установления порядка вещей, по преимуществу – между человеком и временем.

Игорь Стравинский

Ощущение времени – источник всей музыки и всего ритма.

Оливье Мессиан


Мы живем в настоящем. Всё – настоящее. Нам известно лишь прошлое и настоящее. В прошлом настоящее не было известно, и мы могли лишь предполагать, каким оно будет. Возможно, прошлое в некотором смысле влияет на настоящее, но никогда не опережает его.

Мы можем осмотреть издалека дом или путь, который нам предстоит пройти, но разорвать узы времени нельзя: мы не можем взглянуть на него «издалека», не можем остановить его, чтобы передохнуть или поразмыслить о чем-то. Но даже несмотря на это люди способны чувствовать процессы, происходящие с течением времени. Суть метода очень проста: нужно спланировать некоторое событие, которое должно произойти в будущем, подождать, пока оно наступит, и зафиксировать его в этот самый момент. Спустя всего одно мгновение это событие станет прошлым и останется в нашей памяти. С музыкой происходит то же самое: она звучит в настоящем и остается в памяти. Музыка вольно или невольно пропитывается временем.


Модальность и тональность

Существует два музыкальных стиля и подхода к музыке: модальный и тональный. Основное различие между ними в том, как в этих стилях трактуется время. В западном мире наиболее распространена тональная музыка. Этот стиль родился в эпоху барокко, развивался в период приблизительно с 1600 по 1750 год и характеризуется тем, что развертывается последовательно во времени. В каждый момент тонального произведения за каждым аккордом следует следующий, аккордовое тяготение ослабляется в момент паузы. Роль, которую играет аккорд в этой цепочке чередующихся моментов напряжения и покоя, называется функцией аккорда.

Начиная с эпохи барокко тональная система переживала процесс непрерывных изменений на протяжении следующих периодов классицизма и романтизма. Хотя преобладала тональная музыка, культурный авангард начала XX века отходил от этого направления в сторону стиля, где отсутствовало бы аккордовое тяготение. Этот стиль называется атональным, или модальным.

В модальном стиле существуют две различные трактовки времени. С одной стороны, время как вечность – наиболее известный пример григорианских песнопений средневековой Европы, где нет обозначений прошлого, настоящего и будущего, иными словами, времени словно не существует. В другой трактовке время понимается как продолжающееся настоящее: звуковое событие является завершенным в каждый момент времени, оно не обусловлено какими-то событиями в прошлом и не влияет на звуковые события в будущем. Важно лишь настоящее. Помимо авангардной академической музыки, второй трактовке следует большая часть восточной музыки, часть фолк-музыки Южной Америки и джазовый стиль бибоп.

Различный подход к понятию времени в тональной и модальной музыке позволяет провести аналогию с другими видами искусства: тональная музыка, которая развертывается последовательно во времени, сравнима с танцем, модальная – с поэзией.

Библиография

ASSAYAG, G., FEICHTINGER, H.G., Rodrigues, J.F. (editores): Mathematics and Music, Berlín, Springer, 2002.

HOFSTADTER, D.R., Cödel, Escher, Bach: un eterno у grácil buck, Barcelona, Tusquets Editores, 2007.

KOLNEDER, W., Guíа de Bachf Madrid, Alianza Editorial, 1982.

LOY, G., Musimathics, Londres, The MIT Press, 2006.

SAMUEL, C., Panorama de la música contemporánea, Madrid, Ediciones Guadarrama, S.L., 1965.

* * *

Научно-популярное издание

Выходит в свет отдельными томами с 2014 года

Мир математики

Том 12

Хавьер Арбонес и Пабло Милруд

Числа – основа гармонии. Музыка и математика

РОССИЯ

Издатель, учредитель, редакция:

ООО «Де Агостини», Россия

Юридический адрес: Россия, 105066, г. Москва, ул. Александра Лукьянова, д. 3, стр. 1

Письма читателей по данному адресу не принимаются.

Генеральный директор: Николаос Скилакис

Главный редактор: Анастасия Жаркова

Выпускающий редактор: Людмила Виноградова

Финансовый директор: Наталия Василенко

Коммерческий директор: Александр Якутов

Менеджер по маркетингу: Михаил Ткачук

Менеджер по продукту: Яна Чухиль

 Для заказа пропущенных книг и по всем вопросам, касающимся информации о коллекции, заходите на сайт www.deagostini.ru , по остальным вопросам обращайтесь по телефону бесплатной горячей линии в России:

8-800-200-02-01

Телефон горячей линии для читателей Москвы:

8-495-660-02-02

Адрес для писем читателей: Россия, 105066, г. Москва, а/я 13, «Де Агостини», «Мир математики»

Пожалуйста, указывайте в письмах свои контактные данные для обратной связи (телефон или e-mail).

Распространение:

ООО «Бурда Дистрибьюшен Сервисиз»

УКРАИНА

 Издатель и учредитель:

 ООО «Де Агостини Паблишинг» Украина

Юридический адрес: 01032, Украина, г. Киев, ул. Саксаганского, 119

Генеральный директор: Екатерина Клименко

Для заказа пропущенных книг и по всем вопросам, касающимся информации о коллекции, заходите на сайт www.deagostini.ua , по остальным вопросам обращайтесь по телефону бесплатной горячей линии в Украине:

0-800-500-8-40

Адрес для писем читателей:

Украина, 01033, г. Киев, a/я «Де Агостини», «Мир математики»

Украïна, 01033, м. Кiев, а/с «Де Агостiнi»

БЕЛАРУСЬ

Импортер и дистрибьютор в РБ:

ООО «Росчерк», 220037, г. Минск, ул. Авангардная, 48а, литер 8/к,

тел./факс: +375 17 331 94 27

Телефон «горячей линии» в РБ:

+ 375 17 279-87-87 (пн-пт, 9.00–21.00)

Адрес для писем читателей: Республика Беларусь, 220040, г. Минск, а/я 224, ООО «Росчерк», «Де Агостини», «Мир математики»

КАЗАХСТАН

Распространение: ТОО «КГП «Бурда-Алатау Пресс»

Издатель оставляет за собой право увеличить рекомендуемую розничную цену книг. Издатель оставляет за собой право изменять последовательность заявленных тем томов издания и их содержание.

Отпечатано в соответствии с предоставленными материалами в типографии:

Grafica Veneta S.p.A Via Malcanton 2

35010 Trebaseleghe (PD) Italy

Подписано в печать: 09.11.2013

Дата поступления в продажу на территории

России: 08.04.2014

Формат 70 х 100 / 16. Гарнитура «Academy».

Печать офсетная. Бумага офсетная. Печ. л. 5.

Усл. печ. л. 6,48.

Тираж: 200 000 экз.

© Javier Arbones у Pablo Milrud, 2010 (текст)

© RBA CoIIecionables S.A., 2012

© ООО «Де Агостини», 2014

ISBN 978-5-9774-0682-6

ISBN 978-5-9774-0704-5 (т. 12)


    Ваша оценка произведения:

Популярные книги за неделю